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The problem of tracking error constrained adaptive fuzzy output feedback control is investigated for a class of single-input and
single-output (SISO) stochastic nonlinear systemswith actuator faults, unknown time-delay, andunmeasured states.The considered
faults are modeled as both loss of effectiveness and lock-in-place. The fuzzy logic systems are used to approximate the unknown
nonlinear functions, and a fuzzy adaptive observer is designed for estimating the unmeasured states. By transforming the tracking
errors into new virtual error variables and based on backstepping recursive design technique, a new fuzzy adaptive output feedback
control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the
tracking error remains an adjustable neighborhood of the origin within the prescribed bounds.The simulation results are provided
to show the effectiveness of the proposed approach.

1. Introduction

In recent years, the adaptive fuzzy or neural networks (NN)
adaptive control design methods based on Itô’s stochastic
differential equation and backstepping design technique have
been developed for some unknown stochastic nonlinear
systems; see, for example, [1–11]. Authors in [1–3] proposed
adaptive fuzzy state feedback control approaches for a class
of SISO stochastic nonlinear systems with unknown vir-
tual control gain function, unknown input saturation, and
unknown dead-zone, respectively. Authors in [4] proposed
an adaptive fuzzy backstepping control design method for
a class of stochastic pure-feedback nonlinear systems with
time-varying delays. Authors in [5] extended the results of [4]
to a class of unknown stochastic pure-feedback nonlinear sys-
tems with unknown control directions, time-varying delays,
and measurable states, while authors in [6–9] developed
adaptive fuzzy output feedback controllers for SISOuncertain
stochastic nonlinear systems with or without time-varying
delays. And also, authors in [10, 11] proposed an adaptive
fuzzy backstepping control approach for a class of uncertain

stochastic nonlinear large-scale systems with immeasurable
states.

However, the aforementioned control approaches assume
that all the components of the considered stochastic non-
linear systems are in good operating conditions. In fact,
the practical engineering always causes some faults, just
like actuators and sensors, which often degrade the control
performances and affect system stability or even catastrophic
accidents. To handle the actuator faults involved in the
considered nonlinear systems, many fault-tolerant control
(FTC) design methods have been developed (see [12–17]).
References [12, 13] proposed two adaptive fuzzy backstepping
FTC control design methods for a class of unknown SISO
nonlinear strict-feedback systems with both loss of effective-
ness and lock-in-place actuator failures, in which they utilize
fuzzy logic systems to approximate the unknown functions,
and based on the backstepping recursive technique. The
two methods not only guarantee the stability of the control
system, but also achieve good robust performance. On the
basis of the results of [12, 13], [14] proposed an adaptive
fuzzy backstepping FTC control design method for a class
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of uncertain MIMO strict-feedback nonlinear systems and
also prove the stability of the control system. However,
the above mentioned FTC control schemes require that
the state variables in the systems are measured directly. To
solve the state’s unmeasured problem, [15–17] developed two
fuzzy adaptive output feedback FTC methods for a class
of deterministic nonlinear systems and a class of stochastic
nonlinear systems with actuator faults, respectively. It should
be mentioned that although the aforementioned adaptive
fuzzy output feedback control design methods have been
developed for stochastic nonlinear systems, the unknown
time-delay and tracking error constrained are neglected,
which usually appear in many industrial control systems and
often give rise to undesirable inaccuracy or even affect system
stability.

It is worth pointing out that a design solution called
prescribed performance control has been proposed in [18] for
a class of feedback linearization nonlinear systems and was
extended to the class of nonlinear systems in [19–21]. Its main
idea is to introduce predefined performance bounds of the
tracking errors and it is able to adjust control performance
indices. However, to the author’s best knowledge, by far, the
prescribed performance design methodology has not been
applied to unknown stochastic nonlinear strict-feedback sys-
temswith unknown functions, unknown time-delay, actuator
faults, and immeasurable states, which is important andmore
practical, thus having motivated us for this study.

For the moment, there are few works to deal with such
kinds of control systems in the literature at present stage,
and few attempts have been made to pursue this novel
idea. Motivated by the aforementioned observations, in this
paper, authors proposed an adaptive fuzzy FTCmethod for a
class of stochastic nonlinear systems with the actuator faults,
immeasurable states, unknown time-delay, and tracking error
constrained. Compared with the previous adaptive fuzzy
control methods, the main advantages and contributions of
the proposed control scheme are summarized as follows.
(i) The problem of unmeasured state is solved by designing
fuzzy state observer. (ii) The considered stochastic nonlinear
systems include actuator failures and unknown time-delay.
Consequently, the proposed adaptive controller not only can
accommodate the actuator faults, but also has the robustness
to the unknown time-delay. (iii) By introducing predefined
performance, the proposed adaptive control method can not
only ensure the closed-loop system to be stable, but also
guarantee the tracking error to converge to a predefined
arbitrarily small residual set.

2. System Descriptions and Preliminaries

2.1. Stochastic Nonlinear System Descriptions and Basic As-
sumptions. Consider the following strict-feedback stochastic
nonlinear system:

𝑑𝑥
𝑖
= (𝑥

𝑖+1
+ 𝑓

𝑖
(𝑥

𝑖
) + ℎ

𝑖
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.
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𝑦 = 𝑥
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(1)

where 𝑥
𝑖
= [𝑥
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, 𝑥
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, . . . , 𝑥
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]
𝑇
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𝑥
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1
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2
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𝑚
]
𝑇
∈ R𝑚 is the input vector of the system; that

is, 𝑢
𝑖
is the output of the 𝑖th actuator,𝜛 = (𝜛

1
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2
, . . . , 𝜛

𝑚
)
𝑇
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𝑗
, 𝑗 = 1, 2, . . . , 𝑚, are known constant vectors. 𝑓

𝑖
(𝑥

𝑖
),

𝑖 = 1, 2, . . . , 𝑛, are unknown continuous nonlinear functions;
Δ

𝑖
(𝑥, 𝑡) is unknownbounded external disturbances satisfying

Δ
𝑖
(𝑥, 𝑡) ≤ Δ

∗

𝑖
(𝑥, 𝑡), with Δ∗

𝑖
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𝑖
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𝑖
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(𝑡 − 𝜏

𝑖
(𝑡))), 1 ≤ 𝑖 ≤ 𝑛,

are unknown smooth nonlinear functions, and 𝜏
𝑖
(𝑡) is an

unknown time-delay with ̇𝜏
𝑖
(𝑡) ≤ 𝜏

∗
≤ 1, 1 ≤ 𝑖 ≤ 𝑛. 𝑤 ∈ R

is an independent 𝑟-dimensional Wiener process defined on
a complete probability space with the incremental covariance
𝐸{𝑑𝑤 ⋅ 𝑑𝑤

𝑇

𝑗
} = 𝜎(𝑡)𝜎(𝑡)

𝑇
𝑑𝑡. In this paper, it is assumed that

only output 𝑦 is available for measurement.
The actuator faults considered in this paper are both lock-

in-place and loss of effectiveness, which were defined by [12–
17] as follows.

Lock-in-Place Model ([12–14]). Consider the following:

𝑢
𝑖 (𝑡) = 𝑢𝑖

, 𝑡 ≥ 𝑡
𝑖
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1
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2
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𝑝
} ⊂ {1, 2, . . . , 𝑚} .

(2)

Loss of Effectiveness Model ([12–14]). Consider the following:

𝑢
𝑖 (𝑡) = 𝜂𝑖

V
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𝑖
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2
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𝑝
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𝜂
𝑖
∈ [𝜂

𝑖
, 1] , 0 < 𝜂

𝑖
≤ 1,

(3)

where 𝑢
𝑖
is the constant value where the actuator stuck at

and 𝑡
𝑖
are the time instants when some faults take place. 𝜂

𝑖
is

the still effective proportion of the actuator after losing some
effectiveness, and 𝜂

𝑖
is the lower bound of 𝜂

𝑖
. When 𝜂

𝑖
is 1, the

corresponding actuator is normal (no fault happens).
Taking the actuator faults (2) and (3) into account, the

input vector can be written as

𝑢 (𝑡) = 𝜌V (𝑡) + 𝜎 (𝑢 − 𝜌V (𝑡)) , (4)

where V(𝑡) = [V
1
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2
(𝑡), . . . , V

𝑚
(𝑡)]

𝑇 is the applied control
vector. 𝑢 = [𝑢

1
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2
, . . . , 𝑢

𝑚
]
𝑇 with 𝑢

𝑗
, 𝑗 = 1, 2, . . . , 𝑚, are

constant values, and
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1
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1
, 𝜎

2
, . . . , 𝜎

𝑚
}

(5)

with

𝜎
𝑗
= {

1, if the 𝑖th actuator fails as (2) , that is, 𝑢𝑗
= 𝑢

𝑗

0, otherwise.
(6)
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Our control objective is to design an adaptive fuzzy
output feedback FTC scheme for the system (1) to ensure
that all the signals in the closed-loop system are bounded in
probability and the output 𝑦(𝑡) can track the given reference
signal 𝑦

𝑟
(𝑡) with the given prescribed performance bounds.

To this end, the following assumptions are made for the
proposed control designs.

Assumption 1 (see [4–6]). Nonlinear function ℎ
𝑖
satisfies the

following inequalities for 𝑖 = 1, 2, . . . , 𝑛:

ℎ𝑖
(𝑥

𝑖
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2
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(𝜒
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𝑟 (𝑡)) + 𝜛𝑖
, (7)

where 𝐻
𝑖2
(⋅) is a known function, ℎ

𝑖2
is bounded function

with ℎ
𝑖2
(0) = 0, and 𝜛

𝑖
is positive scalars; 𝜒

1
is referred to

as a virtual error variable, which will be designed later.

Assumption 2. Assume that functions 𝑓
𝑖
(⋅) satisfy the global

Lipschitz condition; that is, there exist known constants 𝑚
𝑖
,

𝑖 = 1, 2, . . . , 𝑛 such that, for all 𝑋
1
, 𝑋

2
∈ R𝑖, the following

inequalities hold:

𝑓𝑖
(𝑋

1
) − 𝑓

𝑖
(𝑋

2
)
 ≤ 𝑚𝑖

𝑋1
− 𝑋

2

 , (8)

where ‖𝑋‖ denotes the 2-norm of a vector𝑋.

Assumption 3 (see [12–17]). System (1) requires that for any
up to𝑚− 1 actuators which fail as (2) and the other(s) which
may lose effectiveness as (3), the resulting system can still
achieve the desired control objective.

Assumption 4 (see [22]). The disturbance covariance
𝑔

𝑇
𝜎𝜎

𝑇
𝑔 = 𝜎𝜎

𝑇 is bounded, where 𝑔 = [𝑔
1
, . . . , 𝑔

𝑛
]
𝑇 is 𝑟 × 𝑛

matrix-valued function.

2.2. Fuzzy Logic Systems. A fuzzy logic system (FLS) consists
of four parts: the knowledge base, the fuzzifier, the fuzzy
inference engine working on fuzzy rules, and the defuzzifier.
The knowledge base for FLS comprises a collection of fuzzy
If-then rules of the following form:

𝑅
𝑙: If 𝑥

1
is 𝐹𝑙

1
and 𝑥

2
is 𝐹𝑙

2
and . . . and 𝑥

𝑛
is 𝐹𝑙

𝑛
,

Then 𝑦 is 𝐺𝑙
, 𝑙 = 1, 2, . . . , 𝑁,

(9)

where𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 and𝑦 are the fuzzy logic system input

and output, respectively. Fuzzy sets 𝐹𝑙

𝑖
and 𝐺𝑙 associate with

the fuzzy functions 𝜇
𝐹
𝑙

𝑖

(𝑥
𝑖
) and 𝜇

𝐺
𝑙(𝑦), respectively. 𝑁 is the

rule number of IF-THEN.
Through singleton function, center average defuzzifica-

tion, and product inference [23], the fuzzy logic system can
be expressed as
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∏
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where 𝑦
𝑙
= max

𝑦∈𝑅
𝜇

𝐺
𝑙(𝑦).

Define the fuzzy basis functions as

𝜑
𝑙
=

∏
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𝐹
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Denoting 𝜃
𝑇

= [𝑦
1
, 𝑦

2
, . . . , 𝑦

𝑁
] = [𝜃

1
, 𝜃

2
, . . . , 𝜃

𝑁
] and

𝜑(𝑥) = [𝜑
1
(𝑥), . . . , 𝜑

𝑁
(𝑥)]

𝑇, then fuzzy logic system (10) can
be rewritten as

𝑦 (𝑥) = 𝜃
𝑇
𝜉 (𝑥) . (12)

Lemma 5 (see [23]). Let 𝑓(𝑥) be a continuous function
defined on a compact set Ω. Then for any constant 𝜀 > 0, there
exists a fuzzy logic system (14) such that

sup
𝑥∈Ω


𝑓 (𝑥) − 𝜃

𝑇
𝜑 (𝑥)


≤ 𝜀. (13)

2.3. Performance Function and Error Transformation. This
section introduces preliminary knowledge on the prescribed
performance concepts reported in [20, 21]. According to [20,
21], the prescribed performance is achieved by ensuring that
tracking error 𝑧

1
(𝑡) = 𝑦−𝑦

𝑟
evolves strictly within predefined

decaying bounds as follows:

−𝛿
1min 𝜇1 (𝑡) < 𝑧1 (𝑡) < 𝛿1max 𝜇1 (𝑡) , ∀𝑡 ≥ 0, (14)

where 𝛿
1min and 𝛿

1max are design constants and the
performance functions 𝜇

1
(𝑡) are bounded and strictly

positive decreasing smooth functions with the property
lim

𝑡→∞
𝜇

1
(𝑡) = 𝜇

1,∞
; 𝜇

1,∞
> 0 is a constant. The

performance functions are chosen as the exponential form
𝜇

1
(𝑡) = (𝜇

1,0
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1,∞
)𝑒

−𝑛1𝑡 + 𝜇
1,∞
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1
, 𝜇

1,0
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1,∞

are strictly positive constants, 𝜇
1,0

> 𝜇
1,∞

, and 𝜇
1,0

= 𝜇
1
(0)

is selected such that −𝛿
1min𝜇1

(0) < 𝑧
1
(0) < 𝛿

1max𝜇1
(0) is

satisfied. Furthermore, the maximum overshoot of 𝑧
1
(𝑡) is

prescribed less than max{𝛿
1min𝜇1

(0), 𝛿
1max𝜇1

(0)}. Therefore,
choosing the performance function 𝜇

1
(𝑡) and the constants

𝛿
1min and 𝛿

1max appropriately determines the performance
bounds of the error 𝑧

1
(𝑡).

To represent (14) by an equality form, we employ an error
transformation as

𝑧
1
= 𝜇

1 (𝑡) Φ1
(𝜁

1 (𝑡)) , ∀𝑡 ≥ 0, (15)

where Φ
1
(𝜁

1
) = (𝛿

1max𝑒
𝜁1 − 𝛿

1min𝑒
−𝜁1)/(𝑒

𝜁1 + 𝑒
−𝜁1), 𝜁

1
(𝑡) =

Φ
−1
(𝑧

1
(𝑡)/𝜇

1
(𝑡)) = (1/2) ln((Φ

1
− 𝛿

1min)/(𝛿1max − Φ1
)), and

̇𝜁
1
(𝑡) = 𝑝

1
(�̇�

1
−(�̇�

1
𝑧
1
/𝜇

1
)), with𝑝

1
= (1/2𝜇

1
)[1/(Φ

1
+𝛿

1min)−
1/(Φ

1
− 𝛿

1max)].
For the output feedback control design of the nonlinear

system, we design the following state transformation:

𝜒
1 (𝑡) = 𝜁1 (𝑡) −

1

2
ln 𝛿

1min
𝛿
1max

. (16)

And the transformation state dynamics is

̇𝜒
1 (𝑡) = 𝑝1

(�̇�
1
−
�̇�

1
𝑧
1

𝜇
1

) . (17)
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3. Fuzzy State Observer Design

Note that, in the system (1), the states 𝑥
2
, . . . , 𝑥

𝑛
are not

measured directly; thus a state observer should be established
to obtain the estimations of 𝑥

2
, . . . , 𝑥

𝑛
.

Rewrite (1) in the following form:

𝑑𝑥 = (𝐴𝑥 + 𝐾𝑦 +

𝑛

∑

𝑖=1

𝐵
𝑖
(𝑓

𝑖
(𝑥

𝑖
) + Δ

𝑖
+ ℎ

𝑖
) + 𝐵𝜛

𝑇
𝑢)𝑑𝑡

+ 𝑔 (𝑥) 𝑑𝑤

= (𝐴𝑥+𝐾𝑦+

𝑛

∑

𝑖=1

𝐵
𝑖
(𝑓

𝑖
(𝑥

𝑖
) + Δ𝑓

𝑖
+ Δ

𝑖
+ ℎ

𝑖
)+𝐵𝜛

𝑇
𝑢)𝑑𝑡

+ 𝑔 (𝑥) 𝑑𝑤,

𝑦 = 𝐶𝑥,

(18)

where 𝐾 = [ 𝑘1 , 𝑘2 , ..., 𝑘𝑛 ]
𝑇, 𝐵

𝑖
= [ 0 ⋅⋅⋅ 1 ⋅⋅⋅ 0 ]

𝑇, 𝐵 =

[ 0 ⋅⋅⋅ 0 ⋅⋅⋅ 1 ]
𝑇, 𝑔(𝑥) = [ 𝑔1, ..., 𝑔𝑛 ]

𝑇, 𝐶 = [ 1 ⋅⋅⋅ 0 ⋅⋅⋅ 0 ], Δ𝑓
𝑖
=

𝑓
𝑖
(𝑥

𝑖
) − 𝑓

𝑖
(𝑥

𝑖
), and 𝐴 = [

−𝑘1

.

.

. 𝐼

−𝑘𝑛 0⋅⋅⋅0

].

Given a positive definite matrix 𝑄 = 𝑄
𝑇
> 0 and an

appropriate constant 𝛽 > 0, choose vector 𝐾 satisfying the
following matrix inequality:

𝐴
𝑇
𝑃 + 𝑃𝐴 + (4 +

𝑛

2
+ 𝛽

𝑛

∑

𝑖=1

𝑚
2

𝑖
)𝐼 +

1

𝛽
𝑃𝑃

𝑇
< −𝑄, (19)

where 𝑃 = 𝑃
𝑇
> 0 is a positive definite matrix.

The matrix inequality (19) is widely used in 𝑇-𝑆 fuzzy
system control design. To solve positive definite matrix and
vector 𝐾 from (19), the matrix 𝐴 = 𝐴 + 𝐾𝐷 need be
decomposed into 𝐴 = [

0 𝐼𝑛−1

0 0
] and𝐷 = [ −1 0 ⋅⋅⋅ 0 ].

Then, (19) can be transformed into a standard linear
matrix inequality (LMIs):

[
𝐸 𝑃

𝑃 − 𝛽𝐼
] < 0, (20)

where𝐸 = (𝐴
𝑇

𝑃+𝑃𝐴+𝐷
𝑇
𝑁

𝑇
+𝑁𝐷)+(4+(𝑛/2)+𝛽∑

𝑛

𝑖=1
𝑚

2

𝑖
)𝐼+

𝑄, 𝑁 = 𝑃𝐾. By using LMIs (20), we can obtain 𝑃 and 𝑁.
Furthermore, the matrix 𝐾 can be computed as 𝐾 = 𝑃

−1
𝑁

[4–6].
By Lemma 5, we can assume that nonlinear terms 𝑓

𝑖
(𝑥

𝑖
),

𝑖 = 1, 2, . . . , 𝑛, in (14) can be approximated by the following
fuzzy logic systems:

𝑓
𝑖
(𝑥

𝑖
| 𝜃

𝑖
) = 𝜃

𝑇

𝑖
𝜑 (𝑥

𝑖
) , (21)

where 𝑥
𝑖
= (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑖
)
𝑇 is the estimation of 𝑥

𝑖
=

(𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑖
)
𝑇.

Define the optimal parameter vectors 𝜃∗

𝑖
as

𝜃
∗

𝑖
= argmin

𝜃𝑖∈Ω𝑖

[

[

sup
�̂�𝑖∈𝑈𝑖


𝑓

𝑖
(𝑥

𝑖
| 𝜃

𝑖
) − 𝑓

𝑖
(𝑥

𝑖
)

]

]

, (22)

where Ω
𝑖
and 𝑈

𝑖
are bounded compact sets for 𝜃

𝑖
and 𝑥

𝑖
,

respectively. Also, the fuzzy minimum approximation error
𝜀
𝑖
is defined as

𝜀
𝑖
= 𝑓

𝑖
(𝑥

𝑖
) − 𝑓

𝑖
(𝑥

𝑖
| 𝜃

∗

𝑖
) , (23)

where 𝜀
𝑖
satisfies |𝜀

𝑖
| ≤ 𝜀

∗

𝑖
, with 𝜀∗

𝑖
being a positive constant.

The state observer for (18) is designed as

̇̂𝑥 = 𝐴𝑥 + 𝐾𝑦 +

𝑛

∑

𝑖=1

𝐵
𝑖
𝑓

𝑖
(𝑥

𝑖
| 𝜃

𝑖
) + 𝐵𝜛

𝑇
𝑢,

𝑦 = 𝐶𝑥.

(24)

Let 𝑒 = 𝑥−𝑥 be the observer error vector.Then from (18) and
(24), we have the observer error equation

𝑑𝑒 = (𝐴𝑒 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝑓

𝑖
(𝑥

𝑖
) − 𝑓

𝑖
(𝑥

𝑖
| 𝜃

𝑖
) + Δ𝑓

𝑖
+ Δ

𝑖
+ ℎ

𝑖
])𝑑𝑡

+ 𝑔 (𝑥) 𝑑𝑤

= (𝐴𝑒 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝜃

𝑇

𝑖
𝜑

𝑖
(𝑥

𝑖
) + 𝜀

𝑖
+ Δ𝑓

𝑖
+ Δ

𝑖
+ ℎ

𝑖
])𝑑𝑡

+ 𝑔 (𝑥) 𝑑𝑤,

(25)

where 𝜃
𝑖
= 𝜃

∗

𝑖
− 𝜃

𝑖
is the parameter error vector.

Theorem6. Consider the following Lyapunov candidate𝑉
0
for

the observer error system (25):

𝑉
0
= 𝑒

𝑇
𝑃𝑒. (26)

Then ℓ𝑉
0
is bounded by

ℓ𝑉
0
≤ 𝑒

𝑇
(𝐴

𝑇
𝑃 + 𝑃𝐴) 𝑒 + (4 + ‖𝑃‖

2

𝑛

∑

𝑖=1

𝑚
2

𝑖
)‖𝑒‖

2

+

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
+ 𝑑

0

+

𝑛

∑

𝑖=1

𝜒
1
(𝑡 − 𝜏

𝑖 (𝑡))𝐻𝑖2
(𝜒

1
(𝑡 − 𝜏

𝑖 (𝑡))) ,

(27)

where 𝑑
0
= (1/2)|𝜎𝜎

𝑇
|
2

+‖𝑃‖
2
(1/2+‖𝜀

∗
‖
2
+‖Δ

∗
‖
2
)+∑

𝑛

𝑖=1
𝑑

∗

𝑖
.

Proof. See the Appendix.

4. Fault-Tolerant Control Design and
Stability Analysis

In this section, an adaptive fuzzy fault-tolerant control
scheme will be developed by using the above fuzzy state
observer and the backstepping technique [24, 25], and the sta-
bility of the closed-loop system will be given.
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According to [12–14], we choose the following special
control structure:

V
𝑗
= 𝑏

𝑗
(𝑥

𝑛
) 𝑢

0
, (28)

where 0 ≤ 𝑏
𝑗
≤ 𝑏

𝑗
(𝑥

𝑛
) ≤ 𝑏

𝑗
, for all 𝑥

𝑛
∈ Ω

𝑛
⊂ 𝑅

𝑛,
𝑗 = 1, 2, . . . , 𝑚; 𝑏

𝑗
and 𝑏

𝑗
are the lower and upper bounds

of 𝑏
𝑗
(𝑥

𝑛
), respectively. 𝑢

0
is the final controller to be designed

by the backstepping technique as follows.
The 𝑛-step adaptive fuzzy output feedback backstepping

FTC design is based on the following changes of coordinates:

𝜒
1
= 𝜒

1
, (29)

𝜒
𝑖
= 𝑥

𝑖
− 𝛼

𝑖−1
, 𝑖 = 2, . . . , 𝑛, (30)

where 𝛼
𝑖−1

are the virtual control functions to be designed
later.

Step 1. From (1), (17), and (29), one has

𝑑𝜒
1
= 𝑝

1
(𝑥

2
+ 𝑓

1
(𝑥

1
) + Δ

1 (𝑥, 𝑡)

+ ℎ
1
(𝑥

1
(𝑡 − 𝜏

1 (𝑡))) − ̇𝑦
𝑟
−
�̇�

1
𝑧
1

𝜇
1

)𝑑𝑡

+ 𝑔
1 (𝑥) 𝑑𝑤

= 𝑝
1
(𝑥

2
+ 𝑒

2
+ 𝜃

𝑇

1
𝜑 (𝑥

1
) + 𝜃

𝑇

1
𝜑 (𝑥

1
)

+ 𝜀
1
+ Δ𝑓

1
+ Δ

1 (𝑥, 𝑡)

+ ℎ
1
(𝑥

1
(𝑡−𝜏

1 (𝑡)))− ̇𝑦
𝑟
−
�̇�

1
𝑧
1

𝜇
1

)𝑑𝑡 + 𝑔
1 (𝑥) 𝑑𝑤.

(31)

By using (21), (24) can be rewritten as

𝑑𝜒
1
= 𝑝

1
(𝜒

2
+ 𝛼

1
+ 𝑒

2
+ 𝜃

𝑇

1
𝜑 (𝑥

1
) + 𝜃

𝑇

1
𝜑 (𝑥

1
)

+ 𝜀
1
+ Δ𝑓

1
+ Δ

1 (𝑥, 𝑡)

+ ℎ
1
(𝑥

1
(𝑡−𝜏

1 (𝑡)))− ̇𝑦
𝑟
−
�̇�

1
𝑧
1

𝜇
1

)𝑑𝑡 + 𝑔
1 (𝑥) 𝑑𝑤.

(32)

Consider the following Lyapunov function candidate:

𝑉
1
= 𝑉

0
+
𝜒

2

1

2
+

1

2𝛾
1

𝜃
𝑇

1
𝜃
1
+𝑊

1
+ 𝑉

1
, (33)

where 𝛾
1

> 0 is a design parameter. 𝑊
1

= (𝑒
𝑟𝜏
/2(1 −

𝜏
∗
))𝑒

−𝑟𝑡
∫

𝑡

𝑡−𝜏1(𝑡)
𝑒
𝑟𝜁
𝜒

1
(𝜁)𝐻

12
(𝜒

1
(𝜁))𝑑𝜁 and 𝑉

1
= (𝛽𝑒

𝑟𝜏
/(1 −

𝜏
∗
)) ∑

𝑛

𝑖=1
𝑒
−𝑟𝑡

∫
𝑡

𝑡−𝜏𝑖(𝑡)
𝑒
𝑟𝜁
𝜒

1
(𝜁)𝐻

𝑖2
(𝜒

1
(𝜁))𝑑𝜁 in which 𝑟 > 0 and

𝜏 ≥ 0max{𝜏
1
(𝑡), . . . , 𝜏

𝑛
(𝑡)} are known constants.

From (25) and (27), the infinitesimal generator of 𝑉
1

satisfies

ℓ𝑉
1
= ℓ𝑉

0
+ 𝜒

1
𝑝

1

× (𝜒
2
+ 𝛼

1
+ 𝑒

2
+ 𝜃

𝑇

1
𝜑 (𝑥

1
)

+ 𝜃
𝑇

1
𝜑 (𝑥

1
) + 𝜀

1
+ Δ𝑓

1
+ Δ

1 (𝑥, 𝑡)

+ ℎ
1
(𝑥

1
(𝑡 − 𝜏

1 (𝑡))) − ̇𝑦
𝑟
−
�̇�

1
𝑧
1

𝜇
1

)

+
1

2
𝑔

𝑇

1
𝜎𝜎

𝑇
𝑔

1
−
1

𝛾
1

𝜃
𝑇

1
̇𝜃
1
+ �̇�

1
.

(34)

By using Young’s inequality, one can obtain

𝜒
1
𝑝

1
(𝜒

2
+ 𝑒

2
+ 𝜀

1
+ Δ

1 (𝑥, 𝑡))

≤ 2𝜒
2

1
𝑝

2

1
+
1

4
+
1

4
𝜒

4

2
+
1

2
‖𝑒‖

2
+
1

2
Δ

∗2

1
+
1

2
𝜀
∗2

1
.

(35)

By using Assumption 4 and Young’s inequality, one has

𝜒
1
𝑝

1
ℎ

1
(𝑥

1
(𝑡 − 𝜏

1 (𝑡)))

≤
1

2
𝜒

2

1
𝑝

2

1
+
1

2
𝜒

1
(𝑡 − 𝜏

1 (𝑡))𝐻12
(𝜒

1
(𝑡 − 𝜏

1 (𝑡))) + 𝑑
∗

1
,

(36)

where 𝑑∗

1
is a constant with 𝑑∗

1
≥ ℎ

12
(𝑦

𝑟
(𝑡 − 𝜏

1
(𝑡))) + (1/2)𝜛

1
.

By using Assumption 4 and Young’s inequality, one can
obtain the following inequality:

1

2
𝑔

𝑇

1
𝜎𝜎

𝑇
𝑔

1
≤
1

4
+
1

4


𝜎𝜎

𝑇

2

. (37)

It is noticed that

�̇�
1
≤ − 𝑟𝑊

1
+

𝑒
𝑟𝜏

2 (1 − 𝜏∗)
𝜒

1
𝐻

12
(𝜒

1
)

−
1

2
𝜒

1
(𝑡 − 𝜏

1 (𝑡))𝐻12
(𝜒

1
(𝑡 − 𝜏

1 (𝑡))) ,

̇
𝑉

1
≤

1
− 𝑟𝑉

1
− 𝛽

𝑛

∑

𝑖=1

𝜒
1
(𝑡 − 𝜏

𝑖 (𝑡))𝐻𝑖2
(𝜒

1
(𝑡 − 𝜏

𝑖 (𝑡))) .

(38)

Substituting (29)–(32) into (28) yields

ℓ𝑉
1
= 𝜒

1
𝑝

1
(𝛼

1
+ 𝜃

𝑇

1
𝜑 (𝑥

1
) +

5

2
𝜒

1
𝑝

1

+
𝑒
𝑟𝜏

2𝑝
1 (1 − 𝜏

∗)
𝐻

12
(𝜒

1
) − ̇𝑦

𝑟
−
�̇�

1
𝑧
1

𝜇
1

)

+
1

4
𝜒

4

2
+ 𝑒

𝑇
(𝐴

𝑇
𝑃 + 𝑃𝐴) 𝑒

+ (4 +
1

2
+ ‖𝑃‖

2

𝑛

∑

𝑖=1

𝑚
2

𝑖
)‖𝑒‖

2

− 𝜃
𝑇

1
(

̇𝜃
1

𝛾
1

− 𝜑 (𝑥
1
) 𝜒

1
) +

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
+ 𝑑

1
− 𝑟𝑊

1
,

(39)
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where𝑑
1
= 𝑑

0
+𝑑

∗

1
+(1/2)𝜀

∗2

1
+(3/4)+(1/4)|𝜎𝜎

𝑇
|
2

+(1/2)Δ
∗2

1
+

(1/2)𝜀
∗2

1
.

Choose the intermediate control function, 𝛼
1
, and the

adaptation law for 𝜃
1
as follows:

𝛼
1
= − 𝑐

1
𝜒

1
𝑝

1
− 𝜃

𝑇

1
𝜑 (𝑥

1
) −

5

2
𝜒

1
𝑝

1

−
𝑛𝑒

𝑟𝜏

2𝑝
1 (1 − 𝜏

∗)
𝐻

12
(𝜒

1
) + ̇𝑦

𝑟
+
�̇�

1
𝑧
1

𝜇
1

−
𝛽𝑒

𝑟𝜏

𝑝
1 (1 − 𝜏

∗)

𝑛

∑

𝑖=1

𝐻
𝑖2
(𝜒

1
) ,

(40)

̇𝜃
1
= 𝛾

1
𝜑 (𝑥

1
) 𝜒

1
− 𝜎

1
𝜃
1
, (41)

where 𝑐
1
> 0 and 𝜎

1
> 0 are design parameters.

Substituting (34)–(36) into (33), one has

ℓ𝑉
1
= 𝑒

𝑇
(𝐴

𝑇
𝑃 + 𝑃𝐴) 𝑒 + (4 +

1

2
+ ‖𝑃‖

2

𝑛

∑

𝑖=1

𝑚
2

𝑖
)‖𝑒‖

2

− 𝑐
1
𝑝

2

1
𝜒

2

1
+
1

4
𝜒

4

2
+
𝜎

1

𝛾
1

𝜃
𝑇

1
𝜃
1

+

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
−
(𝑛 − 1) 𝜒1

𝑒
𝑟𝜏

2 (1 − 𝜏∗)
𝐻

12
(𝜒

1
) + 𝑑

1
− 𝑟𝑊

1
.

(42)

Step i (2 ≤ 𝑖 ≤ 𝑛− 1). From (14) and (21) and similar to Step 1,
one has

𝑑𝜒
𝑖
= (𝑥

𝑖+1
+ 𝑓

𝑖
(𝑥

𝑖
| 𝜃

𝑖
) + 𝑘

𝑖
(𝑥

1
− 𝑥

1
)) 𝑑𝑡 −

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜃
𝑗

̇𝜃
𝑗
𝑑𝑡

−
𝜕𝛼

𝑖−1

𝜕𝑦
𝑑𝑦 −

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

𝑑𝑥
𝑗

= (𝛼
𝑖
+ 𝜒

𝑖+1
+ 𝐻

𝑖
−
𝜕𝛼

𝑖−1

𝜕𝑦

×(𝑒
2
+ 𝜃

𝑇

1
𝜑(𝑥

1
) + 𝜀

1
+ Δ

1(𝑥, 𝑡) + ℎ1
(𝑥

1
(𝑡 − 𝜏

1 (𝑡)))

−
1

2

𝜕
2
𝛼

𝑖−1

𝜕𝑦2
𝑔

𝑇

1
𝜎𝜎

𝑇
𝑔

1
))𝑑𝑡 −

𝜕𝛼
𝑖−1

𝜕𝑦
𝑔

1 (𝑥) 𝑑𝑤,

(43)

where 𝐻
𝑖

= 𝜃
𝑇

𝑖
𝜑(𝑥

𝑖
) + (𝑘

𝑖
− ∑

𝑖−1

𝑗=1
(𝜕𝛼

𝑖−1
/𝜕𝑥

𝑗
)𝑘

𝑗
)(𝑥

1
−

𝑥
1
) − ∑

𝑖−1

𝑗=1
(𝜕𝛼

𝑖−1
/𝜕𝜃

𝑗
) ̇𝜃

𝑗
− (𝜕𝛼

𝑖−1
/𝜕𝑦)(𝑥

2
+ 𝜃

𝑇

1
𝜑(𝑥

1
)) −

∑
𝑖−1

𝑗=1
(𝜕𝛼

𝑖−1
/𝜕𝑥

𝑗
)(𝑥

𝑗+1
+ 𝑓

𝑗
(𝑥

𝑗
| 𝜃

𝑗
)).

Consider the following Lyapunov function:

𝑉
𝑖
= 𝑉

𝑖−1
+
𝜒

4

𝑖

4
+

1

2𝛾
𝑖

𝜃
𝑇

𝑖
𝜃
𝑖
+𝑊

1
, (44)

where 𝛾
𝑖
> 0 is the design parameter.

From (43) and (44), the infinitesimal generator of 𝑉
𝑖
can

be shown as follows:

ℓ𝑉
𝑖
= ℓ𝑉

𝑖−1
+ 𝜒

3

𝑖
̇𝜒
𝑖
−
1

𝛾
𝑖

𝜃
𝑇

𝑖
̇𝜃
𝑖
+ �̇�

1

≤ ℓ𝑉
𝑖−1

+ 𝜒
3

𝑖
(𝛼

𝑖
+ 𝜒

𝑖+1
+ 𝜃

𝑇

𝑖
𝜑 (𝑥

𝑖
)

− 𝜃
𝑇

𝑖
𝜑 (𝑥

𝑖
) + 𝐻

𝑖
−
𝜕𝛼

𝑖−1

𝜕𝑦

× (𝑒
2
+ 𝜃

𝑇

1
𝜑 (𝑥

1
)

+ 𝜀
1
+ Δ

1 (𝑥, 𝑡) + ℎ1
(𝑥

1
(𝑡 − 𝜏

1 (𝑡)))

−
1

2

𝜕
2
𝛼

𝑖−1

𝜕𝑦2
𝑔

𝑇

1
𝜎𝜎

𝑇
𝑔

1
))

+
3

2
𝜒

2

𝑖
(
𝜕𝛼

𝑖−1

𝜕𝑦
)

2

𝑔
𝑇

1
𝜎𝜎

𝑇
𝑔

1

−
1

𝛾
𝑖

𝜃
𝑇

𝑖
̇𝜃
𝑖
− 𝑟𝑊

1
+

𝑒
𝑟𝜏

2 (1 − 𝜏∗)
𝜒

1
𝐻

12
(𝜒

1
)

−
1

2
𝜒

1
(𝑡 − 𝜏

1 (𝑡))𝐻12
(𝜒

1
(𝑡 − 𝜏

1 (𝑡))) .

(45)

By using Young’s inequality, one can obtain

𝜒
3

𝑖
(𝜒

𝑖+1
− 𝜃

𝑇

𝑖
𝜑 (𝑥

𝑖
)) ≤

3

4
𝜒

4

𝑖
+
1

4
𝜒

4

𝑖+1
+
1

2
𝜒

6

𝑖
+
1

2
𝜃
𝑇

𝑖
𝜃
𝑖
. (46)

Then by applying Assumptions 1 and 3, one has the following
inequalities:

− 𝜒
3

𝑖

𝜕𝛼
𝑖−1

𝜕𝑦
(𝑒

2
+ 𝜃

𝑇

1
𝜑 (𝑥

1
) + 𝜀

1
+ Δ

1 (𝑥, 𝑡)

+ ℎ
1
(𝑥

1
(𝑡 − 𝜏

1 (𝑡))) )

≤
1

2
‖𝑒‖

2
+
5

2
(
𝜕𝛼

𝑖−1

𝜕𝑦
)

2

𝜒
6

𝑖
+
1

2
𝜃
𝑇

1
𝜃
1
+
1

2
𝜀
∗2

1
+
1

2
Δ

∗2

1

+
1

2
𝜒

1
(𝑡 − 𝜏

1 (𝑡))𝐻12
(𝜒

1
(𝑡 − 𝜏

1 (𝑡))) + 𝑑
∗

1

(47)

−
1

2
𝜒

3

𝑖

𝜕
2
𝛼

𝑖−1

𝜕𝑦2
𝑔

𝑇

1
𝜎𝜎

𝑇
𝑔

1
+
3

2
𝜒

2

𝑖
(
𝜕𝛼

𝑖−1

𝜕𝑦
)

2

𝑔
𝑇

1
𝜎𝜎

𝑇
𝑔

1

≤
1

4
𝜒

6

𝑖
(
𝜕
2
𝛼

𝑖−1

𝜕𝑦2
)

2

+
3

4
𝜒

4

𝑖
(
𝜕𝛼

𝑖−1

𝜕𝑦
)

4

+

𝜎𝜎

𝑇
.

(48)
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Substituting (46)–(48) into (45), one has

ℓ𝑉
𝑖
≤ 𝜒

3

𝑖
(𝛼

𝑖
+ 𝜒

𝑖
+
5

2
(
𝜕𝛼

𝑖−1

𝜕𝑦
)

2

𝜒
3

𝑖
+
1

2
𝜒

3

𝑖

+
1

4
𝜒

3

𝑖
(
𝜕
2
𝛼

𝑖−1

𝜕𝑦2
)

2

+
3

4
𝜒

𝑖
(
𝜕𝛼

𝑖−1

𝜕𝑦
)

4

+ 𝐻
𝑖
)

− 𝜃
𝑇

𝑖
(

̇𝜃
𝑖

𝛾
𝑖

− 𝜑 (𝑥
𝑖
) 𝜒

3

𝑖
) +

𝑖 − 1

2
𝜃
𝑇

1
𝜃
1
+
1

4
𝜒

4

𝑖+1

+ 𝑒
𝑇
(𝐴

𝑇
𝑃 + 𝑃𝐴) 𝑒 − 𝑐

1
𝜒

2

1
−

𝑖−1

∑

𝑗=2

𝑐
𝑗
𝜒

4

𝑗

+ (4 +
𝑖

2
+ ‖𝑃‖

2

𝑛

∑

𝑖=1

𝑚
2

𝑖
)‖𝑒‖

2

+
1

2

𝑖

∑

𝑗=2

𝜃
𝑇

𝑗
𝜃
𝑗
+

𝑖−1

∑

𝑗=1

𝜎
𝑗

𝛾
𝑗

𝜃
𝑇

𝑗
𝜃
𝑗
+

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖

−
(𝑛 − 𝑖) 𝜒1

𝑒
𝑟𝜏

2 (1 − 𝜏∗)
𝐻

12
(𝜒

1
) − 𝑖𝑟𝑊

1
+ 𝑑

𝑖
,

(49)

where 𝑑
𝑖
= 𝑑

𝑖−1
+ (1/2)𝜀

∗2

1
+ |𝜎𝜎

𝑇
| + (1/2)Δ

∗2

1
+ 𝑑

∗

1
.

Choose the intermediate control function, 𝛼
𝑖
, and the

adaptation law for 𝜃
𝑖
as

𝛼
𝑖
= − 𝑐

𝑖
𝜒

𝑖
− 𝜒

𝑖
−
5

2
(
𝜕𝛼

𝑖−1

𝜕𝑦
)

2

𝜒
3

𝑖

−
1

2
𝜒

3

𝑖
−
1

4
𝜒

3

𝑖
(
𝜕
2
𝛼

𝑖−1

𝜕𝑦2
)

2

−
3

4
𝜒

𝑖
(
𝜕𝛼

𝑖−1

𝜕𝑦
)

4

− 𝐻
𝑖
,

(50)

̇𝜃
𝑖
= 𝛾

𝑖
𝜑 (𝑥

𝑖
) 𝜒

3

𝑖
− 𝜎

𝑖
𝜃
𝑖
, (51)

where 𝑐
𝑖
> 0 and 𝜎

𝑖
> 0 are design parameters.

Substituting (50)-(51) into (49) yields

ℓ𝑉
𝑖
≤
𝑖 − 1

2
𝜃
𝑇

1
𝜃
1
+
1

2
𝑦

2
+
1

4
𝜒

4

𝑖+1

+ 𝑒
𝑇
(𝐴

𝑇
𝑃 + 𝑃𝐴) 𝑒 + (4 +

𝑖

2
+ ‖𝑃‖

2

𝑛

∑

𝑖=1

𝑚
2

𝑖
)‖𝑒‖

2

− 𝑐
1
𝑝

2

1
𝜒

2

1
−

𝑖

∑

𝑗=2

𝑐
𝑗
𝜒

4

𝑗
+
1

2

𝑖

∑

𝑗=2

𝜃
𝑇

𝑗
𝜃
𝑗

+

𝑖

∑

𝑗=1

𝜎
𝑗

𝛾
1

𝜃
𝑇

𝑗
𝜃
𝑗
+

𝑛

∑

𝑗=1

𝜃
𝑇

𝑗
𝜃
𝑗
+ 𝑑

𝑖
.

(52)

Step 𝑛. In the final design step, the actual control input 𝑢
0

appears. Similar to step 𝑖, one has

𝑑𝜒
𝑛
= (𝜛

𝑇
𝑢 + 𝑓

𝑛
(𝑥

𝑛
| 𝜃

𝑛
) + 𝑘

𝑛
(𝑥

1
− 𝑥

1
)) 𝑑𝑡

−

𝑛−1

∑

𝑗=1

𝜕𝛼
𝑛−1

𝜕𝜃
𝑗

̇𝜃
𝑗
𝑑𝑡 −

𝜕𝛼
𝑛−1

𝜕𝑦
𝑑𝑦 −

𝑛−1

∑

𝑗=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑗

𝑑𝑥
𝑗

= (𝜛
𝑇
𝑢 + 𝐻

𝑛
−
𝜕𝛼

𝑛−1

𝜕𝑦

× (𝑒
2
+𝜀

1
+ 𝜃

𝑇

1
𝜑 (𝑥

1
)+Δ

1 (𝑥, 𝑡) +ℎ1
(𝑥

1
(𝑡 − 𝜏

1 (𝑡))))

−
1

2

𝜕
2
𝛼

𝑛−1

𝜕𝑦2
𝑔

2

1
(𝑥)) 𝑑𝑡 −

𝜕𝛼
𝑛−1

𝜕𝑦
𝑔

1 (𝑥) 𝑑𝑤,

(53)

where 𝐻
𝑛

= 𝜃
𝑇

𝑛
𝜑(𝑥

𝑛
) + (𝑘

𝑛
− ∑

𝑛−1

𝑗=1
(𝜕𝛼

𝑛−1
/𝜕𝑥

𝑗
)𝑘

𝑗
)(𝑥

1
−

𝑥
1
) − ∑

𝑛−1

𝑗=1
(𝜕𝛼

𝑛−1
/𝜕𝜃

𝑗
) ̇𝜃

𝑗
− (𝜕𝛼

𝑛−1
/𝜕𝑦)(𝑥

2
+ 𝜃

𝑇

1
𝜑(𝑥

1
)) −

∑
𝑛−1

𝑗=1
(𝜕𝛼

𝑛−1
/𝜕𝑥

𝑗
)(𝑥

𝑗+1
+ 𝑓

𝑗
(𝑥

𝑗
| 𝜃

𝑗
)). Note that, by (4) and

(47), one can obtain

𝜛
𝑇
𝑢 = 𝜛

𝑇
[𝜌V + 𝜎 (𝑢 − 𝜌V)] = 𝜛𝑇

[𝜌V + 𝜎𝑢 − 𝜎𝜌V]

= 𝜛
𝑇
[(𝐼 − 𝜎) 𝜌V + 𝜎𝑢] = ∑

𝑗=𝑗1 ⋅⋅⋅𝑗𝑝

𝜛
𝑗
𝑢

𝑗
+ ∑

𝑗 ̸=𝑗1⋅⋅⋅𝑗𝑝

𝜌
𝑗
𝜛

𝑗
𝑏
𝑗
𝑢

0
.

(54)

Consider the overall Lyapunov function candidate as

𝑉
𝑛
= 𝑉

𝑛−1
+
𝜒

4

𝑛

4
+

1

2𝛾
𝑛

𝜃
𝑇

𝑛
𝜃
𝑛
+𝑊

1
, (55)

where 𝛾
𝑛
> 0 is the design parameter.

Design the controller 𝑢
0
and the adaptation law for 𝜃

𝑛
as

𝑢
0
= (ℎ


)
−1

[−𝑐
𝑛
𝜒

𝑛
−
1

4
𝜒

𝑛
−
5

2
(
𝜕𝛼

𝑛−1

𝜕𝑦
)

2

𝜒
3

𝑛
−
1

2
𝜒

3

𝑛

−
1

4
𝜒

3

𝑛
(
𝜕
2
𝛼

𝑛−1

𝜕𝑦2
)

2

−
3

4
𝜒

𝑛
(
𝜕𝛼

𝑛−1

𝜕𝑦
)

4

− 𝐻
𝑛
] ,

(56)
̇𝜃
𝑛
= 𝛾

𝑛
𝜑 (𝑥

𝑛
) 𝜒

3

𝑛
− 𝜎

𝑛
𝜃
𝑛
, (57)

where 𝜎
𝑛
> 0 and 𝑐

𝑛
> 0 are design parameters, and ℎ

=

∑
𝑗 ̸=𝑗1 ...𝑗𝑝

𝜌
𝑗
𝜛

𝑗
𝑏
𝑗
.

Substituting (52)–(56) into (51), one can obtain

ℓ𝑉
𝑛
≤ −𝑒

𝑇
𝑄𝑒 − 𝑐

1
𝑝

2

1
𝜒

2

1
−

𝑛

∑

𝑗=2

𝑐
𝑗
𝜒

4

𝑗

+
𝑛 − 1

2
𝜃
𝑇

1
𝜃
1
+
1

2

𝑛

∑

𝑗=2

𝜃
𝑇

𝑗
𝜃
𝑗

+

𝑛

∑

𝑗=1

𝜎
𝑗

𝛾
𝑗

𝜃
𝑇

𝑗
𝜃
𝑗
+

𝑛

∑

𝑗=1

𝜃
𝑇

𝑗
𝜃
𝑗
− 𝑛𝑟𝑊

1
+ 𝑑

𝑛
,

(58)

where 𝑑
𝑛
= 𝑑

𝑛−1
+ (1/2)𝜀

∗2

1
+ |𝜎𝜎

𝑇
| + (1/2)Δ

∗2

1
+ 𝑑

∗

1
.
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By completing the square for each parameter estimate,

𝜎
𝑗

𝛾
𝑗

𝜃
𝑇

𝑗
𝜃
𝑗
≤ −

1

2

𝜎
𝑗

𝛾
𝑗

𝜃
𝑇

𝑗
𝜃
𝑗
+
1

2

𝜎
𝑗

𝛾
𝑗

𝜃
∗𝑇

𝑗
𝜃
∗

𝑗
. (59)

Substituting (58)–(60) into (57) yields

ℓ𝑉
𝑛
≤ −𝑞

𝑛‖𝑒‖
2
− 𝑐

1
𝑝

2

1
𝜒

2

1
−

𝑛

∑

𝑗=2

𝑐
𝑗
𝜒

4

𝑗

−
𝜎

1
/𝛾

1
− 𝑛 − 1

2
𝜃
𝑇

1
𝜃
1
−
1

2

𝑛

∑

𝑗=2

(
𝜎

𝑗

𝛾
𝑗

− 3) 𝜃
𝑇

𝑗
𝜃
𝑗

− 𝑛𝑟𝑊
1
+ 𝑑,

(60)

where 𝑞
𝑛
= 𝜆min(𝑄), 𝑑 = 𝑑𝑛

+ (1/2)∑
𝑛

𝑗=1
(𝜎

𝑗
/𝛾

𝑗
)𝜃

∗𝑇

𝑗
𝜃
∗

𝑗
.

Define 𝑐 = min{𝑞
𝑛
/𝜆max(𝑃), 2𝑐1𝑝

2

1
, 4𝑐

𝑗
, ((𝜎

1
/𝛾

1
) − 𝑛 −

1)𝛾
1
, ((𝜎

𝑗
/𝛾

𝑗
) − 3), 𝑛𝑟}.

Then (61) can be rewritten as

ℓ𝑉
𝑛
≤ −𝑐𝑉

𝑛
+ 𝑑. (61)

Multiplying 𝑉 by 𝑒𝐶𝑡 and by Itô formula leads to

𝑑 (𝑒
𝐶𝑡
𝑉) = 𝑒

𝐶𝑡
(𝐶𝑉 + ℓ𝑉) 𝑑𝑡 + 𝑒

𝐶𝑡

𝑛

∑

𝑖=1

𝑀
𝑖
𝑑𝑤, (62)

where 𝑀
𝑖
= 𝜕𝑉/𝜕𝜒

𝑖
(−(𝜕𝛼

𝑖−1
/𝜕𝑦)𝑔

1
(𝑥)) for 𝑖 = 2, . . . , 𝑛, and

𝑀
1
= 𝑔

1
(𝑥).

From (61) and (62), one has

𝑑 (𝑒
𝐶𝑡
𝑉) ≤ 𝑒

𝐶𝑡
𝐷𝑑𝑡 + 𝑒

𝐶𝑡

𝑛

∑

𝑖=1

𝑀
𝑖
𝑑𝑤. (63)

Integrating (63) over [0, 𝑇], we get

𝑉 (𝑇) ≤ 𝑒
−𝐶𝑇

𝑉 (0) +
𝐷

𝐶
+ 𝑒

−𝐶𝑇
∫

𝑇

0

𝑒
𝐶𝑠
Ω

1
𝑑𝑤 (𝑠) . (64)

Taking expectation on (64), it follows that

𝐸 [𝑉 (𝑇)] ≤ 𝑉 (0) +
𝐷

𝐶
, (65)

where𝑉(0) = (1/2)𝑒𝑇(0)𝑃𝑒(0)+(1/2)𝜒2

1
(0)+∑

𝑛

𝑖=2
(1/4)𝜒

4

𝑖
(0)+

∑
𝑛

𝑖=1
(1/2)𝛾

𝑖
𝜃
𝑇

𝑖
(0)𝜃

𝑖
(0).

By (65) and using the similar arguments in [8–11], it
follows that all the signals of the closed-loop system are
bounded in probability.

Theorem 7. For nonlinear system (1), if Assumptions 1–
4 are satisfied, the controller (56) with the state observer
(24), the intermediate control functions (40) and (50), and
parameter adaptive laws (41), (51), and (57) can guarantee
that all the signals in the closed-loop system are bounded
in probability, and the output error converges to the given
prescribed performance bounds.

5. Simulation Study

In this section, an example is given to illustrate the effective-
ness of the proposed adaptive fuzzy FTC method.

Example 8. Consider the following:

𝑑𝑥
1
= (𝑥

2
+ 𝑓

1
(𝑥

1
) + Δ

1 (𝑥, 𝑡)

+ℎ
1
(𝑥

1
(𝑡 − 𝜏

1 (𝑡)))) 𝑑𝑡 + 𝑔1 (𝑥) 𝑑𝑤,

𝑑𝑥
2
= (𝜛

𝑇
𝑢 + 𝑓

2
(𝑥

2
) + Δ

2 (𝑥, 𝑡)

+ℎ
2
(𝑥

2
(𝑡 − 𝜏

2 (𝑡)))) 𝑑𝑡 + 𝑔2 (𝑥) 𝑑𝑤,

𝑦 = 𝑥
1
,

(66)

where 𝑓
1
(𝑥

1
) = 𝑥

1
𝑒
−0.5𝑥

2

1 , 𝑓
2
(𝑥

2
) = sin(0.5𝑥

1
𝑥

2
), Δ

1
(𝑥, 𝑡) =

sin𝑥
1
, Δ

2
(𝑥, 𝑡) = cos(𝑥

1
𝑥

2
), 𝑔

1
(𝑥) = sin𝑥2

1
, 𝑔

2
(𝑥) =

𝑥
2

1
cos𝑥

2
, 𝜛

1
= 𝜛

2
= 1, ℎ

1
= (𝑥

1
(𝑡 − 𝜏

1
(𝑡)))/(1 + 𝑥

2

1
(𝑡 − 𝜏

1
(𝑡))),

𝜏
1
(𝑡) = 0.5 sin(𝑡), ℎ

2
= (𝑥

1
(𝑡 − 𝜏

2
(𝑡)) sin(𝑥

2
(𝑡 − 𝜏

2
(𝑡))))/(1 +

𝑥
4

1
(𝑡 − 𝜏

2
(𝑡))), 𝜏

2
(𝑡) = 0.5 sin(𝑡), and 𝑢 = [𝑢

1
, 𝑢

2
]. �̇�(𝑡) is

assumed to be a Gaussian white noise with 𝜎(𝑡) = 1. The
tracking reference signal is chosen as 𝑦

𝑟
(𝑡) = sin(𝑡).

The actuator faults are 𝑢
1
= 65, when 𝑡 ≥ 2, and 𝑢

2
=

0.8V
2
, when 𝑡 ≥ 2.

Choose fuzzy membership functions as

𝜇
𝐹
𝑙

𝑖

(𝑥
𝑖
) = exp[−

(𝑥
𝑖
− 3 + 𝑙)

2

16
] , 𝑙 = 1, 2, 3, 4, 5. (67)

Construct the FLSs 𝑓
𝑖
(𝑥

𝑖
|𝜃

𝑖
) = 𝜃

𝑇

𝑖
𝜑

𝑖
(𝑥

𝑖
) to approximate the

unknown nonlinear function 𝑓
𝑖
(⋅), 𝑖 = 1, 2.

The parameters of the prescribed performance functions
are selected as 𝜇

1,0
= 1.5, 𝜇

1,∞
= 0.05, 𝑛

1
= 1, 𝛿

1min = 0.4,
𝛿
1max = 0.45, and 𝜇1

(𝑡) = 1.45𝑒
−𝑡
+ 0.05.

Setting the parameters 𝑘
1
= 𝑘

2
= 1.4, the state observer

(20) is

̇̂𝑥
1
= 𝑥

2
+ 𝑓

1
(𝑥

1
𝜃
1
) + 1.4 (𝑥

1
− 𝑥

1
) ,

̇̂𝑥
2
= 𝑢

1
+ 𝑢

2
+ 𝑓

2
(𝑥

1
, 𝑥

2
𝜃
2
) + 1.4 (𝑥

1
− 𝑥

1
) ,

𝑦 = 𝑥
1
.

(68)

The design parameters in the controllers 𝑢
0
(56), the interme-

diate controls function 𝛼
1
(40), and the adaptive laws 𝜃

1
(41)

and 𝜃
2
(57) are selected as 𝑐

1
= 55, 𝑐

2
= 15, 𝛾

1
= 𝛾

2
= 0.01,

𝜌
1
= 𝜌

2
= 1, 𝑏

1
(𝑥

1
) = 𝑏

2
(𝑥

2
) = 1, and 𝜎

1
= 𝜎

2
= 0.1.

The initial conditions are chosen as follows: 𝑥
1
(0) = 0.1,

𝑥
2
(0) = 0, 𝑥

1
(0) = 𝑥

2
(0) = 0, 𝜃𝑇

1
(0) = [0, 0, 0, 0, 0], and

𝜃
𝑇

2
(0) = [0, 0, 0, 0, 0].
Applying the controlmethod in this paper to control (66),

the simulation results are shown by Figures 1, 2, 3, 4, and 5,
respectively. From Figures 1–5, it is shown that the proposed
adaptive FTC method can guarantee that all the variables are
bounded in probability, the output 𝑦(𝑡) can track the given
reference signal 𝑦

𝑟
, and the tracking error remains within the

prescribed performance bounds.
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Figure 1: The curves of 𝑦
1
(solid) and 𝑦

𝑟
(dash).
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Figure 2: The curves of 𝑥
1
(solid) and its estimation 𝑥

1
(dash).
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Figure 3: The curves of 𝑥
2
(solid) and its estimation 𝑥

2
(dash).
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Figure 4: The curves of 𝑢
1
(solid) and 𝑢

2
(dash).
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Figure 5: The curves of 𝑧
1
and performance bounds.

6. Conclusion

This paper has developed an adaptive fuzzy FTC method
for a class of uncertain stochastic nonlinear systems with
unmeasured states, unknown time-delay, actuator faults, and
tracking error constrained.The considered faults aremodeled
as both loss of effectiveness and lock-in-place. With the
help of fuzzy logic systems to approximate the unknown
nonlinear functions, a fuzzy adaptive observer has been
developed for estimating the unmeasured states. Combining
the backstepping technique with the nonlinear tolerant-fault
control theory, a novel adaptive fuzzy FTC approach has been
constructed. It has proved that the proposed control approach
can guarantee that all the signals of the resulting closed-loop
system are bounded in probability, and the tracking error
converges to an adjustable neighborhood of the origin and
remains within the prescribed performance bounds. Future
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research will concentrate on the adaptive FTC methods for
uncertainMIMO stochastic nonlinear systems and uncertain
stochastic nonlinear large-scale systems based on the results
of this paper and the references of [26–36].

Appendix

Proof. From (25), one can obtain

ℓ𝑉
0
≤ 𝑒

𝑇
(𝐴

𝑇
𝑃 + 𝑃𝐴) 𝑒

+ 2𝑒
𝑇
𝑃(𝜀 + Δ𝑓 + Δ + ℎ +

𝑛

∑

𝑖=1

𝐵
𝑖
𝜃
𝑇

𝑖
𝜑

𝑖
(𝑥

𝑖
))

+ 𝑇𝑟 [𝜎𝑔
𝑇
𝑃𝑔𝜎

𝑇
] ,

(A.1)

where 𝜆min(𝑄) is the smallest eigenvalue of matrix 𝑄, Δ𝑓 =

[Δ𝑓
1
, . . . , Δ𝑓

𝑛
]
𝑇, 𝜀 = [𝜀

1
, . . . , 𝜀

𝑛
]
𝑇, Δ = [Δ

1
, . . . , Δ

𝑛
]
𝑇, ℎ =

[ℎ
1
, . . . , ℎ

𝑛
]
𝑇, and 𝜃

𝑖
= 𝜃

∗

𝑖
− 𝜃

𝑖
.

By using Young’s inequality and Assumption 1, one has
the following inequalities:

𝑇𝑟 [𝜎𝑔
𝑇
𝑃𝑔𝜎

𝑇
] ≤

1

2
‖𝑃‖

2
+
1

2


𝜎𝜎

𝑇

2

, (A.2)

2𝑒
𝑇
𝑃 (𝜀 + Δ𝑓 + Δ + ℎ) ≤ 4‖𝑒‖

2
+ ‖𝑃‖

2𝜀
∗

2

+ ‖𝑃‖
2Δ

∗
2
+ ‖𝑃‖

2Δ𝑓

2

+

𝑛
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𝑖=1

𝜒
1
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𝑖 (𝑡))𝐻𝑖2
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1
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𝑖 (𝑡))) +

𝑛

∑
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𝑑
∗

𝑖
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𝑖=1

𝑚
2

𝑖
)‖𝑒‖

2
+ ‖𝑃‖

2
(
𝜀

∗
2
+
Δ

∗
2
) .

(A.3)

By using Young’s inequality and the fact 𝜑𝑇

𝑖
(𝑥

𝑖
)𝜑

𝑖
(𝑥

𝑖
) ≤ 1, one

has

2𝑒
𝑇
𝑃

𝑛

∑

𝑖=1

𝐵
𝑖
𝜃
𝑇

𝑖
𝜑

𝑖
(𝑥

𝑖
)

≤ 𝑒
𝑇
𝑃𝑃

𝑇
𝑒 +

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜑

𝑇

𝑖
(𝑥

𝑖
) 𝜑

𝑖
(𝑥

𝑖
) 𝜃

𝑖

≤ 𝜆
2

max (𝑃) ‖𝑒‖
2
+

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
.

(A.4)

Substituting (A.2)–(A.4) into (A.1) yields (27).
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