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Solutions are constructed for the Kalman-Yakubovich-transpose equation 𝑋 − 𝐴𝑋
𝑇

𝐵 = 𝐶. The solutions are stated as a polynomial
of parameters of thematrix equation.One of the polynomial solutions is expressed by the symmetric operatormatrix, controllability
matrix, and observability matrix. Moreover, the explicit solution is proposed when the Kalman-Yakubovich-transpose matrix
equation has a unique solution. The provided approach does not require the coefficient matrices to be in canonical form. In
addition, the numerical example is given to illustrate the effectiveness of the derived method. Some applications in control theory
are discussed at the end of this paper.

1. Introduction

In the control area, the Kalman-Yakubovich-transpose
matrix equation 𝑋 − 𝐴𝑋

𝑇
𝐵 = 𝐶 occurs in fault detection [1],

control with constrains systems [2], eigenstructure assign-
ment [3], and observer design [4]. In order to obtain explicit
solutions, many researchers have made much efforts. Braden
[5] studies the Lyapunov-transpose matrix equation 𝐴

𝑇
𝑋 ±

𝑋
𝑇

𝐴 = 𝐵 via matrix decomposition. Liao et al. [6] propose
an effective method to obtain the least square solution of
the matrix equation 𝐴

𝑇
𝑋𝐵 + 𝐵

𝑇
𝑋
𝑇

𝐴 = 𝐷 using GSVD,
CCD and projective theorem. Piao et al. [7] investigate the
matrix equation 𝐴𝑋 + 𝑋

𝑇
𝐵 = 𝐶 by the Moore-Penrose

generalized inverse and give the explicit solutions for the
Sylvester-tranposematrix equation. Song et al. [8, 9] establish
the explicit solution of the quaternion matrix equation 𝑋𝐹 −

𝐴𝑋 = 𝐶 and 𝑋 − 𝐴𝑋𝐹 = 𝐶, where 𝑋 denotes the 𝑗-conjugate
of the quaternion matrix. Moreover, other matrix equations
such as the coupled Sylvestermatrix equations and the Riccati
equations have also been found numerous applications in
control theory. For more related introduction, see [10, 11] and
the references therein.Thematrix equation𝐴𝑋𝐵+𝐶𝑋

𝑇
𝐷 = 𝐸

is considered by the iterative algorithm [12, 13]. In [14, 15], the
following linear equation

𝑟

∑

𝑖=1

𝐴
𝑖
𝑋𝐵
𝑖

+

𝑠

∑

𝑗=1

𝐶
𝑗
𝑋
𝑇

𝐷
𝑗

= 𝐸 (1)

is considered, where 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑗
, 𝐷
𝑗

(𝑖 = 1, . . . , 𝑟; 𝑗 = 1, . . . , 𝑠),
and 𝐸 are some known constant matrices of appropriate
dimensions and 𝑋 is a matrix to be determined. And the
least squares solutions and least square solutions with the
minimal-norm have been obtained. In [16], using the hierar-
chical identification principle, authors consider the following
more general coupled Sylvester-transpose matrix equation:

𝑝

∑

𝜂=1

(𝐴
𝑖𝜂

𝑋
𝜂
𝐵
𝑖𝜂

+ 𝐶
𝑖𝜂

𝑋
𝑇

𝜂
𝐷
𝑖𝜂

) = 𝐹
𝑖
, 𝑖 ∈ 𝐼 [1, 𝑁] , (2)

where 𝐴
𝑖𝜂

∈ 𝑅
𝑚𝑖×𝑙𝜂 , 𝐵

𝑖𝜂
∈ 𝑅
𝑛𝜂×𝑝𝑖 , 𝐶

𝑖𝜂
∈ 𝑅
𝑚𝑖×𝑛𝜂 , 𝐷

𝑖𝜂
∈ 𝑅
𝑙𝜂×𝑝𝑖 ,

𝐹
𝑖

∈ 𝑅
𝑚𝑖×𝑛𝑖 , 𝑖 ∈ 𝐼[1, 𝑁], and 𝜂 ∈ 𝐼[1, 𝑝] are the given known

matrices and 𝑋
𝜂

∈ 𝑅
𝑙𝜂×𝑛𝜂 and 𝜂 ∈ 𝐼[1, 𝑝] are the matri-

ces to be determined. In addition, the generalized discrete
Yakubovich-transpose matrix equation 𝑋 − 𝐴𝑋

𝑇
𝐵 = 𝐶𝑌
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has important applications in dealing with complicated linear
systems, such as large scale systems with interconnections,
linear systemswith certain partitioned structures or extended
models, and second order or higher order linear systems
[17, 18]. Song et al. [19] constructed the complete parametric
solutions to the generalized discrete Yakubovich-transpose
matrix equation. And one of the parametric solutions has a
neat and elegant form in terms of the Krylov matrix, a block
Hankel matrix, and an observability matrix. Other matrix
equations such as descriptor linear systems and quaternion
matrix equations have also been investigated, see [20–25]
and the references therein. Wu et al. [26] have discussed the
closed-form solutions to the generalized Sylvester-conjugate
matrix equation and the proposed solution can provide all
the degrees of freedom which are represented by a free
parametermatrix.Wu et al. [27] proposed a general, complete
parametric solution to the nonhomogeneous generalized
Sylvester matrix equation 𝐴𝑉 + 𝐵𝑊 = 𝐸𝑉𝐹 + 𝑅. One
advantage of the proposed solution is that the matrices 𝐹

and 𝑅 are in an arbitrary form and can be set undeter-
mined. This may give great convenience to many problems
in descriptor linear systems, such as observer design and
model reference control. Zhou et al. [28] investigated the
problem of parameterizing all solutions to the polynomial
Diophantine matrix equation and the generalized Sylverter
matrix equation by using the so-called generalized Sylverter
mapping, right coprime factorization, and Bezout identity
associated with certain polynomial matrix. It is shown that
the provided solutions can be parameterized as soon as two
pairs of polynomial matrices satisfying the right coprime
factorization and Bezout identity are obtained.

The rest of this paper is outlined as follows. In Section 2,
the polynomial solutions to the Karm-Yakubovich-transpose
matrix equation 𝑋 − 𝐴𝑋

𝑇
𝐵 = 𝐶 are given. One of the poly-

nomial solutions has a neat and elegant form in terms
of symmetric operator matrix, controllability matrix and
observability matrix. The polynomial solution to the Karm-
Yakubovich-transpose is also proposed by the generalized
Leverrier algorithm. Numerical example is given to show
the efficiency of the proposed algorithm in Section 3. Some
applications of the Karm-Yakubovich-transpose have been
mentioned in Section 4 to end this paper.

Throughout this paper, we use 𝑅 and 𝐶 to denote the real
number field and the complex number field. 𝐴

𝑇, 𝐴, 𝐴
𝐻, and

𝐴
∗ refer to transpose, conjugate, conjugate transpose, and the

adjoint matrix of 𝐴, respectively. 𝜎(𝐴) and 𝜆(𝐵) are the sets
of characteristic eigenvalue of matrices 𝐴 and 𝐵, respectively.
𝐼 represents the identity matrix with appropriate dimensions.
Moreover, for 𝐴 ∈ 𝐶

𝑛×𝑛, 𝐵 ∈ 𝐶
𝑛×𝑟, and 𝐶 ∈ 𝐶

𝑚×𝑛, we have the
following notations:

𝑄
𝑐 (𝐴, 𝐵, 𝑛) = [𝐵 𝐴𝐵 ⋅ ⋅ ⋅ 𝐴

𝑛−1
𝐵] ,

𝑄
𝑜 (𝐴, 𝐶, 𝑘) =

[
[
[
[
[

[

𝐶

𝐶𝐴

...
𝐶𝐴
𝑘−1

]
]
]
]
]

]

,

𝑓
𝐴 (𝑠) = det (𝐼 − 𝑠𝐴) = 𝛼

𝑛
𝑠
𝑛

+ 𝛼
𝑛−1

𝑠
𝑛−1

+ ⋅ ⋅ ⋅ + 𝛼
1
𝑠 + 1,

𝑆
𝑟 (𝐼, 𝐴) =

[
[
[
[
[
[
[

[

𝐼
𝑟

𝛼
1
𝐼
𝑟

𝛼
2
𝐼
𝑟

⋅ ⋅ ⋅ 𝛼
𝑛−1

𝐼
𝑟

𝐼
𝑟

𝛼
1
𝐼
𝑟

⋅ ⋅ ⋅ 𝛼
𝑛−2

𝐼
𝑟

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐼
𝑟

𝛼
1
𝐼
𝑟

𝐼
𝑟

]
]
]
]
]
]
]

]

.

(3)

In this case, 𝑄
𝑐
(𝐴, 𝐵, 𝑛), 𝑄

𝑜
(𝐴, 𝐶, 𝑘), and 𝑆

𝑟
(𝐼, 𝐴) are named

as the controllability matrix, the observability matrix, and a
symmetric operator matrix, respectively.

2. Kalman-Yakubovich-Transpose Matrix
Equation 𝑋−𝐴𝑋

𝑇
𝐵 = 𝐶

In this section, we consider the following matrix equation

𝑋 − 𝐴𝑋
𝑇

𝐵 = 𝐶, (4)

where 𝐴 ∈ 𝐶
𝑛×𝑝, 𝐵 ∈ 𝐶

𝑛×𝑝, 𝐶 ∈ 𝐶
𝑛×𝑝.

Lemma 1. Given the matrices 𝐴 ∈ 𝐶
𝑛×𝑝, 𝐵 ∈ 𝐶

𝑛×𝑝, and 𝐶 ∈

𝐶
𝑛×𝑝, if𝑋 is a solution of (4), then for any integer 𝑛−1 ≥ 𝑘 ≥ 0,

the following conclusion holds:

𝑋(𝐴
𝑇

𝐵)
𝑘

− (𝐴𝐵
𝑇

)
𝑛−𝑘

𝑋(𝐴
𝑇

𝐵)
𝑛

=

𝑛−1

∑

𝑗=𝑘

(𝐴𝐵
𝑇

)
𝑗−𝑘

𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=𝑘

(𝐴𝐵
𝑇

)
𝑗−𝑘

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

.

(5)

Proof. We prove this conclusion by mathematical induction.
Postmultiplying both sides of (4) by (𝐴

𝑇
𝐵)
𝑛−1, we have

𝑋(𝐴
𝑇

𝐵)
𝑛−1

− 𝐴𝑋
𝑇

𝐵(𝐴
𝑇

𝐵)
𝑛−1

= 𝐶(𝐴
𝑇

𝐵)
𝑛−1

. (6)

Using (4), we get

𝑋
𝑇

− 𝐵
𝑇

𝑋𝐴
𝑇

= 𝐶
𝑇

. (7)

Postmultiplying and premultiplying both sides of (7) by
𝐵(𝐴
𝑇

𝐵)
𝑛−1 and 𝐴, respectively, we have

𝐴𝑋
𝑇

𝐵(𝐴
𝑇

𝐵)
𝑛−1

− 𝐴𝐵
𝑇

𝑋𝐴
𝑇

𝐵(𝐴
𝑇

𝐵)
𝑛−1

= 𝐴𝐶
𝑇

𝐵(𝐴
𝑇

𝐵)
𝑛−1

.

(8)

Combining (6) with (8), we obtain

𝑋(𝐴
𝑇

𝐵)
𝑛−1

− 𝐴𝐵
𝑇

𝑋𝐴
𝑇

𝐵(𝐴
𝑇

𝐵)
𝑛−1

= 𝐶(𝐴
𝑇

𝐵)
𝑛−1

+ 𝐴𝐶
𝑇

𝐵(𝐴
𝑇

𝐵)
𝑛−1

.

(9)

This implies that the relation (5) holds for 𝑘 = 𝑛 − 1.
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Now assume that the relation (5) holds for 𝑘 = 𝑁, (𝑛−1 ≥

𝑁 ≥ 1); that is,

𝑋(𝐴
𝑇

𝐵)
𝑁

− (𝐴𝐵
𝑇

)
𝑛−𝑁

𝑋(𝐴
𝑇

𝐵)
𝑛

=

𝑛−1

∑

𝑗=𝑁

(𝐴𝐵
𝑇

)
𝑗−𝑁

(𝐶 + 𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

.

(10)

Premultiplying both sides of (10) by 𝐴𝐵
𝑇, we have

𝐴𝐵
𝑇

𝑋(𝐴
𝑇

𝐵)
𝑁

− (𝐴𝐵
𝑇

)
𝑛−𝑁+1

𝑋(𝐴
𝑇

𝐵)
𝑛

=

𝑛−1

∑

𝑗=𝑁

(𝐴𝐵
𝑇

)
𝑗−𝑁+1

𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=𝑁

(𝐴𝐵
𝑇

)
𝑗−𝑁+1

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

.

(11)

Postmultiplying andpremultiplying both sides of (7) by𝐵 and
𝐴, respectively, we have

𝐴𝑋
𝑇

𝐵 − 𝐴𝐵
𝑇

𝑋𝐴
𝑇

𝐵 = 𝐴𝐶
𝑇

𝐵. (12)

Combining (12) with (4), we derive

𝑋 − 𝐴𝐵
𝑇

𝑋𝐴
𝑇

𝐵 = 𝐶 + 𝐴𝐶
𝑇

𝐵. (13)

Postmultiplying both sides of (13) by (𝐴
𝑇

𝐵)
𝑁−1 yields

𝑋(𝐴
𝑇

𝐵)
𝑁−1

− 𝐴𝐵
𝑇

𝑋(𝐴
𝑇

𝐵)
𝑁

= (𝐶 + 𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑁−1

.

(14)

Combining (11) with (14), we get

𝑋(𝐴
𝑇

𝐵)
𝑁−1

− (𝐴𝐵
𝑇

)
𝑛−𝑁+1

𝑋(𝐴
𝑇

𝐵)
𝑛

=

𝑛−1

∑

𝑗=𝑁−1

(𝐴𝐵
𝑇

)
𝑗−(𝑁−1)

𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=𝑁−1

(𝐴𝐵
𝑇

)
𝑗−(𝑁−1)

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

,

(15)

which implies that the relation (5) holds for 𝑘 = 𝑁 − 1. So the
conclusion is true.

Define

∏

𝑘

(𝐴, 𝐶, 𝐵) =

𝑛−1

∑

𝑗=𝑘

(𝐴𝐵
𝑇

)
𝑗−𝑘

𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=𝑘

(𝐴𝐵
𝑇

)
𝑗−𝑘

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

.

(16)

Then the equality (5) can be rewritten as

𝑋(𝐴
𝑇

𝐵)
𝑘

− (𝐴𝐵
𝑇

)
𝑛−𝑘

𝑋(𝐴
𝑇

𝐵)
𝑛

= ∏

𝑘

(𝐴, 𝐶, 𝐵) . (17)

Let

𝑓
𝐴𝐵
𝑇 (𝑠) = det (𝑠𝐼 − 𝐴𝐵

𝑇
) = 𝛼
𝑛

+ 𝛼
𝑛−1

𝑠 + ⋅ ⋅ ⋅ + 𝛼
0
𝑠
𝑛
.

(18)

Then

𝑓
𝐴𝐵
𝑇 (𝑠) = det (𝐼 − 𝑠𝐴𝐵

𝑇
) = 𝛼
0

+ 𝛼
1
𝑠 + ⋅ ⋅ ⋅ + 𝛼

𝑛
𝑠
𝑛
. (19)

Following (17), (18), and (19), we have

𝑛−1

∑

𝑘=0

𝛼
𝑘

[𝑋(𝐴
𝑇

𝐵)
𝑘

− (𝐴𝐵
𝑇

)
𝑛−𝑘

𝑋(𝐴
𝑇

𝐵)
𝑛

]

=

𝑛−1

∑

𝑘=0

[𝛼
𝑘
𝑋(𝐴
𝑇

𝐵)
𝑘

− 𝛼
𝑘
(𝐴𝐵
𝑇

)
𝑛−𝑘

𝑋(𝐴
𝑇

𝐵)
𝑛

]

+ 𝛼
𝑛

[𝑋(𝐴
𝑇

𝐵)
𝑛

− 𝑋(𝐴
𝑇

𝐵)
𝑛

]

=

𝑛

∑

𝑘=0

𝛼
𝑘
𝑋(𝐴
𝑇

𝐵)
𝑘

−

𝑛

∑

𝑘=0

𝛼
𝑘
(𝐴𝐵
𝑇

)
𝑛−𝑘

𝑋(𝐴
𝑇

𝐵)
𝑛

= 𝑋𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) − 𝑓
𝐴𝐵
𝑇 (𝐴𝐵

𝑇
) 𝑋(𝐴

𝑇
𝐵)
𝑛

= 𝑋𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) .

(20)

On the other hand,
𝑛−1

∑

𝑘=0

𝛼
𝑘

[𝑋(𝐴
𝑇

𝐵)
𝑘

− (𝐴𝐵
𝑇

)
𝑛−𝑘

𝑋(𝐴
𝑇

𝐵)
𝑛

]

=

𝑛−1

∑

𝑘=0

𝛼
𝑘
∏

𝑘

(𝐴, 𝐶, 𝐵) .

(21)

Define

∏ (𝐴, 𝐶, 𝐵) =

𝑛−1

∑

𝑘=0

𝛼
𝑘
∏

𝑘

(𝐴, 𝐶, 𝐵) . (22)

Hence, for each Kalman-Yakubovich-transpose equation
of form (4), there is a uniquely determined polynomial
∏(𝐴, 𝐶, 𝐵) of its coefficients. Therefore, the following equa-
tion is obtained:

𝑋𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) = ∏ (𝐴, 𝐶, 𝐵) . (23)

Theorem 2. For any 𝜆, 𝜇 ∈ 𝜎(𝐴𝐵
𝑇

), if 𝜆𝜇 ̸= 1, then (23) is
equivalent to (4).

Proof. According to the argument above, it is shown that (4)
implies (23). Now we prove that (23) implies (4) when 𝜆𝜇 ̸= 1

for any 𝜆, 𝜇 ∈ 𝜎(𝐴𝐵
𝑇

). Suppose that 𝑋 is a solution of (23);
we have

𝑋𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) − 𝐴𝐵
𝑇

𝑋𝐴
𝑇

𝐵𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)

= (𝑋 − 𝐴𝐵
𝑇

𝑋𝐴
𝑇

𝐵) 𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)

= ∏ (𝐴, 𝐶, 𝐵) − 𝐴𝐵
𝑇

∏ (𝐴, 𝐶, 𝐵) 𝐴
𝑇

𝐵.

(24)
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In addition, we have

∏ (𝐴, 𝐶, 𝐵) − 𝐴𝐵
𝑇

∏ (𝐴, 𝐶, 𝐵) 𝐴
𝑇

𝐵

=

𝑛−1

∑

𝑘=0

𝛼
𝑘

[

[

𝑛−1

∑

𝑗=𝑘

(𝐴𝐵
𝑇

)
𝑗−𝑘

𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=𝑘

(𝐴𝐵
𝑇

)
𝑗−𝑘

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗
]

]

−

𝑛−1

∑

𝑘=0

𝛼
𝑘

[

[

𝑛−1

∑

𝑗=𝑘

(𝐴𝐵
𝑇

)
𝑗−𝑘+1

𝐶(𝐴
𝑇

𝐵)
𝑗+1

+

𝑛−1

∑

𝑗=𝑘

(𝐴𝐵
𝑇

)
𝑗−𝑘+1

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗+1

]

]

=

𝑛−1

∑

𝑘=0

𝛼
𝑘

{

{

{

𝑛−1

∑

𝑗=𝑘

[(𝐴𝐵
𝑇

)
𝑗−𝑘

𝐶(𝐴
𝑇

𝐵)
𝑗

− (𝐴𝐵
𝑇

)
𝑗−𝑘+1

𝐶 (𝐴
𝑇

𝐵)
𝑗+1

]

+ [(𝐴𝐵
𝑇

)
𝑗−𝑘

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

− (𝐴𝐵
𝑇

)
𝑗−𝑘+1

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗+1

]
}

}

}

=

𝑛−1

∑

𝑘=0

𝛼
𝑘

{[𝐶(𝐴
𝑇

𝐵)
𝑘

− (𝐴𝐵
𝑇

)
𝑛−𝑘

𝐶(𝐴
𝑇

𝐵)
𝑛

]

+ [(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑘

− (𝐴𝐵
𝑇

)
𝑛−𝑘

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑛

]}

= 𝐶𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) − 𝑓
𝐴𝐵
𝑇 (𝐴𝐵

𝑇
) 𝐶(𝐴

𝑇
𝐵)
𝑛

+ (𝐴𝐶
𝑇

𝐵) 𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)

− 𝑓
𝐴𝐵
𝑇 (𝐴𝐵

𝑇
) (𝐴𝐶

𝑇
𝐵) (𝐴

𝑇
𝐵)
𝑛

= 𝐶𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) + (𝐴𝐶
𝑇

𝐵) 𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) .

(25)

Combining this with (24) gives

(𝑋 − 𝐴𝐵
𝑇

𝑋𝐴
𝑇

𝐵) 𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) = (𝐶 + 𝐴𝐶
𝑇

𝐵) 𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) .

(26)

Because of 𝜆𝜇 ̸= 1 for any 𝜆, 𝜇 ∈ 𝜎(𝐴𝐵
𝑇

), the matrix
𝑓
𝐴𝐵
𝑇(𝐴
𝑇

𝐵) is nonsingular. Thus, it is obtained from (26) that
(23) implies (4). With the two aspects above, the conclusion
has been proved.

The following theorem presents a result on the unique
solution of the Kalman-Yakubovich-transpose matrix equa-
tion.

Theorem 3. If 𝜆𝜇 ̸= 1 for any 𝜆, 𝜇 ∈ 𝜎(𝐴𝐵
𝑇

), the solution to
matrix equation (4) is

𝑋 = ∏ (𝐴, 𝐶, 𝐵) [𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)]
−1

, (27)

which is a polynomial of matrices 𝐴, 𝐵, and 𝐶.

Proof. Assume that the characteristic polynomial of
𝑓
𝐴𝐵
𝑇(𝐴
𝑇

𝐵) is 𝑓
𝑓
𝐴𝐵
𝑇 (𝐴
𝑇
𝐵)

(𝑠) = ∑
𝑝

𝑖=0
𝛾
𝑖
𝑠
𝑖. Since 𝑓

𝐴𝐵
𝑇(𝐴
𝑇

𝐵) is
nonsingular, it is shown that 𝛾

0
̸= 0. It follows from Cayley-

HamiltonTheorem that

𝑓
𝑓
𝐴𝐵
𝑇 (𝐴
𝑇
𝐵)

(𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)) =

𝑝

∑

𝑖=1

𝛾
𝑖
[𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)]
𝑖

+ 𝛾
0
𝐼 = 0,

(28)

which implies that

𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) {

𝑝

∑

𝑖=1

𝛾
𝑖
[𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)]
𝑖−1

} = −𝛾
0
𝐼. (29)

Therefore, it is derived that

[𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)]
−1

= −
1

𝛾
0

𝑝

∑

𝑖=1

𝛾
𝑖
[𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)]
𝑖−1

, (30)

which is a polynomial of 𝑓
𝐴𝐵
𝑇(𝐴
𝑇

𝐵). Because 𝑓
𝐴𝐵
𝑇(𝐴
𝑇

𝐵)

is a polynomial of 𝐴
𝑇

𝐵, it is easy to know that
[𝑓
𝐴𝐵
𝑇(𝐴
𝑇

𝐵)]
−1 is a polynomial of 𝐴

𝑇
𝐵. So we can see

that ∏(𝐴, 𝐶, 𝐵)[𝑓
𝐴𝐵
𝑇(𝐴
𝑇

𝐵)]
−1 is a polynomial of matrices 𝐴,

𝐵 and 𝐶. Thus the conclusion can be proved.

Remark 4. FromTheorem 2 and its proof, it is shown that the
solution 𝑋 of matrix equation (4) is completely dependent
on the coefficient matrices of transpose matrix equation (4).
If 𝜆𝜇 ̸= 1 for any 𝜆, 𝜇 ∈ 𝜎(𝐴𝐵

𝑇
), the matrix equation (4) has

a unique solution. Otherwise, the above mentioned matrix
equation (4) has no unique solution.

Next, we provide two equivalent forms of the solution to
matrix equation (4). In order to obtain the unique solution
of matrix equation (4), only the coefficients of characteristic
polynomial of 𝐴𝐵

𝑇 are required. Firstly, the so-called gen-
eralized Faddeev-Leverrier algorithm [29] is stated as the
following iterative relations:

𝑈
𝑘

= 𝑈
𝑘−1

(𝐴𝐵
𝑇

) + 𝛼
𝑘
𝐼, 𝑈

0
= 𝐼, 𝑘 = 1, 2, . . . , 𝑛,

𝛼
𝑘

=

trace (𝑈
𝑘−1

𝐴𝐵
𝑇

)

𝑘
, 𝛼
0

= 1, 𝑘 = 1, 2, . . . , 𝑛,

(31)

where 𝛼
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, are the coefficients of the

characteristic polynomial of the matrix 𝐴𝐵
𝑇 and 𝑈

𝑖
, 𝑖 =

0, 1, . . . , 𝑛−1, are the coefficientmatrices of the adjointmatrix
(𝑠𝐼
𝑛

− 𝐴𝐵
𝑇

)
∗.
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So we have the following theorems.

Theorem 5. Given the matrices 𝐴 ∈ 𝐶
𝑛×𝑝, 𝐵 ∈ 𝐶

𝑛×𝑝, and
𝐶 ∈ 𝐶

𝑛×𝑝, let

𝑓
𝐴𝐵
𝑇 (𝑠) = det (𝐼 − 𝑠𝐴𝐵

𝑇
) = 𝛼
𝑛
𝑠
𝑛

+ ⋅ ⋅ ⋅ + 𝛼
1
𝑠 + 𝛼
0
, 𝛼
0

= 1,

(𝐼 − 𝑠𝐴𝐵
𝑇

)
∗

= 𝑈
𝑛−1

𝑠
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑈
1
𝑠 + 𝑈
0
.

(32)

(1) If 𝑋 is a solution to (4), then

𝑋𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵) =

𝑛−1

∑

𝑗=0

𝑈
𝑗
𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=0

𝑈
𝑗

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

.

(33)

(2) If 𝜆𝜇 ̸= 1 for any 𝜆, 𝜇 ∈ 𝜎(𝐴𝐵
𝑇

), then the matrix equa-
tion (4) has the unique solution; that is,

𝑋 = [

[

𝑛−1

∑

𝑗=0

𝑈
𝑗
𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=0

𝑈
𝑗

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗
]

]

× [𝑓
𝐴𝐵
𝑇(𝐴
𝑇

𝐵)]
−1

.

(34)

Proof. Applying (31), we can obtain the following expression:

𝑈
0

= 𝐼,

𝑈
1

= 𝛼
1
𝐼 + 𝐴𝐵

𝑇
,

𝑈
2

= 𝛼
2
𝐼 + 𝛼
1
𝐴𝐵
𝑇

+ (𝐴𝐵
𝑇

)
2

,

...

𝑈
𝑛−1

= 𝛼
𝑛−1

𝐼 + 𝛼
𝑛−2

𝐴𝐵
𝑇

+ ⋅ ⋅ ⋅ + (𝐴𝐵
𝑇

)
𝑛−1

.

(35)

Meanwhile, the above formula can be stated as

𝑈
𝑗

=

𝑗

∑

𝑘=0

𝛼
𝑘
(𝐴𝐵
𝑇

)
𝑗−𝑘

, 𝛼
0

= 1, 𝑗 = 1, 2, . . . , 𝑛 − 1. (36)

Thus, it is easy to know
𝑛−1

∑

𝑘=0

𝑛−1

∑

𝑗=𝑘

𝛼
𝑘
(𝐴𝐵
𝑇

)
𝑗−𝑘

𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑘=0

𝑛−1

∑

𝑗=𝑘

𝛼
𝑘
(𝐴𝐵
𝑇

)
𝑗−𝑘

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

=

𝑛−1

∑

𝑗=0

[

𝑗

∑

𝑘=0

𝛼
𝑘
(𝐴𝐵
𝑇

)
𝑗−𝑘

] 𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=0

[

𝑗

∑

𝑘=0

𝛼
𝑘
(𝐴𝐵
𝑇

)
𝑗−𝑘

] (𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

=

𝑛−1

∑

𝑗=0

𝑈
𝑗
𝐶(𝐴
𝑇

𝐵)
𝑗

+

𝑛−1

∑

𝑗=0

𝑈
𝑗

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

.

(37)

Thus, we can easily obtain the conclusions.

Theorem 6. Suppose the matrices 𝐴 ∈ 𝐶
𝑛×𝑝, 𝐵 ∈ 𝐶

𝑛×𝑝, and
𝐶 ∈ 𝐶

𝑛×𝑝.

(1) Let 𝑋 be a solution of (4); thus,

𝑋𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)

= 𝑄
𝑐

(𝐴𝐵
𝑇

, 𝐶, 𝑛) 𝑆
𝑝

(𝐼, 𝐴𝐵
𝑇

) 𝑄
𝑜

(𝐴
𝑇

𝐵, 𝐼, 𝑛)

+ 𝑄
𝑐

(𝐴𝐵
𝑇

, 𝐴, 𝑛) 𝑆
𝑝

(𝐼, 𝐴𝐵
𝑇

) 𝑄
𝑜

(𝐴
𝑇

𝐵, 𝐶
𝑇

𝐵, 𝑛) .

(38)

(2) Let 𝜆𝜇 ̸= 1 for any 𝜆, 𝜇 ∈ 𝜎(𝐴𝐵
𝑇

); thus, the matrix
equation (4) has a unique solution

𝑋 = [𝑄
𝑐

(𝐴𝐵
𝑇

, 𝐶, 𝑛) 𝑆
𝑝

(𝐼, 𝐴𝐵
𝑇

) 𝑄
𝑜

(𝐴
𝑇

𝐵, 𝐼, 𝑛)

+ 𝑄
𝑐

(𝐴𝐵
𝑇

, 𝐴, 𝑛) 𝑆
𝑝

(𝐼, 𝐴𝐵
𝑇

) 𝑄
𝑜

(𝐴
𝑇

𝐵, 𝐶
𝑇

𝐵, 𝑛)]

× [𝑓
𝐴𝐵
𝑇 (𝐴
𝑇

𝐵)]
−1

.

(39)

Proof. In view of the relation (35), it is obvious that

[𝑈
0
𝐶 𝑈
1
𝐶 ⋅ ⋅ ⋅ 𝑈

𝑛−1
𝐶] = 𝑄

𝑐
(𝐴𝐵
𝑇

, 𝐶, 𝑛) 𝑆
𝑝

(𝐼, 𝐴𝐵
𝑇

) ,

[𝑈
0
𝐴 𝑈
1
𝐴 ⋅ ⋅ ⋅ 𝑈

𝑛−1
𝐴] = 𝑄

𝑐
(𝐴𝐵
𝑇

, 𝐴, 𝑛) 𝑆
𝑝

(𝐼, 𝐴𝐵
𝑇

) .

(40)

Then it is easy to obtain that

𝑛−1

∑

𝑗=0

𝑈
𝑗
𝐶(𝐴
𝑇

𝐵)
𝑗

= [𝑈
0
𝐶 𝑈
1
𝐶 ⋅ ⋅ ⋅ 𝑈

𝑛−1
𝐶] 𝑄
𝑜

(𝐴
𝑇

𝐵, 𝐼, 𝑛)

= 𝑄
𝑐

(𝐴𝐵
𝑇

, 𝐶, 𝑛) 𝑆
𝑝

(𝐼, 𝐴𝐵
𝑇

) 𝑄
𝑜

(𝐴
𝑇

𝐵, 𝐼, 𝑛) ,

𝑛−1

∑

𝑗=0

𝑈
𝑗

(𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵)
𝑗

= [𝑈
0
𝐴 𝑈
1
𝐴 ⋅ ⋅ ⋅ 𝑈

𝑛−1
𝐴] 𝑄
𝑜

(𝐴
𝑇

𝐵, 𝐶
𝑇

𝐵, 𝑛)

= 𝑄
𝑐

(𝐴𝐵
𝑇

, 𝐴, 𝑛) 𝑆
𝑝

(𝐼, 𝐴𝐵
𝑇

) 𝑄
𝑜

(𝐴
𝑇

𝐵, 𝐶
𝑇

𝐵, 𝑛) .

(41)

Combining this withTheorem 5, we complete the proof.

On the basis of the results above, we have the following
corollary on the solution of the Stein-conjugate matrix
equation 𝑋 − 𝐴𝑋

𝑇
𝐴
𝑇

= 𝐶.

Corollary 7. Given the matrices 𝐴 ∈ 𝐶
𝑛×𝑛 and 𝐶 ∈ 𝐶

𝑛×𝑛. If
thematrix𝐴

2 is Schur stable, then the unique solution ofmatrix
equation 𝑋 − 𝐴𝑋

𝑇
𝐴
𝑇

= 𝐶 is expressed as

𝑋 = ∏ (𝐴, 𝐶, 𝐴
𝑇

) [𝑓
𝐴
2 ((𝐴
𝑇

)
2

)]

−1

. (42)
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3. Numerical Example

Example 1. Nowwe propose an example to compute the solu-
tion of matrix equation (4).

The parameters are stated as follows:

𝐴 = [
3 4 1

2 0 9
] , 𝐵 = [

1 10 8

2 11 6
] ,

𝐶 = [
−107 −655 −391

−227 −1370 −815
] .

(43)

It is easy to check that 𝛼𝛽 ̸= 1, for any 𝛼, 𝛽 ∈ 𝜆(𝐴𝐵
𝑇

).
Therefore, the above matrix equation has a unique solution.

Via simple computation, we get

𝑓
(𝐴𝐵
𝑇
) (𝑠) = 𝑠

2
− 109𝑠 − 1186,

𝑓
(𝐴𝐵
𝑇
) (𝑠) = −1186𝑠

2
− 109𝑠 + 1.

(44)

Thus 𝛼
0

= 1, 𝛼
1

= −109. In addition, we have

𝑓
(𝐴𝐵
𝑇
)

(𝐴
𝑇

𝐵) =
[
[

[

−1116788 −7558116 −4923452

−944492 −6285415 −4045376

−2074013 −14369597 −9513733

]
]

]

,

[𝑓
(𝐴𝐵
𝑇
)

(𝐴
𝑇

𝐵)]
−1

=
[
[

[

−0.8499 −0.5902 −0.1889

−0.3035 0.2108 0.0675

0.2732 −0.1897 −0.0607

]
]

]

.

(45)

According to the following matrix equation expressions

∏

0

(𝐴, 𝐶, 𝐵) = 𝐶 + 𝐴𝐶
𝑇

𝐵 + (𝐴𝐵
𝑇

) (𝐶 + 𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵) ,

∏

1

(𝐴, 𝐶, 𝐵) = (𝐶 + 𝐴𝐶
𝑇

𝐵) (𝐴
𝑇

𝐵) ,

(46)

we have

𝛼
0
∏

0

(𝐴, 𝐶, 𝐵) + 𝛼
1
∏

1

(𝐴, 𝐶, 𝐵)

= [
−9227811 −63237737 −41555403

−31314571 −214634302 −141059447
] .

(47)

Thus, it follows from Theorem 3 that the unique solution of
equation (4) is

𝑋 = [𝛼
0
∏

0

(𝐴, 𝐶, 𝐵) + 𝛼
1
∏

1

(𝐴, 𝐶, 𝐵)] [𝑓
(𝐴𝐵
𝑇
)

(𝐴
𝑇

𝐵)]
−1

= [
1.0000 2.0000 3.0000

−0.0000 9.0000 11.0000
] .

(48)

4. Applications

A number of control problems are related to the SCA (state
covariance assignment) problem [30], for example, con-
trollability/observability Gramian assignment [31], a certain
class of 𝐻

∞
control problems [32]. From a mathematical

viewpoint, we point out that both the continuous-time and
discrete-time SCA problems can be reduced to solving a
symmetric matrix equation. Let us expand the continuous-
time Lyapunov equation:

𝐴
𝐾

𝑋 + 𝑋𝐴
𝑇

𝐾
+ 𝐵
𝐾

𝐵
𝑇

𝐾
= 0 (49)

as

(𝐴𝑋 + 𝑋𝐴
𝑇

+ 𝐵
1
𝐵
𝑇

1
) + 𝐵
2
𝐾 (𝐶
2
𝑋 + 𝐷

21
𝐵
𝑇

1
)

+ (𝐶
2
𝑋 + 𝐷

21
𝐵
𝑇

1
)
𝑇

𝐾
𝑇

𝐵
𝑇

2
+ 𝐵
2
𝐾 (𝐷
21

𝐷
𝑇

21
) 𝐾
𝑇

𝐵
𝑇

2
= 0.

(50)

We also expand the discrete-time Lyapunov equation:

𝐴
𝐾

𝑋𝐴
𝑇

𝐾
− 𝑋 + 𝐵

𝐾
𝐵
𝑇

𝐾
= 0, (51)

as

(𝐴𝑋𝐴
𝑇

− 𝑋 + 𝐵
1
𝐵
𝑇

1
) + 𝐵
2
𝐾 (𝐶
2
𝑋𝐴
𝑇

+ 𝐷
21

𝐵
𝑇

1
)

+ (𝐶
2
𝑋𝐴
𝑇

+ 𝐷
21

𝐵
𝑇

1
)
𝑇

𝐾
𝑇

𝐵
𝑇

2

+ 𝐵
2
𝐾 (𝐶
2
𝑋𝐶
𝑇

2
+ 𝐷
21

𝐷
𝑇

21
) 𝐾
𝑇

𝐵
𝑇

2
= 0.

(52)

It is easy to see that both the continuous-time and discrete-
time SCA problems are essentially the same from the view-
point of mathematics.

We also consider the relationship between the matrix
equation and some important special cases as a control
problem. For example, let matrices 𝐵 ∈ 𝑅

𝑛×𝑚, 𝑄 ∈ 𝑅
𝑛×𝑛,

𝑅 ∈ 𝑅
𝑝×𝑝, and 𝑆 ∈ 𝑅

𝑝×𝑛 be given, where 𝑄 = 𝑄
𝑇, 𝑅 = 𝑅

𝑇
≥ 0,

and rank𝑅 = 𝑟. We focus on a symmetric matrix equation of
quadratic type [31]:

𝑄 + 𝐵𝐾𝑆 + (𝐵𝐾𝑆)
𝑇

+ 𝐵𝐾𝑅𝐾
𝑇

𝐵
𝑇

= 0. (53)

The solution of the symmetric matrix equation (53) is equiv-
alent to the SCA problem with proper definitions of 𝐵, 𝑄, 𝑅,
and 𝑆. When 𝑅 = 0, the special case of matrix equation (53) is
reduced to the Karm-Yakubovich-transposematrix equation.

5. Conclusions

The well-known Karm-Yakubovich-transpose matrix equa-
tion has many important applications in control system
theory, such as fault detection, control with constrains sys-
tems, eigenstructure assignment, and observer design. In this
paper we have proposed polynomial solutions to the Karm-
Yakubovich-transpose matrix equation. The solutions are
stated as a polynomial of parameters of the matrix equation.
All the coefficient matrices are not restricted to be in any
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canonical form. Meanwhile, an equivalent form of the solu-
tions to the Karm-Yakubovich-transposematrix equation has
been expressed in terms of controllability matrix associated
with 𝐴, 𝐵, and 𝐶 and observability matrix associated with
𝐴 and 𝐵. Such a feature may bring greater convenience
and advantages to some problems related to the Karm-
Yakubovich-transpose matrix equation. From the discussion
in our paper, one can observe that the solutions to the Karm-
Yakubovich-transpose matrix equation are crucial as the
theoretical basis of the development of many kinds of other
matrix equations and are deserved further investigation in
the future. In addition, as the theoretical generalization of the
well-known Karm-Yakubovich-transpose matrix equation, it
may be helpful for future control applications.
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