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We consider the following difference equation 𝑥
𝑛+1

= 𝑥
𝑛−1
𝑔(𝑥
𝑛
), 𝑛 = 0, 1, . . . , where initial values 𝑥

−1
, 𝑥
0
∈ [0, +∞) and 𝑔 :

[0, +∞) → (0, 1] is a strictly decreasing continuous surjective function. We show the following. (1) Every positive solution of this
equation converges to 𝑎, 0, 𝑎, 0, . . . , or 0, 𝑎, 0, 𝑎, . . . for some 𝑎 ∈ [0, +∞). (2) Assume 𝑎 ∈ (0, +∞). Then the set of initial conditions
(𝑥
−1
, 𝑥
0
) ∈ (0, +∞) × (0, +∞) such that the positive solutions of this equation converge to 𝑎, 0, 𝑎, 0, . . . , or 0, 𝑎, 0, 𝑎, . . . is a unique

strictly increasing continuous function or an empty set.

1. Introduction

Recently there have been published quite a lot of works
concerning global behavior of the difference equations [1–8].
These results are not only valuable in their own right, but they
can provide insight into their differential counterparts.

In [9], Kulenović and Ladas considered the positive
solutions for difference equation

𝑥
𝑛+1

=

𝑥
𝑛−1

1 + 𝐴𝑥
𝑛

(1)

with𝐴 > 0.They gave some partial results on the convergence
of this equation.

Kalikow et al. [10] studied the following difference equa-
tion:

𝑥
𝑛+1

=

𝑥
𝑛−1

1 + 𝑓 (𝑥
𝑛
)

, 𝑛 = 0, 1, 2, . . . , (𝐸1)

where initial values 𝑥
−1
, 𝑥
0
∈ [0, +∞) and 𝑓 is in a certain

class of increasing continuous functions. They showed that
the set of initial conditions (𝑥

−1
, 𝑥
0
) of (𝐸1) in the first

quadrant that converge to any given boundary point of the
first quadrant forms a unique strictly increasing continuous
function.

Motivated by the above studies, in this paper, we consider
the following difference equation:

𝑥
𝑛+1

= 𝑥
𝑛−1

𝑔 (𝑥
𝑛
) , 𝑛 = 0, 1, . . . , (2)

where initial values 𝑥
−1
, 𝑥
0
∈ [0, +∞) and 𝑔 : [0, +∞) →

(0, 1] is a strictly decreasing continuous surjective function.
Our main result is the following theorem.

Theorem 1. (1) Every positive solution of (2) converges to

𝑎, 0, 𝑎, 0, . . . , 𝑜𝑟 0, 𝑎, 0, 𝑎, . . . (3)

for some 𝑎 ∈ [0, +∞).
(2) Assume 𝑎 ∈ (0, +∞). Then the set of initial conditions

(𝑥
−1
, 𝑥
0
) ∈ (0, +∞) × (0, +∞) such that the positive solutions

of (2) converge to

𝑎, 0, 𝑎, 0, . . . , 𝑜𝑟 0, 𝑎, 0, 𝑎, . . . (4)

is a unique strictly increasing continuous function or an empty
set.

2. The Main Result

Proof of Theorem 1(1). Let {𝑥
𝑛
}
∞

𝑛=−1
be a positive solution of

(2).Then 𝑥
2𝑛
and 𝑥
2𝑛+1

are decreasing sequences since 𝑔(𝑥) ≤
1. Let lim

𝑛→∞
𝑥
2𝑛
= 𝑝 and lim

𝑛→∞
𝑥
2𝑛−1

= 𝑞. Then we have

𝑝 = 𝑝𝑔 (𝑞) , (5)

which implies 𝑝 = 0 or 𝑔(𝑞) = 1. If 𝑔(𝑞) = 1, then 𝑞 = 0

since 𝑔 : [0, +∞) → (0, 1] is a strictly decreasing continuous
surjective function with 𝑔(0) = 1. This completes proof of
Theorem 1(1).
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Write𝐷 = [0, +∞) × [0, +∞) and define 𝑓 : 𝐷 → 𝐷 by

𝑓 (𝑥, 𝑦) = (𝑦, 𝑥𝑔 (𝑦)) , (6)

for all (𝑥, 𝑦) ∈ 𝐷. It is easy to see that if {𝑥
𝑛
}
∞

𝑛=−1
is a solution

of (2), then 𝑓
𝑛

(𝑥
−1
, 𝑥
0
) = (𝑥

𝑛−1
, 𝑥
𝑛
) for any 𝑛 ≥ 0. In the

following, let

𝐿
0
= {𝑎} × [0, +∞) , 𝐿

1
= [0, +∞) × {𝑎} ,

𝑅
0
= [𝑎, +∞) × {0} , 𝑅

1
= {0} × [𝑎, +∞)

(7)

for some 𝑎 ∈ (0, +∞).

Lemma 2. The following statements are true:

(i) 𝑓 is a homeomorphism;
(ii) 𝑓(𝐿

1
) = 𝐿
0
;

(iii) 𝑓(𝑅
0
) = 𝑅
1
and 𝑓(𝑅

1
) = 𝑅
0
.

Proof. (i) Since 𝑓(𝑥
1
, 𝑦
1
) ̸= 𝑓(𝑥

2
, 𝑦
2
) for any (𝑥

1
, 𝑦
1
),

(𝑥
2
, 𝑦
2
) ∈ 𝐷 with (𝑥

1
, 𝑦
1
) ̸= (𝑥
2
, 𝑦
2
) and 𝑓

−1

(𝑢, V) =

(V/𝑔(𝑢), 𝑢) is continuous for any (𝑢, V) ∈ 𝐷, 𝑓 is a
homeomorphism.

(ii) Let (𝑥, 𝑦) ∈ 𝐿
1
and (𝑢, V) = 𝑓(𝑥, 𝑦) = (𝑦, 𝑥𝑔(𝑦)).

Then 𝑦 = 𝑎, 𝑥 ≥ 0, and

𝑢 = 𝑦 = 𝑎, V = 𝑥𝑔 (𝑦) = 𝑥𝑔 (𝑎) ≥ 0, (8)

which implies 𝑓(𝐿
1
) ⊂ 𝐿
0
.

Let (𝑢, V) ∈ 𝐿
0
. Then 𝑢 = 𝑎 and V ≥ 0. Choose (𝑥, 𝑦) =

(V/𝑔(𝑎), 𝑎) ∈ 𝐿
1
. Then 𝑓(𝑥, 𝑦) = (𝑢, V). Thus 𝑓(𝐿

1
) = 𝐿
0
.

The proof of (iii) is similar to that of (ii). This completes
the proof of Lemma 2.

In order to show Theorem 1(2), we will construct two
families of strictly increasing functions 𝑦 = ℎ

2𝑛
(𝑥) and 𝑥 =

𝑔
2𝑛+1

(𝑦) (𝑛 ≥ 1) as follows. Set

𝑥 = 𝑔
2
(𝑦) =

𝑎

𝑔 (𝑦)

(𝑦 ≥ 0) . (9)

Then 𝑦 = ℎ
2
(𝑥) = 𝑔

−1

2
(𝑥) = 𝑔

−1

(𝑎/𝑥) is a strictly increasing
function which maps [𝑎, +∞) onto [0, +∞). Set

𝑥 = 𝑔
3
(𝑦) =

ℎ
2
(𝑦)

𝑔 (𝑦)

(𝑦 ≥ 𝑎) . (10)

Then 𝑥 = 𝑔
3
(𝑦) is a strictly increasing function which maps

[𝑎, +∞) onto [0, +∞).
Assume that, for some positive integer 𝑛, we already

define strictly increasing functions 𝑦 = ℎ
2𝑛
(𝑥) and 𝑥 =

𝑔
2𝑛+1

(𝑦) such that both ℎ
2𝑛

and 𝑔
2𝑛+1

map [𝑎, +∞) onto
[0, +∞). Set

𝑥 = 𝑔
2𝑛+2

(𝑦) =

𝑔
−1

2𝑛+1
(𝑦)

𝑔 (𝑦)

(𝑦 ≥ 0) . (11)

Then both 𝑦 = ℎ
2𝑛+2

(𝑥) = 𝑔
−1

2𝑛+2
(𝑥) and 𝑥 = 𝑔

2𝑛+3
(𝑦) =

ℎ
2𝑛+2

(𝑦)/𝑔(𝑦) are strictly increasing functions which map
[𝑎, +∞) onto [0, +∞). In such a way, we construct two

families of strictly increasing functions 𝑦 = ℎ
2𝑛
(𝑥) and 𝑥 =

𝑔
2𝑛+1

(𝑦) (𝑛 ≥ 1).
Set 𝑃
0
= [𝑎, +∞) × [0, +∞) and𝑄

0
= [0, +∞) × [𝑎, +∞).

For any 𝑛 ≥ 1, write

𝑃
𝑛
= 𝑓
−2

(𝑃
𝑛−1

) , 𝑄
𝑛
= 𝑓
−2

(𝑄
𝑛−1

) ,

𝐿
𝑛
= 𝑓
−1

(𝐿
𝑛−1

) .

(12)

Let (𝑥, 𝑦) ∈ 𝐿
2
. Since 𝑓(𝐿

2
) = 𝐿
1
and (𝑢, V) = 𝑓(𝑥, 𝑦) =

(𝑦, 𝑥𝑔(𝑦)) ∈ 𝐿
1
, it follows that

𝑥𝑔 (𝑦) = V = 𝑎, 𝑦 = 𝑢 ≥ 0. (13)

Thus 𝑥 = 𝑔
2
(𝑦) = 𝑎/𝑔(𝑦) and 𝐿

2
= {(𝑥, 𝑦) : 𝑦 = ℎ

2
(𝑥), 𝑥 ≥

𝑎}.
Let (𝑥, 𝑦) ∈ 𝐿

3
. Since 𝑓(𝐿

3
) = 𝐿
2
and (𝑢, V) = 𝑓(𝑥, 𝑦) =

(𝑦, 𝑥𝑔(𝑦)) ∈ 𝐿
2
, it follows that

𝑥𝑔 (𝑦) = V = ℎ
2
(𝑢) = ℎ

2
(𝑦) , 𝑦 = 𝑢 ≥ 𝑎. (14)

Thus 𝑥 = 𝑔
3
(𝑦) = ℎ

2
(𝑦)/𝑔(𝑦) (𝑦 ≥ 𝑎) and 𝐿

3
= {(𝑥, 𝑦) : 𝑥 =

𝑔
3
(𝑦), 𝑦 ≥ 𝑎}. Using induction, one can easily show that, for

any 𝑛 ≥ 1,

𝐿
2𝑛
= {(𝑥, 𝑦) : 𝑦 = ℎ

2𝑛
(𝑥) , 𝑥 ≥ 𝑎} ,

𝐿
2𝑛+1

= {(𝑥, 𝑦) : 𝑥 = 𝑔
2𝑛+1

(𝑦) , 𝑦 ≥ 𝑎} .

(15)

Since 𝑓 is a homeomorphism and 𝑃
𝑛
= 𝑓
−2

(𝑃
𝑛−1

) with 𝐿
2𝑛
∪

𝑅
0
is the boundary of 𝑃

𝑛
, we have that, for any 𝑛 ≥ 1,

𝑃
𝑛
= {(𝑥, 𝑦) : 0 ≤ 𝑦 ≤ ℎ

2𝑛
(𝑥) , 𝑥 ≥ 𝑎} . (16)

In a similar fashion, we may show that

𝑄
𝑛
= {(𝑥, 𝑦) : 0 ≤ 𝑥 ≤ 𝑔

2𝑛+1
(𝑦) , 𝑦 ≥ 𝑎} . (17)

Since 𝐿
2
⊂ 𝑃
0
, 𝐿
3
⊂ 𝑄
0
, and 𝑓 is a homeomorphism, we have

that 𝑃
1
⊂ 𝑃
0
and 𝑄

1
⊂ 𝑄
0
, which implies that, for any 𝑛 ≥ 1,

𝐿
2𝑛
⊂ 𝑃
𝑛−1

, 𝐿
2𝑛+1

⊂ 𝑄
𝑛−1

,

𝑃
𝑛
⊂ 𝑃
𝑛−1

, 𝑄
𝑛
⊂ 𝑄
𝑛−1

.

(18)

It follows from (12) and (18) that, for 𝑥 ≥ 𝑎,

0 ≤ ⋅ ⋅ ⋅ ≤ ℎ
4
(𝑥) ≤ ℎ

2
(𝑥) (19)

and for 𝑦 ≥ 𝑎,

0 ≤ ⋅ ⋅ ⋅ ≤ 𝑔
5
(𝑦) ≤ 𝑔

3
(𝑦) . (20)

Noting (19) and (20), we may assume that, for every 𝑥 ≥ 𝑎,

𝐻(𝑥) = lim
𝑛→∞

ℎ
2𝑛
(𝑥) (21)

and for every 𝑦 ≥ 𝑎,

𝐺 (𝑦) = lim
𝑛→∞

𝑔
2𝑛+1

(𝑦) . (22)

Set

𝐿 = {(𝑥, 𝑦) : 𝑦 = 𝐻 (𝑥) , 𝑥 ≥ 𝑎} ,

𝑀 = {(𝑥, 𝑦) : 𝑥 = 𝐺 (𝑦) , 𝑦 ≥ 𝑎} .

(23)
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Lemma 3. The following statements are true:

(i) 𝑓(𝐿) = 𝑀 and 𝑓(𝑀) = 𝐿;
(ii) both𝑦 = 𝐻(𝑥) and𝑥 = 𝐺(𝑦) are increasing continuous

functions which map [𝑎, +∞) onto [0, +∞).

Proof. (i) Let (𝑥
0
, 𝑦
0
) ∈ 𝐿. Then we have 𝑦

0
=

lim
𝑛→∞

ℎ
2𝑛
(𝑥
0
), which follows that

𝑓 (𝑥
0
, 𝑦
0
) = 𝑓 (𝑥

0
, lim
𝑛→∞

ℎ
2𝑛
(𝑥
0
)) = lim
𝑛→∞

𝑓 (𝑥
0
, ℎ
2𝑛
(𝑥
0
)) .

(24)

Since 𝑓(𝐿
2𝑛
) = 𝐿
2𝑛−1

, we have

𝑓 (𝑥
0
, ℎ
2𝑛
(𝑥
0
)) = (ℎ

2𝑛
(𝑥
0
) , 𝑥
0
𝑔 (ℎ
2𝑛
(𝑥
0
)))

= (𝑔
2𝑛−1

(𝑥
0
𝑔 (ℎ
2𝑛
(𝑥
0
))) , 𝑥

0
𝑔 (ℎ
2𝑛
(𝑥
0
))) .

(25)

Let 𝑦
𝑛
= 𝑥
0
𝑔(ℎ
2𝑛
(𝑥
0
)). It follows from (24) and (25) that

𝑓 (𝑥
0
, 𝑦
0
) = lim
𝑛→∞

(𝑔
2𝑛−1

(𝑦
𝑛
) , 𝑦
𝑛
) = (𝑦

0
, 𝑥
0
𝑔 (𝑦
0
)) , (26)

so we have

lim
𝑛→∞

𝑦
𝑛
= 𝑥
0
𝑔 (𝑦
0
) , lim

𝑛→∞

𝑔
2𝑛−1

(𝑦
𝑛
) = 𝐺 (𝑥

0
𝑔 (𝑦
0
)) .

(27)

It follows from (25) and (27) that

𝑓 (𝑥
0
, 𝑦
0
) = (𝐺 (𝑥

0
𝑔 (𝑦
0
)) , 𝑥
0
𝑔 (𝑦
0
)) ∈ 𝑀. (28)

Thus we have 𝑓(𝐿) ⊂ 𝑀.
Let (𝑥

0
, 𝑦
0
) ∈ 𝑀. Then we have 𝑥

0
= lim

𝑛→∞
𝑔
2𝑛+1

(𝑦
0
),

which follows that

𝑓
−1

(𝑥
0
, 𝑦
0
) = 𝑓
−1

( lim
𝑛→∞

𝑔
2𝑛+1

(𝑦
0
) , 𝑦
0
)

= lim
𝑛→∞

𝑓
−1

(𝑔
2𝑛+1

(𝑦
0
) , 𝑦
0
) .

(29)

Since 𝑓−1(𝐿
2𝑛+1

) = 𝐿
2𝑛+2

, we have

𝑓
−1

(𝑔
2𝑛+1

(𝑦
0
) , 𝑦
0
)

= (

𝑦
0

𝑔 (𝑔
2𝑛+1

(𝑦
0
))

, 𝑔
2𝑛+1

(𝑦
0
))

= (

𝑦
0

𝑔 (𝑔
2𝑛+1

(𝑦
0
))

, ℎ
2𝑛+2

(

𝑦
0

𝑔 (𝑔
2𝑛+1

(𝑦
0
))

)) .

(30)

Let 𝑧
𝑛
= 𝑦
0
/𝑔(𝑔
2𝑛+1

(𝑦
0
)). It follows from (29) and (30) that

𝑓
−1

(𝑥
0
, 𝑦
0
) = lim
𝑛→∞

(𝑧
𝑛
, ℎ
2𝑛+2

(𝑧
𝑛
)) = (

𝑦
0

𝑔 (𝑥
0
)

, 𝑥
0
) , (31)

so we have

lim
𝑛→∞

𝑧
𝑛
=

𝑦
0

𝑔 (𝑥
0
)

, lim
𝑛→∞

ℎ
2𝑛+2

(𝑧
𝑛
) = 𝐻(

𝑦
0

𝑔 (𝑥
0
)

) .

(32)

It follows from (31) and (32) that

𝑓
−1

(𝑥
0
, 𝑦
0
) = (

𝑦
0

𝑔 (𝑥
0
)

,𝐻(

𝑦
0

𝑔 (𝑥
0
)

)) ∈ 𝐿. (33)

Thus we have 𝑓(𝐿) = 𝑀. In a similar fashion, we can show
that 𝑓(𝑀) = 𝐿.

(ii) Since 𝑦 = ℎ
2𝑛
(𝑥) (𝑛 ≥ 1) are strictly increasing

functions, we have that 𝑦 = 𝐻(𝑥) is an increasing function.
For any 𝑥

0
> 𝑎, let

lim
𝑥→𝑥

+

0

𝐻(𝑥) = 𝑦
+

0
, lim

𝑥→𝑥
−

0

𝐻(𝑥) = 𝑦
−

0
; (34)

then 𝑦+
0
≥ 𝐻(𝑥

0
) ≥ 𝑦
−

0
.

Now we claim that 𝑦+
0
= 𝑦
−

0
. Indeed, if 𝑦+

0
> 𝑦
−

0
, then it

follows from (6) that

𝑓
2

(𝑥
0
, 𝑦
+

0
) = (𝑥

0
𝑔 (𝑦
+

0
) , 𝑦
+

0
𝑔 [𝑥
0
𝑔 (𝑦
+

0
)]) ,

𝑓
2

(𝑥
0
, 𝑦
−

0
) = (𝑥

0
𝑔 (𝑦
−

0
) , 𝑦
−

0
𝑔 [𝑥
0
𝑔 (𝑦
−

0
)]) .

(35)

So we have that

𝑥
0
𝑔 (𝑦
+

0
) < 𝑥
0
𝑔 (𝑦
−

0
) ,

𝑦
+

0
𝑔 [𝑥
0
𝑔 (𝑦
+

0
)] > 𝑦

−

0
𝑔 [𝑥
0
𝑔 (𝑦
−

0
)] .

(36)

It follows from (34) and (36) that there exist (𝑥
1
, 𝑦
1
),

(𝑥
2
, 𝑦
2
) ∈ 𝐿 such that

𝑓
2

(𝑥
1
, 𝑦
1
) = (𝑥

1
𝑔 (𝑦
1
) , 𝑦
1
𝑔 [𝑥
1
𝑔 (𝑦
1
)]) ,

𝑓
2

(𝑥
2
, 𝑦
2
) = (𝑥

2
𝑔 (𝑦
2
) , 𝑦
2
𝑔 [𝑥
2
𝑔 (𝑦
2
)]) ,

(37)

𝑥
1
𝑔 (𝑦
1
) < 𝑥
2
𝑔 (𝑦
2
) , 𝑦

1
𝑔 [𝑥
1
𝑔 (𝑦
1
)] > 𝑦

2
𝑔 [𝑥
2
𝑔 (𝑦
2
)] .

(38)

It follows from Lemma 3(i) and (37) that

(𝑥
1
𝑔 (𝑦
1
) , 𝑦
1
𝑔 [𝑥
1
𝑔 (𝑦
1
)]) , (𝑥

2
𝑔 (𝑦
2
) , 𝑦
2
𝑔 [𝑥
2
𝑔 (𝑦
2
)]) ∈ 𝐿,

(39)

and this is a contradiction. The claim is proven.
In a similar fashion, we may show that lim

𝑥→𝑎
+𝐻(𝑥) =

𝐻(𝑎) = 0. Thus 𝑦 = 𝐻(𝑥) (𝑥 ≥ 𝑎) is an increasing
continuous function. In a similar fashion, we may show that
𝑥 = 𝐺(𝑦) (𝑦 ≥ 𝑎) is an increasing continuous function.
Lemma 3 is proven.

Let

𝐿
1

= {(𝑥, 𝑦) : 𝑦 = 𝐻 (𝑥) = 0, 𝑥 ∈ [𝑎, 𝑏]} ,

𝑓 (𝐿
1

) = 𝑀
1

,

𝐿
2

= {(𝑥, 𝑦) : 𝑦 = 𝐻 (𝑥) > 0, 𝑥 ∈ (𝑏, +∞)} ,

𝑓 (𝐿
2

) = 𝑀
2

,

(40)
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where 𝑎 ∈ (0, +∞) and 𝑎 ≤ 𝑏. It follows from Lemma 2(iii)
and Lemma 3(ii) that

𝑀
1

= {(𝑥, 𝑦) : 𝑥 = 𝐺 (𝑦) = 0, 𝑦 ∈ [𝑎, 𝑏]} ,

𝑓 (𝑀
1

) = 𝐿
1

,

𝑀
2

= {(𝑥, 𝑦) : 𝑥 = 𝐺 (𝑦) > 0, 𝑦 ∈ (𝑏, +∞)} ,

𝑓 (𝑀
2

) = 𝐿
2

.

(41)

Proof of Theorem 1(2). Noting (40), we consider the following
two cases.

Case 1 (𝑎 = 𝑏). It follows from (40) that

𝐿 = 𝐿
2

∪ {(𝑎, 0)} . (42)

Let (𝑥
−1
, 𝑥
0
) ∈ 𝐿
2 and {𝑥

𝑛
}
∞

𝑛=−1
be a solution of (2) with initial

value (𝑥
−1
, 𝑥
0
); it follows from Lemma 3(i) that

(𝑥
2𝑛−1

, 𝑥
2𝑛
) = 𝑓
2𝑛

(𝑥
−1
, 𝑥
0
) ∈ 𝐿, (43)

which implies that lim
𝑛→∞

(𝑥
2𝑛−1

, 𝑥
2𝑛
) ∈ 𝐿. It follows from

(42) andTheorem 1(1) that

lim
𝑛→∞

(𝑥
2𝑛−1

, 𝑥
2𝑛
) = (𝑎, 0) . (44)

Next we claim that 𝑦 = 𝐻(𝑥) (𝑥 ≥ 𝑎) is a strictly increasing
function. Indeed, if there exists (𝑥

−1
, 𝑥
0
), (𝑦
−1
, 𝑦
0
) ∈ 𝐿 such

that 𝑦
−1
> 𝑥
−1

and 𝑥
0
= 𝑦
0
, then there exist 𝑟 ∈ (1, +∞) such

that 𝑦
−1
= 𝑟𝑥
−1
. Set

𝑓
𝑛

(𝑥
−1
, 𝑥
0
) = (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑓

𝑛

(𝑦
−1
, 𝑦
0
) = (𝑦

𝑛−1
, 𝑦
𝑛
) ,

𝑛 = 1, 2, . . . .

(45)

Then we have

𝑦
1
= 𝑦
−1
𝑔 (𝑦
0
) ≥ 𝑟𝑥

−1
𝑔 (𝑥
0
) = 𝑟𝑥

1
,

𝑦
2
= 𝑦
0
𝑔 (𝑦
1
) ≤ 𝑥
0
𝑔 (𝑥
1
) = 𝑥
2
.

(46)

Using induction, one can show that, for any 𝑛 ≥ 0,

𝑦
2𝑛−1

≥ 𝑟𝑥
2𝑛−1

, 𝑦
2𝑛
≤ 𝑥
2𝑛
. (47)

It follows from (44) and (47) that

(𝑎, 0) = lim
𝑛→∞

(𝑦
2𝑛−1

, 𝑦
2𝑛
) ̸= lim
𝑛→∞

(𝑥
2𝑛−1

, 𝑥
2𝑛
) = (𝑎, 0) .

(48)

This is a contradiction. The claim is proven.
Now let (𝑥

−1
, 𝑥
0
) ∈ 𝐷 − 𝐿 with 𝑥

0
̸= 0 and {𝑥

𝑛
}
∞

𝑛=−1
be a

solution of (2) with initial value (𝑥
−1
, 𝑥
0
).

If 𝑥
−1
< 𝑎, then it follows fromTheorem 1(1) and (2) that

lim
𝑛→∞

𝑥
2𝑛−1

< 𝑎which implies lim
𝑛→∞

(𝑥
2𝑛−1

, 𝑥
2𝑛
) ̸= (𝑎, 0).

If 𝑥
−1
≥ 𝑎 and 𝑥

0
> 𝐻(𝑥

−1
), then there exists 𝑛 ≥ 0 such

that

(𝑥
−1
, 𝑥
0
) ∈ 𝑃
𝑛
− 𝑃
𝑛+1

, (49)

from which it follows that

𝑓
2𝑛

(𝑥
−1
, 𝑥
0
) = (𝑥

2𝑛−1
, 𝑥
2𝑛
) ∈ 𝑃
0
− 𝑃
1
. (50)

Then we have 𝑥
2𝑛+1

< 𝑎, which implies
lim
𝑛→∞

(𝑥
2𝑛−1

, 𝑥
2𝑛
) ̸= (𝑎, 0).

If 𝑥
−1
≥ 𝑎 and 𝑥

0
< 𝐻(𝑥

−1
), then let 𝑦

−1
= 𝑥
−1

and 𝑦
0
=

𝐻(𝑥
−1
), and there exists 𝑟 ∈ (1, +∞) such that 𝑦

0
= 𝑟𝑥
0
. We

can show that, for any 𝑛 ≥ 1,

𝑦
2𝑛
≥ 𝑟𝑥
2𝑛
, 𝑥

2𝑛−1
≥ 𝑦
2𝑛−1

,

𝑥
2𝑛+1

𝑦
2𝑛+1

=

𝑥
2𝑛−1

𝑔 (𝑥
2𝑛
)

𝑦
2𝑛−1

𝑔 (𝑦
2𝑛
)

>

𝑥
2𝑛−1

𝑦
2𝑛−1

> ⋅ ⋅ ⋅ >

𝑥
1

𝑦
1

=

𝑥
−1
𝑔 (𝑥
0
)

𝑦
−1
𝑔 (𝑦
0
)

=

𝑔 (𝑥
0
)

𝑔 (𝑦
0
)

> 1,

(51)

which implies

lim
𝑛→∞

(𝑥
2𝑛−1

, 𝑥
2𝑛
) ̸= lim
𝑛→∞

(𝑦
2𝑛−1

, 𝑦
2𝑛
) = (𝑎, 0) . (52)

From all abovementioned, the set of initial conditions
(𝑥
−1
, 𝑥
0
) such that the positive solutions of (2) converge to

𝑎, 0, 𝑎, 0, . . . (53)

is 𝑦 = 𝐻(𝑥) (𝑥 > 𝑎).
In a similar fashion, we also may show that the set of

initial conditions (𝑥
−1
, 𝑥
0
) such that the positive solutions of

(2) converge to

0, 𝑎, 0, 𝑎, . . . (54)

is 𝑥 = 𝐺(𝑦) (𝑦 > 𝑎).

Case 2 (𝑎 < 𝑏). It follows from (41) and Case 1 that the set
of initial conditions such that the positive solutions of (2)
converge to

𝑎, 0, 𝑎, 0, . . . , or 0, 𝑎, 0, 𝑎, . . . (55)

is an empty set.This completes the proof ofTheorem 1(2).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This project was supported by NNSF of China (11261005),
NSF of Guangxi (2012GXNSFDA276040), and SF of ED of
Guangxi (2013ZD061).

References

[1] A. Janssen and D. Tjaden, “Solution to problem 86-2,” Mathe-
matical Intelligencer, vol. 9, pp. 40–43, 1987.

[2] C. Kent, “Convergence of solutions in a nonhyperbolic case,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 47, no.
7, pp. 4651–4665, 2001.



Abstract and Applied Analysis 5

[3] Q. He, T. Sun, and H. Xi, “Dynamics of a family of nonlinear
delay difference equations,” Abstract and Applied Analysis, vol.
2013, Article ID 456530, 4 pages, 2013.
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