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We introduce a new parametric kernel function, which is a combination of the classic kernel function and a trigonometric
barrier term, and present various properties of this new kernel function. A class of large- and small-update primal-dual interior-
point methods for linear optimization based on this parametric kernel function is proposed. By utilizing the feature of the
parametric kernel function, we derive the iteration bounds for large-update methods,𝑂(𝑛2/3 log(𝑛/𝜀)), and small-update methods,
𝑂(√𝑛 log(𝑛/𝜀)). These results match the currently best known iteration bounds for large- and small-update methods based on the
trigonometric kernel functions.

1. Introduction

In this paper, we consider the linear optimization (LO)
problem in standard form

min {𝑐𝑇𝑥 : 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} , (𝑃)

where 𝐴 ∈ R𝑚×𝑛 with rank(𝐴) = 𝑚, 𝑏 ∈ R𝑚, and 𝑐 ∈ R𝑛.
The dual problem of (𝑃) is given by

max {𝑏𝑇𝑦 : 𝐴𝑇𝑦 + 𝑠 = 𝑐, 𝑠 ≥ 0} . (𝐷)

For years, LO has been one of the most active research
areas in mathematical programming. There are many solu-
tion approaches for LO. Among them, the interior-point
methods (IPMs) gain much more attention. Several efficient
IPMs for LO and a large amount of results have been
proposed. For an overview of the relevant results, see a recent
book on this subject [1] and the references cited therein.

In the literature two types of primal-dual IPMs are distin-
guished: large-update methods and small-update methods,

according to the value of the barrier-update parameter 𝜃.
However, there is still a gap between the practical behavior of
these algorithms and these theoretical performance results.
The so-called large-update IPMs have superior practical per-
formance but with relatively weak theoretical results. While
the so-called small-update IPMs enjoy the best knownworst-
case iteration bounds but their performance in computational
practice is poor.

Recently, this gap was reduced by Peng et al. [2] who
introduced the so-called self-regular kernel functions and
designed primal-dual IPMs based on self-regular proximities
for LO. They improved the iteration bound for large-update
methods from 𝑂(𝑛 log(𝑛/𝜀)) to 𝑂(√𝑛 log 𝑛 log(𝑛/𝜀)), which
almost closes the gap between the iteration bounds for large-
and small-update methods. Later, Bai, et al. [3] presented a
large class of eligible kernel functions, which is fairly general
and includes the classical logarithmic function and the self-
regular functions, as well as many non-self-regular functions
as special cases. The best known iteration bounds for LO
obtained are as good as the ones in [2] for appropriate choices
of the eligible kernel functions. Some well-known eligible
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Table 1: Complexity results for the eligible kernel functions.

𝑖 The eligible kernel functions 𝜓
𝑖
(𝑡) Large-update methods Small-update methods Reference

1 𝑡
2
− 1

2
− log 𝑡 𝑂 (𝑛 log 𝑛

𝜀
) 𝑂(√𝑛 log 𝑛

𝜀
) For example [1]

2 1

2
(𝑡 −

1

𝑡
)

2

𝑂(𝑛
2/3 log 𝑛

𝜀
) 𝑂(√𝑛 log 𝑛

𝜀
) [3]

3 𝑡
2
− 1

2
+
𝑡
1−𝑞

− 1

𝑞 − 1
, 𝑞 > 1 𝑂(𝑞𝑛

(𝑞+1)/2𝑞 log 𝑛
𝜀
) 𝑂(𝑞

2
√𝑛 log 𝑛

𝜀
) [3]

4 𝑡
2
− 1

2
+
𝑡
1−𝑞

− 1

𝑞(𝑞 − 1)
−
𝑞 − 1

𝑞
(𝑡 − 1), 𝑞 > 1 𝑂(𝑞𝑛

(𝑞+1)/2𝑞 log 𝑛
𝜀
) 𝑂(𝑞

2
√𝑛 log 𝑛

𝜀
) [2]

5 𝑡
2
− 1

2
+
𝑒
1/𝑡
− 𝑒

𝑒
𝑂(√𝑛(log 𝑛)2 log 𝑛

𝜀
) 𝑂(√𝑛 log 𝑛

𝜀
) [3]

6 𝑡
2
− 1

2
− ∫
𝑡

1
𝑒
1/𝜉−1

𝑑𝜉 𝑂(√𝑛(log 𝑛)2 log 𝑛
𝜀
) 𝑂(√𝑛 log 𝑛

𝜀
) [3]

7 𝑡
2
− 1

2
+
𝑒
𝑞(1/𝑡−1)

− 𝑞

𝑞
, 𝑞 ≥ 1 𝑂(𝑞√𝑛 log 𝑛

𝜀
) 𝑂(𝑞√𝑞𝑛 log

𝑛

𝜀
) [9]

8 𝑡
2
− 1

2
− ∫
𝑡

1
𝑒
𝑞(1/𝜉−1)

𝑑𝜉, 𝑞 ≥ 1 𝑂(𝑞√𝑛 log 𝑛
𝜀
) 𝑂(𝑞√𝑞𝑛 log

𝑛

𝜀
) [3]

9 𝑡
2
− 1

2
+
6

𝜋
tan(𝜋(1 − 𝑡)

2 + 4𝑡
) 𝑂(𝑛

3/4 log 𝑛
𝜀
) 𝑂(√𝑛 log 𝑛

𝜀
) [6]

10 𝑡
2
− 1

2
− log 𝑡 + 1

8
tan2 (𝜋 (1 − 𝑡)

2 + 4𝑡
) 𝑂(𝑛

2/3 log 𝑛
𝜀
) 𝑂(√𝑛 log 𝑛

𝜀
) [7]

11 𝑡
2
− 1

2
− ∫
𝑡

1
𝑒
3(tan(𝜋/(2+2𝜉))−1)

𝑑𝜉 𝑂(√𝑛(log 𝑛)2 log 𝑛
𝜀
) 𝑂(√𝑛 log 𝑛

𝜀
) [8]

12 𝑡 − 1 +
𝑡
1−𝑞

− 1

𝑞 − 1
, 𝑞 > 1 𝑂(𝑞𝑛 log 𝑛

𝜀
) 𝑂(𝑞

2
√𝑛 log 𝑛

𝜀
) [3]

13
{{{{

{{{{

{

𝑡
𝑝+1

− 1

𝑝 + 1
+
𝑡
1−𝑞

− 1

𝑞 − 1
, 𝑡 > 0, 𝑝 ∈ [0, 1], 𝑞 > 1

𝑡
𝑝+1

− 1

𝑝 + 1
− log 𝑡, 𝑡 > 0, 𝑝 ∈ [0, 1], 𝑞 = 1

𝑂(𝑞𝑛
(𝑝+𝑞)/(𝑞(1+𝑝)) log 𝑛

𝜀
) 𝑂(𝑞

2
√𝑛 log 𝑛

𝜀
) [10]

kernel functions and the corresponding iteration bounds for
large- and small-update methods are collected in Table 1. For
some other related kernel-function based IPMs we refer to
the recent books on this subject [4, 5].

Particularly, El Ghami et al. [6] first introduced a
trigonometric kernel function for primal-dual IPMs in LO.
They established the worst case iteration bounds for large-
and small-update methods, namely, 𝑂(𝑛3/4 log(𝑛/𝜀)) and
𝑂(√𝑛 log(𝑛/𝜀)), respectively. Peyghami et al. [7] considered
a new kernel function with a trigonometric barrier term.
Based on this kernel function, they proved that large-update
method for solving LO has the worst case iteration bound,
namely, 𝑂(𝑛2/3 log(𝑛/𝜀)), which improves the so far obtained
iteration bound for large-update methods based on the
trigonometric kernel function proposed in [6]. Recently,
Peyghami and Hafshejani [8] established the better iteration
bound 𝑂(√𝑛(log(𝑛))2 log(𝑛/𝜀)) for large-update methods
based on a new kernel function consisting of a trigonometric
function in its barrier term.

Motivated by their work, the purpose of this paper is to
deal with the so-called primal-dual IPMs for LO based on a
new kind of parametric kernel function as follows:

𝜓 (𝑡) =
𝑡
2
− 1

2
− log 𝑡 + 𝜆tan2 (ℎ (𝑡)) , (1)

where 0 < 𝜆 ≤ 8/25𝜋 (the bound of the 𝜆 is due to
the proof of Lemma 3) and ℎ(𝑡) = 𝜋(1 − 𝑡)/(3𝑡 + 2).
We develop some new properties of the parametric kernel
function, as well as the corresponding barrier function.
Compared to the existing ones, the proposed function has a
parameter 𝜆. This implies that our kernel function includes
a class of kernel functions. Furthermore, we present a class
of primal-dual IPMs for LO based on this new parametric
kernel function. The obtained iteration bound for large-
update methods, namely, 𝑂(𝑛2/3 log(𝑛/𝜀)), which improves
the classical iteration complexity with a factor 𝑛1/3, and
for small-update methods, we derive the iteration bound,
namely, 𝑂(√𝑛 log(𝑛/𝜀)), which matches the currently best
known iteration bound for small-update methods.

The paper is organized as follows. In Section 2, we present
the framework of kernel-based IPMs for LO. In Section 3, we
introduce the new parametric kernel function with a trigono-
metric barrier term and develop some useful properties of
the new kernel function, as well as the corresponding barrier
function. The analysis and complexity of the algorithms for
large- and small-update methods are presented in Section 4.
Finally, Section 5 contains some conclusions and remarks.

Some notations used throughout the paper are as follows.
R𝑛, R𝑛
+
, and R𝑛

++
denote the set of vectors with 𝑛 components,

the set of nonnegative vectors, and the set of positive vectors,
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respectively. ‖𝑥‖ denotes the 2-normof the vector𝑥. 𝑒denotes
the identity vector. For any 𝑥 ∈ R𝑛, 𝑥min (or 𝑥max) denotes
the smallest (or largest) value of the components of 𝑥. Finally,
if 𝑔(𝑥) ≥ 0 is a real valued function of a real nonnegative
variable, the notation 𝑔(𝑥) = 𝑂(𝑥) means that 𝑔(𝑥) ≤ 𝑐𝑥 for
some positive constant 𝑐 and 𝑔(𝑥) = Θ(𝑥) means that 𝑐

1
𝑥 ≤

𝑔(𝑥) ≤ 𝑐
2
𝑥 for two positive constants 𝑐

1
and 𝑐
2
.

2. Framework of Kernel-Based IPMs for LO

In this section, we briefly recall the framework of kernel-
based IPMs for LO, which includes the central path, the new
search directions, and the generic primal-dual interior-point
algorithm for LO.

2.1. Central Path for LO. Throughout the paper, we assume
that both (𝑃) and (𝐷) satisfy the interior-point condition
(IPC); that is, there exists (𝑥0, 𝑦0, 𝑠0) such that

𝐴𝑥
0
= 𝑏, 𝑥

0
> 0, 𝐴

𝑇
𝑦
0
+ 𝑠
0
= 𝑐, 𝑠

0
> 0. (2)

The Karush-Kuhn-Tucker (KKT) conditions for (𝑃) and
(𝐷) are given by

𝐴𝑥 = 𝑏, 𝑥 ≥ 0,

𝐴
𝑇
𝑦 + 𝑠 = 𝑐, 𝑠 ≥ 0,

𝑥𝑠 = 0,

(3)

where 𝑥𝑠 denotes the component-wise product of the vectors
of 𝑥 and 𝑠. The standard approach is to replace the third
equation in (3), the so-called complementarity condition for
(𝑃) and (𝐷), by the parameterized equation 𝑥𝑠 = 𝜇𝑒, with
𝜇 > 0. This yields the following system:

𝐴𝑥 = 𝑏, 𝑥 ≥ 0,

𝐴
𝑇
𝑦 + 𝑠 = 𝑐, 𝑠 ≥ 0,

𝑥𝑠 = 𝜇𝑒.

(4)

Since rank(𝐴) = 𝑚 and the IPC holds, the parameterized
system (4) has a unique solution for each 𝜇 > 0. This solution
is denoted as (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) and we call 𝑥(𝜇) the 𝜇-center
of (𝑃) and (𝑦(𝜇), 𝑠(𝜇)) the𝜇-center of (𝐷).The set of𝜇-centers
(with 𝜇 running through all positive real numbers) gives a
homotopy path, which is called the central path of (𝑃) and
(𝐷). If 𝜇 → 0, then the limit of the central path exists and
since the limit points satisfy the complementarity condition
(3), the limit yields optimal solutions for (𝑃) and (𝐷) (see, e.g.,
[1]).

2.2. New Search Directions. IPMs follow the central path
approximately and approach the optimal set of LO by letting
𝜇 go to zero. Applying Newton’s method to the system (4), we
have

𝐴Δ𝑥 = 0,

𝐴
𝑇
Δ𝑦 + Δ𝑠 = 0,

𝑠Δ𝑥 + 𝑥Δ𝑠 = 𝜇𝑒 − 𝑥𝑠.

(5)

This system has a unique solution [2, 3]. Defining the
vector

V := √
𝑥𝑠

𝜇
. (6)

Note that the triple (𝑥, 𝑦, 𝑠) coincides with the 𝜇-center
(𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) if and only if V = 𝑒. For further use we
introduce the scaled search directions 𝑑

𝑥
and 𝑑

𝑠
according

to

𝑑
𝑥
:=

VΔ𝑥
𝑥
, 𝑑

𝑠
:=

VΔ𝑠
𝑠
. (7)

By using (6) and (7), after some elementary reductions,
we have

𝐴𝑑
𝑥
= 0,

𝐴
𝑇

Δ𝑦 + 𝑑
𝑠
= 0,

𝑑
𝑥
+ 𝑑
𝑠
= V−1 − V,

(8)

where 𝐴 := (1/𝜇)𝐴𝑉
−1
𝑋 with 𝑉 := diag(V), 𝑋 := diag(𝑥).

It is obvious that the right-hand side V−1 − V in the third
equation of the system (8) equals minus the derivative of the
classic barrier function as follows:

Ψ
𝑐
(V) :=

𝑛

∑

𝑖=1

𝜓
𝑐
(V
𝑖
) , V ∈ 𝑅𝑛

++
, (9)

where

𝜓
𝑐
(𝑡) =

𝑡
2
− 1

2
− log 𝑡 (10)

is the kernel function of the classic barrier function.Thus, the
system (8) can be rewritten as the following system:

𝐴𝑑
𝑥
= 0,

𝐴
𝑇

Δ𝑦 + 𝑑
𝑠
= 0,

𝑑
𝑥
+ 𝑑
𝑠
= −∇Ψ

𝑐
(V) .

(11)

Corresponding to the parametric kernel function (1), we
define the barrier function Ψ(V) : R𝑛

++
→ R
+
as follows:

Ψ (V) :=
𝑛

∑

𝑖=1

𝜓 (V
𝑖
) . (12)

Due to the properties of the parametric kernel function
𝜓(𝑡), see, for example, Section 3, we can conclude thatΨ(V) is
a strictly convex function and attains minimal value at V = 𝑒
and Ψ(𝑒) = 0; that is,

∇Ψ (V) = 0 ⇐⇒ Ψ(V) = 0 ⇐⇒ V = 𝑒. (13)

Hence, the value of Ψ(V) can be considered as a measure
of the distance between the given iterate and the 𝜇-center of
the algorithms.
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The approach in this paper differs only in one detail: we
replace the right-hand side of the third equation in (8) by
−∇Ψ(V). This yields the following system:

𝐴𝑑
𝑥
= 0,

𝐴
𝑇

Δ𝑦 + 𝑑
𝑠
= 0,

𝑑
𝑥
+ 𝑑
𝑠
= −∇Ψ (V) .

(14)

The scaled search directions 𝑑
𝑥
and 𝑑

𝑠
are orthogonal

vectors due to the fact that 𝑑
𝑥
belongs to the null space and

𝑑
𝑠
to the row space of the matrix𝐴. From (13), one may easily

verify that the right-hand side in the system (14) vanishes if
and only if V = 𝑒. Thus we conclude that Δ𝑥, Δ𝑦, and Δ𝑠 all
vanish if and only if V = 𝑒, that is, if and only if 𝑥 = 𝑥(𝜇),
𝑦 = 𝑦(𝜇), and 𝑠 = 𝑠(𝜇). Otherwise, we will use (Δ𝑥, Δ𝑦, Δ𝑠)
as the new search direction.

For the analysis of the interior-point algorithm, we define
the norm-based proximity measure 𝛿(V) as follows:

𝛿 (V) :=
1

2
‖∇Ψ (V)‖ . (15)

One can easily verify that

𝑑
𝑥
= 𝑑
𝑠
= 0 ⇐⇒ ∇Ψ (V) = 0 ⇐⇒ 𝛿 (V)

= 0 ⇐⇒ Ψ(V) = 0 ⇐⇒ V = 𝑒.
(16)

2.3. Generic Primal-Dual Algorithm for LO. In general
each kernel function gives rise to a primal-dual interior-
point algorithm. Without loss of generality we assume that
(𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) is known for some positive 𝜇. For example,
due to the above assumption we may assume this for 𝜇 = 1,
with 𝑥(1) = 𝑠(1) = 𝑒. Then, we decrease 𝜇 to 𝜇 := (1 − 𝜃)𝜇 for
some 𝜃 ∈ (0, 1). We solve the scaled Newton system (14) and
through (7) to get the new search direction (Δ𝑥, Δ𝑦, Δ𝑠). The
new triple (𝑥

+
, 𝑦
+
, 𝑠
+
) is given by

𝑥
+
:= 𝑥 + 𝛼Δ𝑥,

𝑦
+
:= 𝑦 + 𝛼Δ𝑦,

𝑠
+
:= 𝑠 + 𝛼Δ𝑠,

(17)

where 𝛼 denotes the default step size, 𝛼 ∈ (0, 1], which
has to be chosen appropriately. If necessary, we repeat the
procedure until we find iterates that are in the neighborhood
of (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)).Then𝜇 is again reduced by the factor 1−𝜃
and we apply Newton’s method targeting the new 𝜇-centers,
and so on. This process is repeated until 𝜇 is small enough,
say until 𝑛𝜇 < 𝜀; at this stage we have found an 𝜀-solution of
(𝑃) and (𝐷). The generic form of this algorithm is shown in
Algorithm 1.

3. New Parametric Kernel Function and
Its Properties

In this section, we introduce the new parametric kernel
function with a trigonometric barrier term and develop some

Input:
A threshold parameter 𝜏 > 0;
an accuracy parameter 𝜀 > 0;
a fixed barrier update parameter 𝜃, 0 < 𝜃 < 1;

begin
𝑥 := 𝑒; 𝑠 := 𝑒; 𝜇 := 1;
while 𝑛𝜇 ≥ 𝜀 do
begin
𝜇 := (1 − 𝜃)𝜇;
while Ψ(V) > 𝜏 do
begin

calculate the search direction (Δ𝑥, Δ𝑦, Δ𝑠);
determine the default step size 𝛼;
update (𝑥, 𝑦, 𝑠) := (𝑥, 𝑦, 𝑠) + 𝛼(Δ𝑥, Δ𝑦, Δ𝑠).

end
end

end

Algorithm 1: Generic primal-dual interior-point algorithm for LO.

useful properties of the new kernel function as well as the
corresponding barrier function that are needed in the analysis
of the algorithms.

For ease of reference, we give the first three derivatives of
𝜓(𝑡) given by (1) with respect to 𝑡 as follows:

𝜓
󸀠
(𝑡) = 𝑡 −

1

𝑡
+ 2𝜆ℎ

󸀠
(𝑡) tan (ℎ (𝑡)) (tan2 (ℎ (𝑡)) + 1) , (18)

𝜓
󸀠󸀠
(𝑡) = 1 +

1

𝑡2
+ 2𝜆 (tan2 (ℎ (𝑡)) + 1) 𝑔

1
(𝑡) , (19)

𝜓
󸀠󸀠󸀠
(𝑡) = −

2

𝑡3
+ 2𝜆 (tan2 (ℎ (𝑡)) + 1) 𝑔

2
(𝑡) , (20)

where

𝑔
1
(𝑡) := ℎ

󸀠󸀠
(𝑡) tan (ℎ (𝑡)) + ℎ󸀠(𝑡)2 (3tan2 (ℎ (𝑡)) + 1) ,

𝑔
2
(𝑡) := 3ℎ

󸀠
(𝑡) ℎ
󸀠󸀠
(𝑡) (3tan2 (ℎ (𝑡)) + 1)

+ 4ℎ
󸀠
(𝑡)
3 tan (ℎ (𝑡)) (3tan2 (ℎ (𝑡)) + 2)

+ ℎ
󸀠󸀠󸀠
(𝑡) tan (ℎ (𝑡)) ,

ℎ
󸀠
(𝑡) = −

5𝜋

(3𝑡 + 2)
2
, ℎ

󸀠󸀠
(𝑡) =

30𝜋

(3𝑡 + 2)
3
,

ℎ
󸀠󸀠󸀠
(𝑡) = −

270𝜋

(3𝑡 + 2)
4
.

(21)

One can easily verify that

𝜓 (1) = 𝜓
󸀠
(1) = 0. (22)

This implies that the kernel function 𝜓(𝑡) is completely
defined by its second derivative as follows:

𝜓 (𝑡) = ∫

𝑡

1

∫

𝜉

1

𝜓
󸀠󸀠
(𝜁) 𝑑𝜁 𝑑𝜉. (23)
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In what follows, we develop some technical lemmas on
the parametric kernel function.

Lemma 1. Let 0 < 𝑡 ≤ 2/3. Then

tan (ℎ (𝑡)) − 1

3𝜋𝑡
> 0. (24)

Proof. Define 𝑔(𝑡) := tan(ℎ(𝑡)) − 1/3𝜋𝑡. For 0 < 𝑡 ≤ 2/3, we
have

cos (ℎ (𝑡)) = sin(𝜋
2
− ℎ (𝑡)) <

𝜋

2
− ℎ (𝑡) . (25)

It follows that

𝑔
󸀠
(𝑡) =

1

cos2 (ℎ (𝑡))
ℎ
󸀠
(𝑡) +

1

3𝜋𝑡2

=
1

3𝜋𝑡2cos2 (ℎ (𝑡))
(3𝜋𝑡
2
ℎ
󸀠
(𝑡) + cos2 (ℎ (𝑡)))

<
1

3𝜋𝑡2cos2 (ℎ (𝑡))
(3𝜋𝑡
2
ℎ
󸀠
(𝑡) + (

𝜋

2
− ℎ (𝑡))

2

)

= −
35𝜋

12(3𝑡 + 2)
2cos2 (ℎ (𝑡))

< 0.

(26)

Thus 𝑔(𝑡) is monotone decreasing in (0, 2/3], and since
𝑔(2/3) = tan(𝜋/12) − 1/2𝜋 ≈ 0.1088 > 0, this implies the
lemma.

Lemma 2. Let 𝑎 be a constant, and

𝑤 (𝑡, 𝜆) = 𝐿
𝑛
(𝜆) 𝑡
𝑛
+ 𝐿
𝑛−1

(𝜆) 𝑡
𝑛−1

+ ⋅ ⋅ ⋅ + 𝐿
1
(𝜆) 𝑡 + 𝐿

0
(𝜆) ,

𝑡 ∈ R.
(27)

Here 𝐿
𝑖
(𝜆) are the functions of parameter 𝜆 ∈ R for 𝑖 =

0, 1, . . . , 𝑛. If 𝐿
𝑛
(𝜆) > 0, 𝑤(𝑎, 𝜆) > 0 and (𝜕𝑖𝑤(𝑡, 𝜆)/𝜕𝑡𝑖)|

𝑡=𝑎
>

0 for 𝑖 = 1, . . . , 𝑛 − 1, then we have 𝑤(𝑡, 𝜆) > 0 for all 𝑡 > 𝑎.

Proof. It is obvious that (𝜕𝑛𝑤(𝑡, 𝜆)/𝜕𝑡𝑛) = 𝑛!𝐿
𝑛
(𝜆) > 0,

for all 𝑡 ∈ R. This implies that (𝜕𝑛−1𝑤(𝑡, 𝜆)/𝜕𝑡𝑛−1) is
monotone increasing. Since (𝜕𝑛−1𝑤(𝑡, 𝜆)/𝜕𝑡𝑛−1)|

𝑡=𝑎
> 0, we

have𝑤(𝑛−1)(𝑡, 𝜆) > 0 for all 𝑡 > 𝑎. And so on, we can conclude
that 𝑤(𝑡, 𝜆) > 0 for all 𝑡 > 𝑎. This completes the proof of the
lemma.

Lemma 3. Let 𝑡 > 0. Then

𝜓
󸀠󸀠
(𝑡) > 1, (28)

𝑡𝜓
󸀠󸀠
(𝑡) + 𝜓

󸀠
(𝑡) > 0, (29)

𝑡𝜓
󸀠󸀠
(𝑡) − 𝜓

󸀠
(𝑡) > 0, (30)

𝜓
󸀠󸀠󸀠
(𝑡) < 0. (31)

Proof. Firstly, we consider two cases to prove (28).

Case 1. Assume that 0 < 𝑡 < 1. Then we have tan(ℎ(𝑡)) > 0.
Since ℎ󸀠󸀠(𝑡) > 0, from (19) one can see that 𝜓󸀠󸀠(𝑡) > 1 for all
𝑡 ∈ (0, 1), when 𝜆 > 0.

Case 2. Assume that 𝑡 ≥ 1. Define

𝜉 (𝑡) :=
1

𝑡2
+ 2𝜆 (tan2 (ℎ (𝑡)) + 1)

× (ℎ
󸀠󸀠
(𝑡) tan (ℎ (𝑡)) + ℎ󸀠(𝑡)2 (3tan2 (ℎ (𝑡)) + 1)) .

(32)

We need to prove that when 0 < 𝜆 ≤ 8/25𝜋, 𝜉(𝑡) > 0

holds. Using the fact that tan(ℎ(𝑡)) ∈ (−√3, 0] for all 𝑡 ≥ 1,
we have

𝜉 (𝑡) = 2𝜆 (tan2 (ℎ (𝑡)) + 1)

× (
1

2𝜆𝑡2 (tan2 (ℎ (𝑡)) + 1)
+ ℎ
󸀠󸀠
(𝑡) tan (ℎ (𝑡))

+ℎ
󸀠
(𝑡)
2
(3tan2 (ℎ (𝑡)) + 1))

≥ 2𝜆 (tan2 (ℎ (𝑡)) + 1)

× (
1

8𝜆𝑡2
−

30√3𝜋

(3𝑡 + 2)
3
+

25𝜋
2

(3𝑡 + 2)
4
)

=
tan2 (ℎ (𝑡)) + 1
4𝑡2(3𝑡 + 2)

4
𝑢
1
(𝑡, 𝜆) ,

(33)

where

𝑢
1
(𝑡, 𝜆) := (3𝑡 + 2)

4
− 𝜆𝜋 (240√3𝑡

2
(3𝑡 + 2) − 200𝜋𝑡

2
) .

(34)

From Lemma 2, by solving (𝜕𝑖𝑢
1
(𝑡, 𝜆)/𝜕𝑡

𝑖
)|
𝑡=1

> 0 for 𝑖 =
0, 1, 2, 3, we can conclude that

𝜆 <
135

𝜋 (264√3 − 20𝜋)

≈
0.342

𝜋
, (35)

which implies that 𝜓󸀠󸀠(𝑡) > 1 for all 𝑡 ≥ 1, when 0 < 𝜆 ≤

8/25𝜋.
Secondly, we consider three cases to prove that when 0 <

𝜆 ≤ 8/25𝜋, (29) holds. We have

𝑡𝜓
󸀠󸀠
(𝑡) + 𝜓

󸀠
(𝑡) = 2𝑡 + 2𝑘 (tan2 (ℎ (𝑡)) + 1)

× ( (𝑡ℎ
󸀠󸀠
(𝑡) + ℎ

󸀠
(𝑡)) tan (ℎ (𝑡))

+𝑡ℎ
󸀠
(𝑡)
2
(3tan2 (ℎ (𝑡)) + 1)).

(36)
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Case 1. Assume that 𝑡 ≥ 1. Since 𝜆 > 0, we have 𝜓󸀠(𝑡) > 0 and
𝜓
󸀠󸀠
(𝑡) > 0; therefore 𝑡𝜓󸀠󸀠(𝑡) + 𝜓󸀠(𝑡) > 0 holds for this case.

Case 2. Assume that 2/3 < 𝑡 < 1. 𝑡ℎ󸀠󸀠(𝑡) + ℎ󸀠(𝑡) = 5𝜋(9𝑡
2
−

4)/(3𝑡 + 2)
4
> 0; therefore 𝑡𝜓󸀠󸀠(𝑡) + 𝜓󸀠(𝑡) > 0 also holds for

this case.

Case 3. Assume that 0 < 𝑡 ≤ 2/3. Using Lemma 1, we have

(𝑡ℎ
󸀠󸀠
(𝑡) + ℎ

󸀠
(𝑡)) tan (ℎ (𝑡)) + 𝑡ℎ󸀠(𝑡)2 (3tan2 (ℎ (𝑡)) + 1)

≥

5𝜋 (9𝑡
2
− 4)

(3𝑡 + 2)
4

tan (ℎ (𝑡)) + 𝑡ℎ󸀠(𝑡)2 ( 1
𝜋𝑡

tan (ℎ (𝑡)) + 1)

= tan (ℎ (𝑡)) 45𝜋𝑡
2
+ 5𝜋

(3𝑡 + 2)
4
+ 𝑡ℎ
󸀠
(𝑡)
2
> 0.

(37)

This implies that 𝑡𝜓󸀠󸀠(𝑡) + 𝜓󸀠(𝑡) > 0 for all 0 < 𝑡 ≤ 2/3.
From three cases above we conclude that when 0 < 𝜆 ≤

8/25𝜋, we have 𝑡𝜓󸀠󸀠(𝑡) + 𝜓󸀠(𝑡) > 0 for all 𝑡 ≥ 0.
Thirdly, we consider two cases to prove that when 0 < 𝜆 ≤

8/25𝜋, (30) holds.
Case 1. Assume that 0 < 𝑡 < 1. We have𝜓󸀠(𝑡) < 0 and𝜓󸀠󸀠(𝑡) >
0; therefore 𝑡𝜓󸀠󸀠(𝑡) − 𝜓󸀠(𝑡) > 0 holds for this case.

Case 2. Assume that 𝑡 ≥ 1. Then using the fact that 𝑡ℎ󸀠󸀠(𝑡) −
ℎ
󸀠
(𝑡) > 0 and tan(ℎ(𝑡)) ∈ (−√3, 0], we have

𝑡𝜓
󸀠󸀠
(𝑡) − 𝜓

󸀠
(𝑡) =

2

𝑡
+ 2𝜆 (tan2 (ℎ (𝑡)) + 1)

× ((𝑡ℎ
󸀠󸀠
(𝑡) − ℎ

󸀠
(𝑡)) tan (ℎ (𝑡))

+𝑡ℎ
󸀠
(𝑡)
2
(3tan2 (ℎ (𝑡)) + 1))

≥
2

𝑡
+ 2𝜆 (tan2 (ℎ (𝑡)) + 1)

× (−√3𝑡ℎ
󸀠󸀠
(𝑡) + √3ℎ

󸀠
(𝑡) + 𝑡ℎ

󸀠
(𝑡)
2
)

= 2𝜆 (tan2 (ℎ (𝑡)) + 1)

× (
1

𝜆𝑡 (tan2 (ℎ (𝑡)) + 1)
− √3𝑡ℎ

󸀠󸀠
(𝑡)

+ √3ℎ
󸀠
(𝑡) + 𝑡ℎ

󸀠
(𝑡)
2
)

≥ 2𝜆 (tan2 (ℎ (𝑡)) + 1)

× (
1

4𝜆𝑡
− √3𝑡ℎ

󸀠󸀠
(𝑡) + √3ℎ

󸀠
(𝑡) + 𝑡ℎ

󸀠
(𝑡)
2
)

=

(tan2 (ℎ (𝑡)) + 1)
2𝑡(3𝑡 + 2)

4
𝑢
2
(𝑡, 𝜆) ,

(38)

where

𝑢
2
(𝑡, 𝜆) := (3𝑡 + 2)

4

− 𝜆𝜋 (120√3𝑡
2
(3𝑡 + 2)

+ 20√3𝑡(3𝑡 + 2)
2
− 100𝜋𝑡

2
) .

(39)

From Lemma 2, by solving (𝜕𝑖𝑢
2
(𝑡, 𝜆)/𝜕𝑡

𝑖
)|
𝑡=1

> 0 for 𝑖 =
0, 1, 2, 3, we can conclude that

𝜆 <
75

𝜋 (133√3 − 10𝜋)

≈
0.377

𝜋
, (40)

which implies that 𝑡𝜓󸀠󸀠(𝑡) − 𝜓󸀠(𝑡) > 0 for all 𝑡 ≥ 1, when
0 < 𝜆 ≤ 8/25𝜋.

Finally, we consider three cases to prove that (31) holds
while 0 < 𝜆 ≤ 8/25𝜋. We have

𝜓
󸀠󸀠󸀠
(𝑡) = −

2

𝑡3
+ 2𝜆 (tan2 (ℎ (𝑡)) + 1) 𝑔

2
(𝑡)

= −2 (tan2 (ℎ (𝑡)) + 1)

× (
1

𝑡3 (tan2 (ℎ (𝑡)) + 1)
− 𝜆𝑔
2
(𝑡)) .

(41)

Define

𝜁 (𝑡) :=
1

𝑡3 (tan2 (ℎ (𝑡)) + 1)
− 𝜆𝑔
2
(𝑡) . (42)

Case 1. Assume that 0 < 𝑡 ≤ 1. In this situation, we have
tan(ℎ(𝑡)) > 0, ℎ󸀠(𝑡) < 0, ℎ󸀠󸀠󸀠(𝑡) < 0, and ℎ󸀠(𝑡)ℎ󸀠󸀠(𝑡) < 0, from
which we know that 𝑔

2
(𝑡) < 0. Therefore 𝜓󸀠󸀠󸀠(𝑡) < 0 holds for

this case.

Case 2. Assume that 1 < 𝑡 ≤ 6. Due to the fact that
−1 ≤ tan(ℎ(𝑡)) < 0, 1/(1 + tan2(ℎ(𝑡))) ≥ 1/2, and
tan(ℎ(𝑡))(3tan2(ℎ(𝑡)) + 2) ≥ −5 for all 1 < 𝑡 ≤ 6, we have

𝜁 (𝑡) ≥
1

2𝑡3
+ 𝜆 (−3ℎ

󸀠
(𝑡) ℎ
󸀠󸀠
(𝑡) + 20ℎ

󸀠
(𝑡)
3
+ ℎ
󸀠󸀠󸀠
(𝑡))

=
1

2𝑡3
+ 𝜆(

450𝜋
2

(3𝑡 + 2)
5
−
2500𝜋

3

(3𝑡 + 2)
6
+

270𝜋

(3𝑡 + 2)
4
)

=
1

2𝑡3(3𝑡 + 2)
6
𝑢
3
(𝑡, 𝜆) ,

(43)

where

𝑢
3
(𝑡, 𝜆) := (3𝑡 + 2)

6
− 𝜆𝜋

× (5000𝜋
2
𝑡
3
+ 540𝑡

3
(3𝑡 + 2)

2

−900𝜋𝑡
3
(3𝑡 + 2)) .

(44)

From Lemma 2, by solving (𝜕𝑖𝑢
3
(𝑡, 𝜆)/𝜕𝑡

𝑖
)|
𝑡=1

> 0 for 𝑖 =
0, 1, . . . , 5, we can conclude that

𝜆 <
125

𝜋 (40𝜋2 + 108 − 36𝜋)
≈
0.321

𝜋
, (45)
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which implies that 𝜓󸀠󸀠󸀠(𝑡) < 0 for all 0 < 𝑡 ≤ 6, when 0 < 𝜆 ≤
8/25𝜋.

Case 3. Assume that 𝑡 > 6. Due to the fact that
−√3 < tan(ℎ(𝑡)) < −1, 1/(1 + tan2(ℎ(𝑡))) > 1/4, and
tan(ℎ(𝑡))(3tan2(ℎ(𝑡) + 2)) > −44√3 for all 𝑡 > 6, we have

𝜁 (𝑡) ≥
1

4𝑡3
− 𝜆 (12ℎ

󸀠
(𝑡) ℎ
󸀠󸀠
(𝑡)

−44√3ℎ
󸀠
(𝑡)
3
− √3ℎ

󸀠󸀠󸀠
(𝑡))

=
1

4𝑡3
− 𝜆𝜋(

5500√3𝜋
2

(3𝑡 + 2)
6

+
270√3

(3𝑡 + 2)
4
−

1800𝜋

(3𝑡 + 2)
5
)

=
1

4𝑡3(3𝑡 + 2)
6
𝑢
4
(𝑡, 𝜆) ,

(46)

where

𝑢
4
(𝑡, 𝜆) := (3𝑡 + 2)

6
− 𝜆𝜋

× (22000√3𝜋
2
𝑡
3
+ 1080√3𝑡

3
(3𝑡 + 2)

2

−7200𝜋𝑡
3
(3𝑡 + 2)) .

(47)

From Lemma 2, by solving (𝜕𝑖𝑢
4
(𝑡, 𝜆)/𝜕𝑡

𝑖
)|
𝑡=6

> 0 for 𝑖 =
0, 1, . . . , 5, we can conclude that

𝜆 <
4000

𝜋 (297√3𝜋2 + 5832√3 − 1944𝜋)

≈
0.441

𝜋
, (48)

this implies that when 0 < 𝜆 ≤ 8/25𝜋, we have 𝜓󸀠󸀠󸀠(𝑡) < 0 for
all 𝑡 ≥ 6.

From the above discussions, the proof of the lemma is
completed.

The property described below is exponential convexity,
which has been proven to be very useful in the analysis of
primal-dual interior-point algorithms based on the eligible
kernel functions [2, 3].

Lemma 4. Let 𝑡
1
, 𝑡
2
≥ 0. Then

𝜓 (√𝑡
1
𝑡
2
) ≤

1

2
(𝜓 (𝑡
1
) + 𝜓 (𝑡

2
)) . (49)

Proof. The result of the lemma follows immediately from
Lemma 1 in [2], which states that the above inequality holds
if and only if 𝑡𝜓󸀠󸀠(𝑡)+𝜓󸀠(𝑡) > 0 for all 𝑡 > 0. Hence, from (29)
in Lemma 3, the proof of the lemma is completed.

From (28) of Lemma 3 (i.e.,𝜓󸀠󸀠(𝑡) > 1), we say that𝜓(𝑡) is
strongly convex.The following lemma provides an important
consequence of this property. These results can be directly
obtained from the corresponding results in [3].

Lemma 5. Let 𝑡 > 0. Then
1

2
(𝑡 − 1)

2
≤ 𝜓 (𝑡) ≤

1

2
𝜓
󸀠
(𝑡)
2
. (50)

As the consequences of Lemma 5, one has the following
two corollaries.

Corollary 6. Let Ψ(V) ≥ 1. Then

𝛿 (V) ≥ √
Ψ (V)
2

. (51)

Corollary 7. Let Ψ(V) ≥ 1. Then

‖V‖ ≤ √𝑛 + √2Ψ (V) ≤ √𝑛 + 2𝛿 (V) . (52)

Lemma 8. Let 𝛽 ≥ 1. Then

𝜓 (𝛽𝑡) ≤ 𝜓 (𝑡) +
1

2
(𝛽
2
− 1) 𝑡
2
. (53)

Proof. Let

𝑤 (𝑡) := − log (𝑡) + 𝜆tan2 (ℎ (𝑡)) , 0 < 𝜆 ≤
8

25𝜋
. (54)

Then

𝜓 (𝑡) =
1

2
(𝑡
2
− 1) + 𝑤 (𝑡) ,

𝜓 (𝛽𝑡) − 𝜓 (𝑡) =
1

2
(𝛽
2
− 1) 𝑡

2
+ 𝑤 (𝛽𝑡) − 𝑤 (𝑡) .

(55)

As 𝛽 ≥ 1, to prove the lemma, it is sufficient to show that
the function 𝑤(𝑡) is a decreasing function. For this purpose,
we have

𝑤
󸀠
(𝑡) = −

1

𝑡
+ 2𝜆ℎ

󸀠
(𝑡) tan (ℎ (𝑡)) (tan2 (ℎ (𝑡)) + 1)

= −
1

𝑡
−

10𝜆𝜋

(3𝑡 + 2)
2
tan (ℎ (𝑡)) (tan2 (ℎ (𝑡)) + 1) .

(56)

If 0 < 𝑡 ≤ 1, then tan(ℎ(𝑡)) ≥ 0, so 𝑤󸀠(𝑡) < 0.
If 𝑡 > 1, then −√3 < tan(ℎ(𝑡)) < 0. Using 0 < 𝜆 ≤ 8/25𝜋,

we have

𝑤
󸀠
(𝑡) < −

1

𝑡
+ 𝜆

40√3𝜋

(3𝑡 + 2)
2
≤ −

1

𝑡
+

64√3

5(3𝑡 + 2)
2

=
−5(3𝑡 + 2)

2
+ 64√3𝑡

5𝑡(3𝑡 + 2)
2

<
−9 (5𝑡 − 1) (𝑡 − 1) − 11

5𝑡(3𝑡 + 2)
2

< 0.

(57)

This implies the result of the lemma.

Theorem 9. Let 0 < 𝜃 < 1 and V
+
= V/√1 − 𝜃. Then

Ψ (V
+
) ≤ Ψ (V) +

𝜃

2 (1 − 𝜃)
(2Ψ (V) + 2√2𝑛Ψ (V) + 𝑛) . (58)

Proof. It follows from Lemma 8 with 𝛽 = 1/√1 − 𝜃 that

Ψ (𝛽V) ≤ Ψ (V) +
1

2

𝑛

∑

𝑖=1

(𝛽
2
− 1) V2

𝑖
= Ψ (V) +

𝜃‖V‖2

2 (1 − 𝜃)
. (59)

Thus, we have, by Corollary 7,

Ψ (V
+
) ≤ Ψ (V) +

𝜃

2 (1 − 𝜃)
(2Ψ (V) + 2√2𝑛Ψ (V) + 𝑛) . (60)

The proof of the theorem is completed.
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4. Analysis and Complexity of the Algorithms

In this section, we first choose a default step size. Then, we
derive an upper bound for the decrease of the barrier function
during an inner iteration. Finally, the iteration bounds for
large- and small-update methods are established.

4.1. Computation of the Default Step Size. In each inner
iteration, we first compute the search direction (𝑑

𝑥
, Δ𝑦, 𝑑

𝑠
)

from the system (14). Then through (7), we obtain the search
direction (Δ𝑥, Δ𝑦, Δ𝑠). Note that during an inner iteration the
parameter 𝜇 is fixed. Hence, after the step the new V-vector is
given by

V
+
= √

𝑥
+
𝑠
+

𝜇
. (61)

It follows from (17) that

𝑥
+
= 𝑥(𝑒 + 𝛼

Δ𝑥

𝑥
) =

𝑥

V
(V + 𝛼𝑑

𝑥
) , (62)

𝑠
+
= 𝑠 (𝑒 + 𝛼

Δ𝑠

𝑠
) =

𝑠

V
(V + 𝛼𝑑

𝑠
) . (63)

Also using 𝑥𝑠 = 𝜇V2, we obtain

V
+
= √(V + 𝛼𝑑

𝑥
) (V + 𝛼𝑑

𝑠
). (64)

We consider the decrease in Ψ as a function of 𝛼 and
define

𝑓 (𝛼) := Ψ (V
+
) − Ψ (V) . (65)

However, working with 𝑓(𝛼)may not be easy because in
general 𝑓(𝛼) is not convex. Thus, we are searching for the
convex function 𝑓

1
(𝛼) that is an upper bound of 𝑓(𝛼) and

whose derivatives are easier to calculate than those of 𝑓(𝛼).
Lemma 4 implies that

Ψ (V
+
) = Ψ(√(V + 𝛼𝑑

𝑥
) (V + 𝛼𝑑

𝑠
))

≤
1

2
(Ψ (V + 𝛼𝑑

𝑥
) + Ψ (V + 𝛼𝑑

𝑠
)) .

(66)

Let

𝑓
1
(𝛼) :=

1

2
(Ψ (V + 𝛼𝑑

𝑥
) + Ψ (V + 𝛼𝑑

𝑠
)) − Ψ (V) . (67)

This makes clear that 𝑓
1
(𝛼) is an upper bound of 𝑓(𝛼).

Furthermore, we can easily verify that 𝑓(0) = 𝑓
1
(0) = 0.

Taking the derivative with respect to 𝛼, we have

𝑓
󸀠

1
(𝛼)

=
1

2

𝑛

∑

𝑖=1

(𝜓
󸀠
(V
𝑖
+ 𝛼(𝑑

𝑥
)
𝑖
) (𝑑
𝑥
)
𝑖
+ 𝜓
󸀠
(V
𝑖
+ 𝛼(𝑑

𝑠
)
𝑖
) (𝑑
𝑠
)
𝑖
) .

(68)

This gives, also using the third expression of system (14),

𝑓
󸀠

1
(0) =

1

2
∇Ψ(V)𝑇 (𝑑

𝑥
+ 𝑑
𝑠
)

= −
1

2
∇Ψ(V)𝑇∇Ψ (V) = −2𝛿(V)2.

(69)

Differentiating once again, we get

𝑓
󸀠󸀠

1
(𝛼) =

1

2

𝑛

∑

𝑖=1

(𝜓
󸀠󸀠
(V
𝑖
+ 𝛼(𝑑

𝑥
)
𝑖
) (𝑑
𝑥
)
2

𝑖

+ 𝜓
󸀠󸀠
(V
𝑖
+ 𝛼(𝑑

𝑠
)
𝑖
) (𝑑
𝑠
)
2

𝑖
) .

(70)

Below we use the shorthand notation: 𝛿 := 𝛿(V). The
following lemma provides an upper bound of 𝑓󸀠󸀠

1
(𝛼) , which

can be found in Lemma 4.1 in [3].

Lemma 10. One has 𝑓󸀠󸀠
1
(𝛼) ≤ 2𝛿

2
𝜓
󸀠󸀠
(Vmin − 2𝛼𝛿).

Following the strategy considered in [3], we briefly recall
how to choose the default step size. Suppose that the step size
𝛼 satisfies

−𝜓
󸀠
(Vmin − 2𝛼𝛿) + 𝜓

󸀠
(Vmin) ≤ 2𝛿. (71)

Then 𝑓
1
(𝛼) ≤ 0. The largest possible value of the step size

of 𝛼 satisfying (71) is given by

𝛼 :=
1

2𝛿
(𝜌 (𝛿) − 𝜌 (2𝛿)) , (72)

where 𝜌(𝑠) : [0,∞) → (0, 1] is the inverse function of
−(1/2)𝜓

󸀠
(𝑡) for 𝑡 ∈ (0, 1]. Furthermore, we can conclude that

1

𝜓󸀠󸀠 (𝜌 (2𝛿))
≤ 𝛼 ≤

1

𝜓󸀠󸀠 (𝜌 (𝛿))
. (73)

Since 𝜌(𝑠) is the inverse function of −(1/2)𝜓󸀠(𝑡), one has

−(𝑡 −
1

𝑡
+ 2𝜆ℎ

󸀠
(𝑡) tan (ℎ (𝑡)) (tan2 (ℎ (𝑡)) + 1)) = 2𝑠. (74)

This implies

tan (ℎ (𝑡)) (tan2 (ℎ (𝑡)) + 1)

= −
1

2𝜆ℎ
󸀠
(𝑡)

(2𝑠 + 𝑡 −
1

𝑡
)

=
(3𝑡 + 2)

2

10𝜆𝜋
(2𝑠 + 𝑡 −

1

𝑡
) ≤

5𝑠

𝜆𝜋
,

(75)

for 𝑡 ∈ (0, 1]. Hence, putting 𝑡 = 𝜌(2𝛿), we get 4𝛿 = −𝜓
󸀠
(𝑡).

Thus one has

tan3 (ℎ (𝑡)) ≤ tan (ℎ (𝑡)) (tan2 (ℎ (𝑡)) + 1)

≤
10𝛿

𝜆𝜋
󳨐⇒ tan (ℎ (𝑡)) ≤ ( 10

𝜆𝜋
)

1/3

𝛿
1/3
.

(76)
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From Lemma 1, it yields

tan (ℎ (𝑡)) − 1

3𝜋𝑡
> 0, ∀0 < 𝑡 ≤

2

3
, (77)

which implies that

1 + tan (ℎ (𝑡)) > 1

3𝜋𝑡
, ∀0 < 𝑡 ≤ 1. (78)

It also means that

1

𝑡
< 3𝜋 (1 + tan (ℎ (𝑡))) , ∀0 < 𝑡 ≤ 1. (79)

Since ℎ󸀠󸀠(𝑡) = 30𝜋/(3𝑡 + 2)
3
≤ 15𝜋/4 and ℎ

󸀠
(𝑡)
2
=

25𝜋
2
/(3𝑡 + 2)

4
≤ 25𝜋

2
/16 for all 0 < 𝑡 ≤ 1, one has

𝛼 =
1

𝜓󸀠󸀠 (𝑡)

= 1 × (1 +
1

𝑡2
+ 2𝜆 (tan2 (ℎ (𝑡)) + 1)

× (ℎ
󸀠󸀠
(𝑡) tan (ℎ (𝑡)) + ℎ󸀠(𝑡)2 (3tan2 (ℎ (𝑡)) + 1)))

−1

= 1 × (1+
1

𝑡2
+ 2𝜆 (ℎ

󸀠󸀠
(𝑡) tan (ℎ (𝑡)) (tan2 (ℎ (𝑡))+1)

+ℎ
󸀠
(𝑡)
2
(3tan2 (ℎ (𝑡)) (tan2 (ℎ (𝑡))+1)

+(tan2 (ℎ (𝑡))+1))))
−1

≥ 1 × (1 + 9𝜋
2
(1 + (

10𝛿

𝜆𝜋
)

1/3

)

2

+ 2𝜆(ℎ
󸀠󸀠
(𝑡)

10𝛿

𝜆𝜋
+ ℎ
󸀠
(𝑡)
2

× (1 + (
10

𝜆𝜋
)

2/3

𝛿
2/3

+ 3(
10

𝜆𝜋
)

4/3

𝛿
4/3
)))

−1

≥ 1 × (1 + 9𝜋
2
(1 + (

10𝛿

𝜆𝜋
)

1/3

)

2

+ 2𝜆(
15𝜋

4

10𝛿

𝜆𝜋
+
25𝜋
2

16
(1+(

10

𝜆𝜋
)

2/3

𝛿
2/3

+ 3(
10

𝜆𝜋
)

4/3

𝛿
4/3
)))

−1

.

(80)

Therefore, using Corollary 6 (i.e., 2𝛿 ≥ √Ψ(V) ≥ 1), one
has

𝛼 ≥ 1 × ((2𝛿)
4/3

+ 9𝜋
2
((2𝛿)

2/3
+ (

10𝛿

𝜆𝜋
)

1/3

(2𝛿)
1/3
)

2

+ 2𝜆(
75𝛿

2𝜆
(2𝛿)
1/3

+
25𝜋
2

16

× ((2𝛿)
4/3

+ (
10

𝜆𝜋
)

2/3

𝛿
2/3
(2𝛿)
2/3

+3(
10

𝜆𝜋
)

4/3

𝛿
4/3
)))

−1

.

(81)

Define

𝐶 := 2
4/3

+ 9𝜋
2
(2
2/3

+ (
20

𝜆𝜋
)

1/3

)

2

+ 75
3
√2 +

25𝜆𝜋
2

8
(2
4/3

+ (
20

𝜆𝜋
)

2/3

+ 3(
10

𝜆𝜋
)

4/3

) .

(82)

Then, we have

𝛼 ≥
1

𝐶𝛿4/3
. (83)

In the sequel, we use

𝛼̃ :=
1

𝐶𝛿4/3
(84)

as the default step size, which essentially depends only on the
norm 𝛿 and on the constant 𝐶.

4.2. Decrease of the Barrier Function during an Inner Iteration.
In what follows, wewill show that the barrier functionΨ(V) in
each inner iteration with the default step size 𝛼̃, as defined by
(84), is decreasing. For this, we need the following technical
result.

Lemma 11 (Lemma 12 in [2]). Let ℎ(𝑡) be a twice differentiable
convex function with ℎ(0) = 0, ℎ󸀠(0) < 0 and let ℎ(𝑡) attain its
(global)minimumat 𝑡∗ > 0. If ℎ󸀠󸀠(𝑡) is increasing for 𝑡 ∈ [0, 𝑡∗],
then

ℎ (𝑡) ≤
𝑡ℎ
󸀠
(0)

2
, 0 ≤ 𝑡 ≤ 𝑡

∗
. (85)

As a consequence of Lemma 11 and the fact that 𝑓(𝛼) ≤
𝑓
1
(𝛼), which is a twice differentiable convex function with

𝑓
1
(0) = 0 and 𝑓󸀠

1
(0) = −2𝛿

2
< 0, we can easily prove the

following lemma.

Lemma 12. Let the step size 𝛼 be such that 𝛼 ≤ 𝛼̃.Then𝑓(𝛼) ≤
−𝛼𝛿
2.

The following theorem shows that the default step size
(84) yields a sufficient decrease of the barrier function during
each inner iteration.
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Lemma 13. Let 𝛼̃ be the default step size as given by (84).Then

𝑓 (𝛼̃) ≤ −(
3
√2𝐶)

−1

Ψ(V)1/3. (86)

Proof. From Lemma 12, (84), and Corollary 6, we have

𝑓 (𝛼̃) ≤ −𝛼̃𝛿
2
≤ −𝐶
−1
𝛿
2/3

≤ −(
3
√2𝐶)

−1

Ψ(V)1/3. (87)

This completes the proof of the theorem.

4.3. Iteration Bounds for Large- and Small-Update Methods.
FromTheorem 9, after updating the parameter 𝜇 to (1 − 𝜃)𝜇
with 0 < 𝜃 < 1, we have

Ψ (V
+
) ≤ Ψ (V) +

𝜃

2 (1 − 𝜃)
(2Ψ (V) + 2√2𝑛Ψ (V) + 𝑛) . (88)

At the start of an outer iteration and just before updating
the parameter 𝜇, we have Ψ(V) ≤ 𝜏. Due to (88), the value
of Ψ(V) exceeds the threshold 𝜏 after updating 𝜇. Therefore,
we need to count how many inner iterations are required to
return to the situation where Ψ(V) ≤ 𝜏. We denote the value
ofΨ(V) after the 𝜇-update asΨ

0
and the subsequent values in

the same outer iteration are denoted as Ψ
𝑘
, 𝑘 = 1, 2, . . . , 𝐾,

where 𝐾 denotes the total number of inner iterations in the
outer iteration. Hence, we have

Ψ
0
≤ 𝜏 +

𝜃

2 (1 − 𝜃)
(2𝜏 + 2√2𝑛𝜏 + 𝑛) . (89)

According to a decrease of 𝑓(𝛼̃) in Lemma 13, we have

Ψ
𝑘+1

≤ Ψ
𝑘
− 𝛽(Ψ

𝑘
)
1−𝛾

, 𝑘 = 0, 1, . . . , 𝐾 − 1, (90)

where 𝛽 = ( 3√2𝐶)−1 and 𝛾 = 2/3.

Lemma 14 (Lemma 14 in [2]). Let 𝑡
0
, 𝑡
1
, . . . , 𝑡

𝐾
be a sequence

of positive numbers such that

𝑡
𝑘+1

≤ 𝑡
𝑘
− 𝛽𝑡
1−𝛾

𝑘
, 𝑘 = 0, 1, . . . , 𝐾 − 1, (91)

where 𝛽 > 0 and 0 < 𝛾 ≤ 1. Then 𝐾 ≤ ⌈𝑡
𝛾

0
/𝛽𝛾⌉.

The following lemmaprovides an estimate for the number
of inner iterations between two successive barrier parameter
updates, in terms of Ψ

0
and the constant 𝐶.

Lemma 15. One has

𝐾 ≤
3
3
√2𝐶

2
(Ψ
0
)
2/3

. (92)

Proof. Using (90) and also applying Lemma 14, the result of
the lemma follows.

The number of outer iterations is bounded above by
(1/𝜃) log(𝑛/𝜀) (cf., [1, Π.17, page 116]). By multiplying the
number of outer iterations and the number of inner iterations,
we get an upper bound for the total number of iterations,
namely,

3
3
√2𝐶

2𝜃
(𝜏 +

𝜃

2 (1 − 𝜃)
(2𝜏 + 2√2𝑛𝜏 + 𝑛))

2/3

log 𝑛
𝜀
. (93)

Then, the iteration bound for large-update methods is
established in the following theorem.

Theorem 16. For large-update methods, one takes for 𝜃 a
constant (independent on 𝑛), namely, 𝜃 = Θ(1) and 𝜏 = 𝑂(𝑛).
The iteration bound then becomes

𝑂(𝑛
2/3 log 𝑛

𝜀
) , (94)

which improves the classical iteration bound with a factor 𝑛1/3.
Similar to the analysis in [10], the iteration complexity for
the small-update methods is straight and we leave it for the
interested readers.

Theorem 17. For small-update methods, one takes 𝜃 =

Θ(1/√𝑛) and 𝜏 = 𝑂(1). The iteration bound then becomes

𝑂(√𝑛 log 𝑛
𝜀
) , (95)

which matches the currently best known iteration bound for
small-update methods.

5. Conclusions and Remarks

In this paper, we have proposed a class of primal-dual
IPMs for LO based on a new parametric kernel function,
which is a combination of the classic kernel function and a
trigonometric barrier term. The worst case iteration bounds
for large- and small-update methods are established, namely,
𝑂(𝑛
2/3 log(𝑛/𝜀)) and 𝑂(√𝑛 log(𝑛/𝜀)), respectively. For both

versions of the kernel-based IPMs, the obtained iteration
bounds match the currently best known iteration bound for
such methods based on the trigonometric kernel functions.

The paper improved the complexity results for large-
update methods obtained by El Ghami et al. [6] and gen-
eralized the results presented recently by Peyghami et al.
[7]. Furthermore, the analysis deviates significantly from the
analysis presented in previous papers [6, 7].

Some interesting topics for further research remain.
The extension to second-order cone optimization (SOCO),
semidefinite optimization (SDO), and symmetric cone opti-
mization (SCO) deserves to be investigated. Furthermore, the
numerical results may help us compare the behavior of the
proposed algorithms with other existing IPMs.
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