
Research Article
Optimised ExpTime Tableaux for SHIN over
Finite Residuated Lattices

Jian Huang, Xinye Zhao, and Jianxing Gong

College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Jian Huang; 13973166586@139.com

Received 25 June 2013; Accepted 16 December 2013; Published 7 April 2014

Academic Editor: Hector Pomares

Copyright © 2014 Jian Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study proposes to adopt a novel tableau reasoning algorithm for the description logic SHIN with semantics based on a
finite residuated De Morgan lattice. The syntax, semantics, and logical properties of this logic are given, and a sound, complete,
and terminating tableaux algorithm for deciding fuzzy ABox consistency and concept satisfiability problem with respect to TBox
is presented. Moreover, based on extended and/or completion-forest with a series of sound optimization technique for checking
satisfiability with respect to a TBox in the logic, a new optimized ExpTime (complexity-optimal) tableau decision procedure is
presented here.The experimental evaluation indicates that the optimization techniques we considered result in improved efficiency
significantly.

1. Introduction

The fuzzy DL (Description Language) over lattice is a gener-
alization of the crisp DL that uses the elements of 𝐿 as truth
values, instead of just the Boolean true and false. Different
to fuzzy DLs, elements of the rational unit interval provided
a membership degree semantics for their concepts; 𝐿 is
further generalized to address qualitative uncertainty reason-
ing (by relying, e.g., on {false, likelyfalse, unknown,
likelytrue, true}) and quantitative uncertainty reasoning
(by relying, e.g., on {0/𝑛, 1/𝑛, . . . , 𝑛/𝑛} (for an integer 𝑛 > 1,
in increasing order [1])).

Several attempts have been made at using 𝐿-fuzzy set
semantics [2], but only a limited kind of semantics over
lattices is considered, where conjunction and disjunction
are interpreted through the lattice operators meet and join,
respectively. Borgwardt and Peñaloza considered the fuzzy
logic ALCI with semantics based on a finite residuated
lattice [3] and a complete De Morgan lattice equipped with
a t-norm operator [4]. Further, Borgwardt and Peñaloza
analysed the consistency and satisfiability problems in the
description logic SHI with semantics based on a complete
residuated De Morgan lattice [5] and showed that concept
satisfiability in ALC under this semantics is undecidable,

in general, even if a very simple class of infinite lattices is
restricted.

In this paper, we extend the more general description
logic 𝐿-SHIN, where 𝐿 is a complete De Morgan lattice
equipped with a t-norm operator. The fuzzy description logic
𝐿-SHIN is a generalization of the crisp description logic
SHIN that uses the elements of 𝐿 as truth values instead
of just the Boolean true and false. We study fuzzy variants
of the standard reasoning problems like concept satisfiability
and consistency with general concept inclusions (GCI) in this
setting and proved that with the help of a tableaux-based
algorithm satisfiability becomes decidable and the ExpTime
complete if 𝐿 is required to be finite.

The main contributions of this work can be highlighted
twofold as follows.

(i) It presented a novel tableau reasoning algorithm for
the description logic SHIN with semantics based
on a finite residuated De Morgan lattice.

(ii) By combining a series of optimization techniques
that can be applied to fuzzy DL 𝐿-SHIN, our
framework reduces the search space of the tableau
algorithm more significantly to ExpTime complete.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 702326, 15 pages
http://dx.doi.org/10.1155/2014/702326

http://dx.doi.org/10.1155/2014/702326

2 Journal of Applied Mathematics

Table 1: Semantics of 𝐿-SHIN concepts and 𝐿-SHIN roles.

Constructor Syntax Semantics
Top ⊤ ⊤

I
(𝑥) = 1

Bottom ⊥ ⊥
I
(𝑥) = 0

Conjunction 𝐶 ⊓ 𝐷 (𝐶 ⊓ 𝐷)
I
(𝑥) = 𝐶

I
(𝑥) ⊗ 𝐷

I
(𝑥)

Disjunction 𝐶 ⊔ 𝐷 (𝐶 ⊔ 𝐷)
I
(𝑥) = 𝐶

I
(𝑥) ⊕ 𝐷

I
(𝑥)

General negation ¬𝐶 (¬𝐶)
I
(𝑥) =∼ 𝐶

I
(𝑥)

Implication 𝐶 → 𝐷 (𝐶 → 𝐷)
I
(𝑥) = 𝐶

I
(𝑥) ⇒ 𝐷

I
(𝑥)

Exists restriction ∃𝑠 ⋅ 𝐶 ∃(𝑠 ⋅ 𝐶)
I
(𝑥) = ∨

𝑦∈△
I {𝑠

I
(𝑥, 𝑦) ⇒ 𝐶

I
(𝑦)}

Value restriction ∀𝑠 ⋅ 𝐶 ∀(𝑠 ⋅ 𝐶)
I
(𝑥) = ∧

𝑦∈△
I {𝑠

I
(𝑥, 𝑦) ⊗ 𝐶

I
(𝑦)}

At-most restriction (≤ 𝑛𝑅)
I
(𝑥) (≤ 𝑛𝑅)

I
(𝑥) = ∧

𝑦1 ,...,𝑦𝑛+1
∨

𝑛+1

𝑖=1
{∼ 𝑅

I
(𝑥, 𝑦

𝑖
)}

At-least restriction (≥ 𝑛𝑅)
I
(𝑥) (≥ 𝑛𝑅)

I
(𝑥) = ∨

𝑦1 ,...,𝑦𝑛
∧

𝑛

𝑖=1
{𝑅

I
(𝑥, 𝑦

𝑖
)}

The paper is organized as follows. Section 2 introduces the
syntax and semantics of the fuzzy description logic over
lattices 𝐿-SHIN and discusses some logical properties of
the logic. In Section 3, we give a detailed presentation of
the reasoning algorithm for deciding the consistency and
satisfiability of a 𝐿-SHINABox, provide the proofs for the
termination, soundness, and completeness of the procedure,
and address the computational aspect of reasoning in it.
In Section 4 we extend the previous results by adding a
wide variety of optimisations to achieving a high level of
performance on tableau reasoning in expressive description
logic 𝐿-SHIN. Our empirical evaluation shows that the
proposed optimisations result in significant performance
improvements in Section 6. Finally, future research issues are
outlined in Section 7.

2. The Logic 𝐿-SHIN

In this section we introduce a residuated De Morgan lattice
extension of the 𝐿-SHINDL, creating the 𝐿-SHIN lan-
guage. The fuzzy description logic 𝐿-SHIN, which is the
extension of ALC𝐿 [4] and 𝐿-SHI [5], with the number
restrictions constructor. And 𝐿-SHIN is a generalization
of the fuzzy description logic 𝑓-SHIN.

Definition 1 (syntax). Let 𝑁𝐶 and 𝑁𝑅 be pairwise disjoint
sets of concepts and role, and let 𝑁+

𝑅
⊆ 𝑁𝑅, 𝑁𝑅 be a set of

transitive role names. The complex roles are 𝑁𝑅 ∪ {𝑅
−
| 𝑟 ∈

𝑁𝑅}. 𝐿-SHINcomplex concepts are defined inductively by
the following production rule, where 𝐴 ∈ 𝑁𝐶 and 𝑠 is a
complex role:

𝐶 := 𝐴 | 𝐶1 ⊓ 𝐶2 | 𝐶1 ⊔ 𝐶2

| 𝐶1 → 𝐶2 | ¬𝐶1 | ∃𝑠 ⋅ 𝐶 | ∀𝑠 ⋅ 𝐶 | ⊤ |⊥ .

(1)

A complex role 𝑠 is transitive if either 𝑠 or inverse
of 𝑠 belongs to 𝑁+

𝑅
.

Definition 2 (semantics). For a residuated De Morgan
lattice 𝐿, an 𝐿 interpretation is now a pair I = (Δ

I
, ⋅
I
),

where ΔI is the domain for the classical case and ⋅I is
an interpretation function mapping: every concept name 𝐶

a function 𝐴I
: Δ

I
→ 𝐿 and every role name 𝑟 a function

𝑟
I

: Δ
I
× Δ

I
→ 𝐿. An 𝐿-assertion is an expression

⟨𝑎 : 𝐶 ⊳ ℓ⟩, a role assertion of the form ⟨(𝑎, 𝑏) : 𝑠 ⊳ ℓ⟩,
where 𝐶 is a concept, 𝑠 is a complex role, 𝑎, 𝑏 are individual
names, ℓ ∈ 𝐿, and ⊳∈ {≻, ⪰}.

A finite set of assertions and terminological axioms
is called a Knowledge Base (KB). A fuzzy knowledge
base Σ consists of a finite set of axioms organized in three
parts: a fuzzy ABox A (axioms about individuals), a fuzzy
TBox T (axioms about concepts), and a fuzzy RBox R
(axioms about roles); that is, Σ = (A,R,T). An interpre-
tation I satisfies (is a model of) a KB Σ if and only if I
satisfies each element in Σ.

An interpretationI satisfies the concept definition ⟨𝐴 ≐
𝐶, ℓ⟩ if and only if for all 𝑥 ∈ Δ

I, (𝐴I
(𝑥) ⇒ 𝐶

I
(𝑥)) ⊗

(𝐶
I
(𝑥) ⇒ 𝐴

I
(𝑥)) ≥ ℓ. A general TBox is a finite set of

GCIs. Σ satisfies the GCI ⟨𝐶 ⊑ 𝐷, ℓ⟩ if and only if, for all
𝑥 ∈ Δ

I, 𝐶I
(𝑥) ⇒ 𝐷

I
(𝑥) ≥ ℓ. An acyclic TBox is a finite set

of concept definitions such that every concept name occurs
at most once in the lefthand side of an axiom, and there is no
cyclic dependency between definitions [6].

The complete set of semantics is depicted in Table 1.
Particularly notice that existential and universal quantifiers
are not dual to each other, and the implication constructor
cannot be expressed in terms of the negation and conjunc-
tion.

Next, we will pay more attention to the problem of
deciding satisfiability of a concept, especially computing the
highest degree with which an individual may belong to a
concept.

Definition 3 (ℓ-satisfiable). Let 𝐶 be 𝐿-SHIN concept
descriptions, T a TBox, and ℓ ∈ 𝐿. 𝐶 is ℓ-satisfiable
with respect to T if there is a model I of Tsuch
that ∨𝑥∈ΔI𝐶

I
(𝑥) ≥ ℓ. The best satisfiability degree

for 𝐶 with respect to T is the largest ℓ such that 𝐶 is ℓ-
satisfiable with respect toT.

The notion of witnessed model for fuzzy DLs was first
introduced by Hájek [7]. Witnessed models of fuzzy pred-
icate logic are models in which each quantified formula is

Journal of Applied Mathematics 3

witnessed; that is, the truth value of a universally quantified
formula is the minimum of the values of its instances and
similarly for existential quantification (maximum) [8].

Definition 4 (witnessed model). Let 𝑛 ∈ N. A model I of an
KB Σ is 𝑛-witnessed if for every 𝑥 ∈ ΔI, every role 𝑠, and
every concept 𝐶 there are

(∀𝑠 ⋅ 𝐶)

I
(𝑥)
𝑀

= inf𝑏∈𝑦i

𝑠
I
(𝑥, 𝑦𝑖) ⊗ 𝐶

I
(𝑦𝑖)

= 𝑠

I
(𝑥, 𝑏) ⊗ 𝐶

I
(𝑏) ,

(∃𝑠 ⋅ 𝐶)

I
(𝑥)
𝑀

= sup
𝑏∈𝑦
𝑖

𝑠
I
(𝑥, 𝑦𝑖) ⇒ 𝐶

I
(𝑦𝑖)

= 𝑠

I
(𝑥, 𝑏) ⇒ 𝐶

I
(𝑏) .

(2)

The semantics of the quantifiers require the computation
of a supremum or infimum of the membership degrees of
a possibly infinite set of elements of the domain. Reason-
ing is usually restricted to witnessed models in order to
obtain effective decision procedures [7]. Since 𝐿 is finite, we
always have the 𝑛-witnessed model property for some 𝑛 ∈

N. On the basis of ALCI𝐿 of [6], we have deduced
Lemma 5.

Lemma 5. If the cardinality of the largest antichain of L is n,
then 𝐿-SHINhas the n-witnessed model property.

For simplification of the algorithm description, we
consider 𝑛 = 1. The algorithm and the proofs of correctness
can easily be adapted for any other 𝑛 ∈ N.

3. Tableau Algorithm for 𝐿-SHIN DL

We assume that all concept descriptions are in negation
normal form (NNF); that is, negation appears only in front
of concept names. We will also abuse our notation by saying
that a TBox T is in NNF if all the concepts occurring in T

are in NNF. Moreover, we prove the decidability of the 𝐿-
SHIN DL by providing a tableaux algorithm for deciding
the standard DL inference problems.

3.1. 𝐿−SHINTableau. Sincemost of the inference services
of fuzzy DLs can be reduced to the problem of consistency
checking for ABoxes [9], here we discuss the approaches to
deciding consistency of fuzzy DLs over finite residuated De
Morgan lattices in the presence of GCIs. The algorithm we
present can be seen as an extension of the tableau presented
in [5] and is inspired by the well-known tableau algorithm
for 𝑓-SHIN [10], which is the basis for several highly
successful implementations.

It is assumed that 𝐿 is finite, and we can accordingly
restrict reasoning to 𝑛-witnessed models. In the lattice
𝐿 = ⟨𝜁, ⊲, ⊳⟩, we employ the symbols ⊲ and ⊳ as a place-
holder for the inequalities ≺, ⪯ and ≻, ⪰ and the symbol ⋈ as
a placeholder for all types of inequations. Furthermore we
employ the symbols ⊲−

, ⊳
− and ⋈

− to denote their reflec-
tions.

Definition 6. For a fuzzy concept 𝐶, we will denote
by sub(𝐶) the set that contains 𝐶 and it is closed under
subconcepts of 𝐶. The set of all subconcepts of concepts
that appear within an ABox is denoted by sub(𝐶). Let 𝑅𝐴 be
the set of roles occurring in A and R together with their
inverses, and 𝐼A is the set of individuals in A. A fuzzy
tableau T for Σ is a quadruple in (S,G, Υ,V), such that

(i) S is a nonempty set of individuals (nodes),
(ii) G: S × sub(𝐴) → 𝜁 maps each element and concept,

that is, a member of sub(𝐴), to the degree of certainty
of that element to the concept,

(iii) Υ: 𝑅Σ × S × S → 𝜁 maps each role of 𝑅𝐴 and pair of
elements to the degree of certainty of the pair to the
role,

(iv) V: maps individuals occurring in 𝐴 to elements in 𝑆.

For all 𝑠, 𝑡 ∈ S, 𝐶,𝐷 ∈ sub(𝐴), ℓ ∈ 𝜁, and 𝑅 ∈ 𝑅𝐴,
T satisfies the following.

(1) Σ(𝑠, ⊥) = 0, Σ(𝑠, ⊤) = 1 for ∀𝑠 ∈ S.
(2) If ⟨¬𝐶, ⋈, ℓ⟩ ∈ G(𝑠), then ⟨𝐶, ⋈−

, ∼ ℓ⟩ ∈ G(𝑠).
(3) If ⟨𝐶 ⊓ 𝐷, ⊳, ℓ⟩ ∈ G(𝑠), then ⟨𝐶, ⊳, ℓ⟩ ∈ G(𝑠) and

⟨𝐷, ⊳, ℓ⟩ ∈ G(𝑠).
(4) If ⟨𝐶 ⊔ 𝐷, ⊲, ℓ⟩ ∈ G(𝑠), then ⟨𝐶, ⊲, ℓ⟩ ∈ G(𝑠) and

⟨𝐷, ⊲, ℓ⟩ ∈ G(𝑠).
(5) If ⟨𝐶 ⊔ 𝐷, ⊳, ℓ⟩ ∈ G(𝑠), then ⟨𝐶, ⊳, ℓ⟩ ∈ G(𝑠) and

⟨𝐷, ⊳, ℓ⟩ ∈ G(𝑠).
(6) If ⟨𝐶 ⊓ 𝐷, ⊲, ℓ⟩ ∈ G(𝑠), then ⟨𝐶, ⊲, ℓ⟩ ∈ G(𝑠) and

⟨𝐷, ⊲, ℓ⟩ ∈ G(𝑠).
(7) If ⟨∀𝑅 ⋅ 𝐶, ⊳, ℓ⟩ ∈ G(𝑠) and ⟨⟨𝑠, 𝑡⟩, ⊳

, ℓ1⟩ ∈ Υ(𝑅) is
conjugated with ⟨⟨𝑠, 𝑡⟩, ⊳−

, ∼ ℓ⟩, then ⟨∀𝐶, ⊳, ℓ⟩ ∈

G(𝑡).
(8) If ⟨∀𝑅 ⋅ 𝐶, ⊲, ℓ⟩ ∈ G(𝑠) and ⟨⟨𝑠, 𝑡⟩, ⊳, ℓ1⟩ ∈ Υ(𝑅) is

conjugated with ⟨⟨𝑠, 𝑡⟩, ⊲, ∼ ℓ⟩, then ⟨∀𝐶, ⊲, ℓ⟩ ∈

G(𝑡).
(9) If ⟨∃𝑅 ⋅ 𝐶, ⊳, ℓ⟩ ∈ G(𝑠), then there exists 𝑡 ∈ S

such that ⟨⟨𝑠, 𝑡⟩, ⊳, ℓ⟩ ∈ Υ(𝑅) and ⟨⟨𝑠, 𝑡⟩, ⊳, ∼ ℓ⟩,
then ⟨∀𝐶, ⊳, ℓ⟩ ∈ G(𝑡).

(10) If ⟨∀𝑅 ⋅ 𝐶, ⊲, ℓ⟩ ∈ G(𝑠), then there exists 𝑡 ∈ S such
that ⟨⟨𝑠, 𝑡⟩, ⊲−

, ∼ ℓ⟩ ∈ Υ(𝑅) and ⟨⟨𝑠, 𝑡⟩, ⊲, ∼ ℓ⟩,
then ⟨∀𝐶, ⊳, ℓ⟩ ∈ G(𝑡).

(11) If ⟨∃𝑠 ⋅ 𝐶, ⊲, ℓ⟩ ∈ G(𝑠), and ⟨⟨𝑠, 𝑡⟩, ⊳, ℓ1⟩ ∈ Υ(𝑅) is
conjugated with ⟨𝑠 ⋅ 𝐶, ⊲, ℓ⟩, for some 𝑅⊑∗ with
Trans(𝑅), then ⟨∃𝑠 ⋅ 𝐶, ⊲, ℓ⟩ ∈ G(𝑠).

(12) If ⟨∀𝑠 ⋅ 𝐶, ⊳, ℓ⟩ ∈ G(𝑠), and ⟨⟨𝑠, 𝑡⟩, ⊳
, ℓ1⟩ ∈ Υ(𝑅) is

conjugated with ⟨𝑠 ⋅ 𝐶, ⊳−
, ∼ ℓ⟩, for some 𝑅⊑∗ with

Trans(𝑅), then ⟨∀𝑠 ⋅ 𝐶, ⊳, ℓ⟩ ∈ G(𝑠).
(13) ⟨⟨𝑠, 𝑡⟩, ⋈, ℓ⟩ ∈ Υ(𝑅) if ⟨⟨𝑡, 𝑠⟩, ⋈, ℓ⟩ ∈ Υ(𝑅)(Inv(𝑅)).
(14) If ⟨⟨𝑠, 𝑡⟩, ⊳, ℓ⟩ ∈ Υ(𝑅) and 𝑅⊑∗

𝑆 then, ⟨⟨𝑠, 𝑡⟩, ⊳, ℓ⟩ ∈
Υ(𝑆).

(15) ⟨≥ 𝑝𝑅, ⊳, ℓ⟩ ∈ Υ(𝑅), then {𝑡 ∈ S | ⟨⟨𝑠, 𝑡⟩, ⊳, ℓ⟩ ∈

Υ(𝑅)} ≥ 𝑝.

4 Journal of Applied Mathematics

(16) ⟨≤ 𝑝𝑅, ⊲, ℓ⟩ ∈ Υ(𝑅), then {𝑡 ∈ S | ⟨⟨𝑠, 𝑡⟩, ⊲−
, ∼ ℓ⟩ ∈

Υ(𝑅)} ≥ 𝑝 + 1.
(17) ⟨≥ 𝑝𝑅, ⊲, ℓ⟩ ∈ Υ(𝑅), then {𝑡 ∈ S | ⟨⟨𝑠, 𝑡⟩, ⊳, ℓ𝑖⟩ ∈

Υ(𝑅)} ≤ 𝑝 − 1, conjugated with ⟨⟨𝑠, 𝑡⟩, ⊲, ℓ⟩.
(18) ⟨≤ 𝑝𝑅, ⊳, ℓ⟩ ∈ Υ(𝑅), then {𝑡 ∈ S | ⟨⟨𝑠, 𝑡⟩, ⊳

, ℓ𝑖⟩ ∈

Υ(𝑅)} ≤ 𝑝, conjugated with ⟨⟨𝑠, 𝑡⟩, ⊳−
, ∼ ℓ⟩.

(19) There do not exist two conjugated triples in any label
of any individual 𝑥 ∈ S.

(20) If ⟨𝑎 : 𝐶 ⋈ ℓ⟩ ∈ 𝐴, then ⟨𝐶 ⋈ ℓ⟩ ∈ G(V(𝑎)).
(21) If ⟨(𝑎, 𝑏) : 𝑅 ⋈ ℓ⟩ ∈ 𝐴, then⟨(V(𝑎), (V(𝑏)) ⋈ ℓ⟩ ∈

Υ(𝑅).
(22) If 𝑎 ̸= 𝑏 ∈ A, thenV(𝑎) ̸=V(𝑏).

Lemma7. An 𝐿-SHINABoxA is consistent with respect to
R if and only if there exists a fuzzy tableau forA with respect
toR.

Proof. Similar to that of Lemma 6.5 of [11], here gives the
proof of the Lemma 7. For the direction if T = (S,G, Υ,V)
is a fuzzy tableau for an ABox A with respect to R, we can
construct a fuzzy interpretationI = (ΔI

, ⋅
I
) that is a model

ofA. Consider the following:

Δ
I
= S,

𝑎
I
= V (𝑎) , 𝑎 ∈ I𝐴,

⊺
I
= G (𝑠, ⊤) , ∀𝑠 ∈ S,

⊥
I
= G (𝑠, ⊥) , ∀𝑠 ∈ S,

𝐴
I
= G (𝑠, 𝐴) , ∀𝑠 ∈ S and concept names 𝐴.

(3)

For all role 𝑅 ∈ R𝐴,

𝑅
I
(𝑠, 𝑡) = {

𝑅
+

Υ
(𝑠, 𝑡) , ∀ ⟨𝑠, 𝑡⟩ ∈ S × S if Trans (𝑅)

𝑅Υ (𝑠, 𝑡) , ∀ ⟨𝑠, 𝑡⟩ ∈ S × S otherwise,
(4)

where 𝑅Υ(𝑠, 𝑡) is a binary fuzzy relation defined as 𝑅Υ(𝑠, 𝑡) =

Υ(𝑅, ⟨𝑠, 𝑡⟩) for all ∀⟨𝑠, 𝑡⟩ ∈ S × S, and 𝑅+

Υ
(𝑠, 𝑡) represents its

sup-min transitive closure [12]. The proof of this property is
quite technical and omitted here. From all above properties,
the interpretation of individuals and roles implies that I
satisfies each assertion inA inductively.

3.2. Constructing a 𝐿-SHIN Tableau. Like most of the
tableaux algorithms, our algorithm works on completion
forests rather than on completion trees which is applied
in work [5]. As pointed out in [13], that is because an
ABox might contain several individuals with arbitrary roles
connecting them.

Definition 8 (completion forest). A completion forest F
for Σ is a collection of trees whose distinguished roots are
arbitrarily connected by edges. Each node 𝑥 is labelled with
a set Σ(𝑥) = {⟨𝐶, ⋈, 𝑙⟩}. Each edge ⟨𝑥, 𝑦⟩ is labelled with
a set Σ(⟨𝑥, 𝑦⟩) = {⟨𝑅, ⋈, 𝑙⟩}, where 𝑅 ∈ 𝑅𝐴 are roles and

Table 2: Conjugated pairs.

⟨𝛼 𝑙

⟩ ⟨𝛼 ≺ 𝑙

⟩

⟨𝛼 ≻ 𝑙⟩ ¬(∃𝑙

⋅ 𝑙

≻ 𝑙 ∧ 𝑙

 𝑙

) 𝑙 ⊀ 𝑙

⟨𝛼 𝑙⟩ ¬(∃𝑙

⋅ 𝑙

 𝑙 ∧ 𝑙

 𝑙

) ¬(∃𝑙

⋅ 𝑙

 𝑙 ∧ 𝑙

≺ 𝑙

)

its inverse occurring in A. A completion forest comes with
an explicit inequality relation ̸= on nodes and an explicit
equality relation ≐ which are implicitly assumed to be sym-
metric. Given a completion forest, If nodes 𝑥 and 𝑦 are con-
nected by an edge ⟨V, 𝑤⟩ with ⟨𝑅, 𝑙⟩ occurring in Σ(⟨𝑥, 𝑦⟩),
then 𝑦 is called an 𝑅-successor of 𝑥 and 𝑥 is called an 𝑅-
predecessor of 𝑦. A node 𝑥 is a positive (resp., negative)
successor (resp., predecessor or neighbour) of 𝑦.

A node is blocked if it is either directly or indirectly
blocked. It is indirectly blocked if its 𝑅-predecessor is either
directly or indirectly blocked. A node 𝑥 is directly blocked if
and only if none of its ancestors are blocked, and it has an
ancestor 𝑦 such that Σ(𝑥) = Σ(𝑦).

A node 𝑥 is said to contain a clash satisfying
one of the conditions such that if and only if
there exist two conjugated triples in Σ(⟨𝑥, 𝑦⟩), or
if Σ(⟨𝑥, 𝑦⟩) ∪ {⟨Inv(𝑅), ⋈, ℓ⟩ | ⟨𝑅, ⋈, ℓ⟩ ∈ Σ(⟨𝑦, 𝑥⟩)} and 𝑥,
𝑦 are root nodes, contains two conjugated triples. Table 2
shows all the entries under which condition the row column
pair of 𝐿-constraints is a conjugated pair (e.g., 𝑎 : 𝐴 ≻ 𝑢 and
𝑎 : 𝐴 V is a conjugated pair as ¬(∃V ⋅ V ≻ 𝑢 ∧ V V)).

The calculus is based on a set of constraint propaga-
tion rules transforming a set 𝑆 into satisfiability preserv-
ing sets 𝑆𝑖 until either one of 𝑆𝑖 contains an inconsistency
(clash), or some 𝑆𝑖 is completed and clash-free; that is, no
rule can further be applied to 𝑆𝑖 and 𝑆𝑖 contains no clash
(indicating that from 𝑆𝑖 a model of 𝑆 can be built).

F is then expanded by repeatedly applying the rules from
Table 3.The notation 𝑅∗ denotes either the role 𝑅 or the role
returned by Inv(𝑅), and the notation ⟨∗, ⋈, ℓ⟩ denotes any
role that participates in such a triple.

The completion forest is complete when for some node
𝑥 : Σ(𝑥) contains a clash, or none of the completion rules in
Table 3 are applicable. The algorithm is correct in the sense
that it produces a clash if and only if Σ is inconsistent. The
expansion rules are based on the properties of the semantics
presented in Definition 6.

3.3. Soundness and Completeness of the 𝐿-SHIN

Tableaux Algorithm

Lemma 9 (termination, soundness, completeness). For a
given KB Σ:

(i) the tableau algorithm terminates;
(ii) if the expansion rules can be applied to Σ such that they

yield a complete completion-forestF such that 𝐶F has
a solution, then Σ has a model;

(iii) if Σ has a model, then the expansion rules can be
applied in such away that the tableaux algorithm yields
a complete completion forest for Σ such that 𝐶F has a
solution.

Journal of Applied Mathematics 5

Table 3: Rule description.

Rule Description

(¬
⋈
) If ⟨¬𝐶, ⋈, 𝑙⟩ ∈ Σ(𝑥) and ⟨𝐶, ⋈−

, ∼ ℓ⟩ ∉ Σ(𝑥), then Σ(𝑥) → Σ(𝑥) ∪ ⟨𝐶, ⋈
−
, ∼ ℓ⟩

(⊓
⊳
)

If ⟨𝐶
1
⊓ 𝐶

2
, ⊳, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked and {⟨𝐶

1
, ⊳, ℓ⟩, ⟨𝐶

2
, ⊳, ℓ⟩} ∉ Σ(𝑥),

then Σ(𝑥) → Σ(𝑥) ∪ {⟨𝐶
1
, ⊳, ℓ⟩, ⟨𝐶

2
, ⊳, ℓ⟩}

(⊔
⊲
)

If ⟨𝐶
1
⊔ 𝐶

2
, ⊲, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked and {⟨𝐶

1
, ⊲, ℓ⟩, ⟨𝐶

2
, ⊲, ℓ⟩} ∉ Σ(𝑥),

then Σ(𝑥) → Σ(𝑥) ∪ {⟨𝐶
1
, ⊲, ℓ⟩, ⟨𝐶

2
, ⊲, ℓ⟩}

(⊔
⊳
)

If ⟨𝐶
1
⊔ 𝐶

2
, ⊳, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked and {⟨𝐶

1
, ⊳, 𝑙⟩, ⟨𝐶

2
, ⊳, ℓ⟩} ∩ Σ(𝑥) = 0, then Σ(𝑥) → Σ(𝑥) ∪ {𝐶} for some

𝐶 ∈ {⟨𝐶
1
, ⊳, ℓ⟩, ⟨𝐶

2
, ⊳, ℓ⟩}

(⊓
⊲
)

If ⟨𝐶
1
⊓ 𝐶

2
, ⊲, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked and {⟨𝐶

1
, ⊲, ℓ⟩, ⟨𝐶

2
, ⊲, ℓ⟩} ∩ Σ(𝑥) = 0, then Σ(𝑥) → Σ(𝑥) ∪ {𝐶} for some

𝐶 ∈ {⟨𝐶
1
, ⊲, ℓ⟩, ⟨𝐶

2
, ⊲, ℓ⟩}

(∃
⊳
)

If ⟨∃𝑅 ⋅ 𝐶, ⊳, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not blocked and 𝑥 has no 𝑅-neighbour 𝑦 connected with a triple ⟨𝑃∗
, ⊳, ℓ⟩, 𝑃 ⊑

∗
𝑅 and

⟨𝐶, ⊳, ℓ⟩ ∈ Σ(𝑦) , then create a new node 𝑦 with Σ(⟨𝑥, 𝑦⟩) = {⟨𝑅, ⊳, ℓ⟩}, Σ(𝑦) = {⟨𝐶, ⊳, ℓ⟩}

(∀
⊲
)

If ⟨∀𝑅 ⋅ 𝐶, ⊲, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not blocked and 𝑥 has no 𝑅-neighbour 𝑦 connected with a triple ⟨𝑃∗
, ⊲

−
, ∼ ℓ⟩, 𝑃 ⊑

∗
𝑅 and

⟨𝐶, ⊲, ℓ⟩ ∈ Σ(𝑦), then create a new node 𝑦 with Σ(⟨𝑥, 𝑦⟩) = {⟨𝑅, ⊲−
, ∼ ℓ⟩}, Σ(𝑦) = {⟨𝐶, ⊲, ℓ⟩}

(∀
⊳
)

If ⟨∀𝑅 ⋅ 𝐶, ⊳, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked, and 𝑥 has an 𝑅-neighbour 𝑦 with ⟨𝐶, ⊳, ℓ⟩ ∉ Σ(𝑦) and ⟨∗, ⊳−
, ∼ ℓ⟩ is

conjugated with the positive triple that connects 𝑥 and 𝑦, then Σ(𝑦) → Σ(𝑦) ∪ ⟨𝐶, ⊳, ℓ⟩

(∃
⊲
)

If ⟨∃𝑅 ⋅ 𝐶, ⊲, 𝑙⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked and 𝑥 has an 𝑅-neighbour 𝑦 with ⟨𝐶, ⊳, ℓ⟩ ∉ Σ(𝑦) and ⟨∗, ⊲, ℓ⟩ is
conjugated with the positive triple that connects 𝑥 and 𝑦, then Σ(𝑦) → Σ(𝑦) ∪ ⟨𝐶, ⊲, ℓ⟩

(∀
+
)

If ⟨∀𝑅 ⋅ 𝐶, → , ℓ⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked, 𝑥 has a 𝑃-neighbour 𝑦 with, ⟨𝐶, ⊳, ℓ⟩ ∉ Σ(𝑦), and there is some 𝑃, with
Trans(𝑃), and 𝑃 ⊑∗

𝑅, ⟨∀𝑃 ⋅ 𝐶, ⊳, ℓ⟩ ∉ Σ(𝑦) and ⟨∗, ⊳−
, ∼ ℓ⟩ is conjugated with the positive triple that connects 𝑥 and 𝑦,

then Σ(𝑦) → Σ(𝑦) ∪ ⟨∀𝑃 ⋅ 𝐶, ⊳, 𝑙⟩

(∃
+
)

If ⟨∃𝑅 ⋅ 𝐶, ⊲, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked, 𝑥 has a 𝑃-neighbour 𝑦 with, ⟨𝐶, ⊳, ℓ⟩ ∉ Σ(𝑦), and there is some 𝑃, with
Trans(𝑃), and 𝑃 ⊑∗

𝑅, ⟨∃𝑃 ⋅ 𝐶, ⊲, ℓ⟩ ∉ Σ(𝑦) and ⟨∗, ⊲, ∼ ℓ⟩ is conjugated with the positive triple that connects 𝑥 and 𝑦,
then Σ(𝑦) → Σ(𝑦) ∪ ⟨∃𝑃 ⋅ 𝐶, ⊲, ℓ⟩

(≥
⊳
)

If ⟨≥ 𝑝 ⋅ 𝑅, ⊳, 𝑙⟩ ∈ Σ(𝑥), 𝑥 is not blocked, and there are no 𝑝 𝑅-neighbours 𝑦
1
, . . . , ℓ

𝑝
, connected to 𝑥 with a triple

⟨∃𝑃
∗
, ⊳, 𝑙⟩ ∉ Σ(𝑦), 𝑃 ⊑∗

𝑅, and 𝑦
𝑖
̸= 𝑦

𝑗
for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑝, then create 𝑝 new nodes 𝑦

1
, . . . , ℓ

𝑝
, with Σ(⟨𝑥, 𝑦

𝑖
⟩) = {⟨𝑅, ⊳, ℓ⟩} and

𝑦
𝑖
̸= 𝑦

𝑗
for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑝

(≤
⊲
) If ⟨≤ 𝑝 ⋅ 𝑅, ⊲, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not blocked, then apply (∃

+
) rule for the triple ⟨≥ (𝑝 + 1)𝑅, ⊲−

, ∼ ℓ⟩

(≤
⊲
) If ⟨≤ 𝑝 ⋅ 𝑅, ⊲, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not blocked, then apply (∃

+
) rule for the triple ⟨≥ (𝑝 + 1)𝑅, ⊲−

, ∼ ℓ⟩

(≤
⊳
)

If ⟨≤ 𝑝 ⋅ 𝑅, ⊳, 𝑙⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked, and there are 𝑝 + 1 𝑅-neighbours 𝑦
1
, . . . , 𝑦

𝑝+1
connected to 𝑥 with a triple

⟨𝑃
∗
, ⊳

, ∼ ℓ

𝑖
⟩, 𝑃 ⊑∗

𝑅, and which is conjugated with ⟨𝑃∗
, ⊳

−
, ∼ ℓ⟩, and there are two of them 𝑦, 𝑧, with no 𝑦 ̸= 𝑧, and 𝑦 is

neither a root node nor an ancestor of 𝑧, then Σ(𝑧) → Σ(𝑧) ∪ Σ(𝑦), and if 𝑧 is an ancestor of 𝑥, then
Σ(⟨𝑧, 𝑥⟩) → Σ(⟨𝑧, 𝑥⟩) ∪ Inv(Σ(⟨𝑥, 𝑦⟩)) else Σ(⟨𝑥, 𝑧⟩) → Σ(⟨𝑥, 𝑧⟩) ∪ Σ(⟨𝑥, 𝑦⟩), and Σ(⟨𝑥, 𝑦⟩) → 0, and Set 𝑢 ̸= 𝑧 for ∀𝑢 with
𝑢 ̸= 𝑦

(≥
⊲
) If ⟨≥ 𝑝 ⋅ 𝑅, ⊲, ℓ⟩ ∈ Σ(𝑥), 𝑥 is not indirectly blocked, then apply (≤

⊳
) rule for the triple ⟨≤ (𝑝 − 1)𝑅, ⊲−

, ∼ ℓ⟩

(≤
𝑟⊳
)

If ⟨≤ 𝑝 ⋅ 𝑅, ⊳, ℓ⟩ ∈ Σ(𝑥), and there are 𝑝 + 1 𝑅-neighbours 𝑦
1
, . . . , 𝑦

𝑝+1
connected to 𝑥 with a triple ⟨𝑃∗

, ⊳

, ∼ ℓ

𝑖
⟩, 𝑃 ⊑∗

𝑅,
and conjugated with ⟨𝑃∗

, ⊳
−
, ∼ ℓ⟩, and there are two of them 𝑦, 𝑧, both root nodes, with no 𝑦 ̸= 𝑧, then Σ(𝑧) → Σ(𝑧) ∪ Σ(𝑦),

and for all edges ⟨𝑦, 𝑤⟩: (1) if the edge ⟨𝑧, 𝑤⟩ does not exist, create it with Σ(⟨𝑧, 𝑤⟩) → 0; (2)
Σ(⟨𝑧, 𝑤⟩) → Σ(⟨𝑧, 𝑤⟩) ∪ Σ(⟨𝑦, 𝑤⟩), and for all edges ⟨𝑤, 𝑦⟩: (1) if the edge ⟨𝑤, 𝑧⟩ does not exist, create it with Σ(⟨𝑤, 𝑧⟩) → 0;
(2) Σ(⟨𝑤, 𝑧⟩) → Σ(⟨𝑤, 𝑧⟩) ∪ Σ(⟨𝑤, 𝑦⟩) and Set Σ(𝑦) = 0, and remove all edges to/from 𝑦, and set 𝑢 ̸= 𝑧 for ∀𝑢 with 𝑢 ̸= 𝑦 and
set 𝑦 = 𝑧

(≥
𝑟⊲
) ⟨≥ 𝑝 ⋅ 𝑅, ⊲, ℓ⟩ ∈ Σ(𝑥), then apply (≤

𝑟⊳
) rule for the triple ⟨≤ (𝑝 − 1)𝑅, ⊲−

, ∼ ℓ⟩

3.4. Computational Complexity of the Tableau Algorithm
for 𝐿-SHIN. We have described a tableau procedure
for reasoning in 𝐿-SHIN. Due to the tableau rules are
nondeterministic, every application of expansion rules to a
termination after at most exponentially many rule applica-
tions. So according to the theorem in [5] that the tableaux
algorithm is NExpTime complete, we get the following
proposition deciding the computational complexity of the
tableau algorithm for 𝐿-SHIN.

Proposition 10. The concept satisfiability checking problem
in 𝐿-SHIN with respect to witnessed models can be decided
in NExpTime.

Proof (sketch). It is assumed that 𝐿-SHIN has the 𝑛-
witnessed model property for some 𝑛 ≥ 1, the completion
forest has to generate 𝑛 different successors for every
existential (∃) and universal (∀) restriction to ensure
that the degrees guessed for these complex concepts are

6 Journal of Applied Mathematics

indeed witnessed by the model. As stated by Table 1, we
have to introduce 𝑛 individuals {𝑦1, . . . , 𝑦𝑛} and 2𝑛 values
{ℓ

1

1
, . . . , ℓ

𝑛

1
} ∈ 𝐿, {ℓ1

2
. . . , ℓ

𝑛

2
} ∈ 𝐿, which satisfies⋁𝑛

𝑖=1
ℓ
𝑖

1
⊗ℓ

𝑖

2
= ℓ

or ⋀𝑛

𝑖=1
ℓ
𝑖

1
⇒ ℓ

𝑖

2
= ℓ, respectively. In the following

we let 𝑛max be the number that occurs in a number
restriction, and let ℎ be the number of different lattices
appearing inA.

Following [14] we set 𝑛 = ||𝐴| + |𝑅|| = O(|𝐴| +
|𝑅|) = O(2𝑛); in the meantime, we let 𝑚 = |sub(𝐷)| =
O(2|𝐴||𝑅|) = O(𝑛2), 𝑘 = |𝑅𝐴| = O(|𝐴| + |𝑅|) =

O(2𝑛), 𝑛max = O(2|𝐴|) = O(2𝑛), ℎ = O(|𝐴|) = O(𝑛),
and 𝑞 = max{𝐷L(𝑠) | ∀𝑠 ∈ T}. Then due to the proof
of Lemma 6.9 in [11] and by the addition of the number of
different lattices appearing inA-𝑞: a completion forest forA
becomes no longer than 28⋅𝑚⋅ℎ⋅𝑘⋅𝑞 and that the outdegree is
bounded by 2 ⋅ ℎ ⋅ 𝑚 ⋅ 𝑛max. Consequently, the 𝐿-SHIN
algorithm will construct a completion forest with no more

than (2 ⋅ ℎ ⋅ 𝑚 ⋅ 𝑛max)
2
8⋅𝑚⋅ℎ⋅𝑘⋅𝑞

= O((2 ⋅ 𝑛 ⋅ 𝑛2 ⋅ 2𝑛)
2
8⋅𝑛
2
⋅𝑛⋅𝑛⋅𝑞

) =

O(2𝑛⋅2
8⋅𝑛
4
⋅𝑞

) = O(22
𝑞⋅𝑛
4

) nodes.
For fuzzy description logics with semantics based on

complete residuated De Morgan lattices (e.g., 𝐿-ALCI),
strong satisfiability with respect to general TBoxes is unde-
cidable for some infinite lattices while, for finite lattices,
decidability is regained [5]. If one considers theALC with-
out terminological axioms, concept satisfiability is ExpTime
complete as in the crisp case [15]. The problem with respect
to general TBoxes becomes ExpTime complete matching
the complexity of the crisp case, though arbitrary (finite)
lattices and t-norms are allowed [4]. Besides, strong concept
satisfiability is in NExpTime 𝐿-SHI.

When we consider finite De Morgan lattices 𝐿, then
satisfiability problem can be effectively decided. We guess
that the computational complexity of it can be improved to
ExpTime either by an ABox partitioning [16] or with the help
of global caching and other techniques [17].

4. Optimization Techniques Employed in
Tableau Algorithm for 𝐿-SHIN

From Proposition 10, it is obvious that the theoretical com-
plexity of the tableau reasoning algorithm for 𝐿-SHIN
is 2-NExptime, which is too expensive for a reasoner to
deal with. So we plan to investigate some optimizations [18]
developed for tableaux algorithms for crispDLs, which can be
transferred to our setting to reduce the search space created
by the choice of lattice values. By using these techniques, a
theoretically expensive computation could be converted to an
equivalent of practically lower complexity.

In this section we describe in detail the optimisation
techniques employed in tableau algorithm for 𝐿-SHIN.
Not only focusingmainly on novel techniques and significant
refinements and extensions of previously known techniques
such as global caching, we also apply some simple but often
very effective optimisations to our implement. First of all,
we perform some preprocessing optimisations directly on
the syntax of the input. Then in virtue of the ideas of both

backjumping and global caching, we investigate an optimized
tableau-based reasoning algorithm and prove its ExpTime
complete.

4.1. Preprocessing Optimisations. In case of obvious clash
detection or cycle via concept names, preprocessing optimi-
sations (e.g., absorption or told cycle elimination) can lead
to important speedup of the subsequent reasoning process.
These optimisations serve to preprocess and simplify the
input into a form more amenable to later processing [18].
Furthermore, these optimisations are not specific to tableau-
based fuzzy reasoners andmay also be useful with other kinds
of fuzzy DL reasoners. Herein on the basis of 𝐿-SHIN, we
apply two striking optimizations techniques to our design and
implement.

4.1.1. Partition Based on Connectivity. Partition based on
connectivity is a quite effective optimization technique to
boost up the performance of reasoning, which can be applied
to any fuzzy DL without nominals independently of the
fuzzy operators used to provide the interpretations [17].
Termination of the expansion of the completion forest is a
result of the properties of the expansion rules in Table 3, and
a tableau expansion rule can either add (i) a new neighbour
node to the node of examination, (ii) newmembership triples
in this node, or (iii) new membership triples to neighbour-
ing nodes. The expansion rule will examine the different
ways that the tableau expansion rules affect this completion
forest, with the respect of different connectivity circum-
stances. Inspired by the work in [17], we have the following
definitions.

Definition 11. Let 𝑎, 𝑏, 𝑐 ∈ I, ℓ ∈ 𝐿. The connection relation
between two individuals 𝑎, 𝑏 in an ABox A is inductively
defined through role 𝑅𝐴:

𝑎A𝑏

⇐⇒ {
𝑅𝐴 (𝑎, 𝑏) ⋈ 𝑙 ∈ A derectly connected
(𝑎A𝑐) ∪ (𝑏A𝑐) inderectly connected.

(5)

Note that 𝑐 may be run into an iterative process for
connecting indirectly. The individuals in the ABox A may
be divided into one or more individual groups. Then indi-
vidual group is partitioned into one or more independent
subsets called Assertion Groups (𝐴𝐺) [16]. For instance, two
assertions 𝐴1 and 𝐴2 are in the same 𝐴𝐺 if 𝐴1 is directly
or indirectly inferred from 𝐴2 (through the application of
completion rules), or 𝐴1 and 𝐴2 differ only in terms of
their certainty values and/or conjunction and disjunction
functions. Each group is composed of individuals that are
connected to each other through role assertions 𝑅𝐴.

Definition 12. We denote 𝐴𝐺[𝑎] with the partition of the
ABoxA that contains only connected individuals inA

𝐴𝐺[𝑎] = {𝑎} ∪ {𝑥 | ∀𝑥 ∈ I, 𝑎A𝑥} . (6)

Journal of Applied Mathematics 7

Proposition 13. It holds that

(1) ∪𝐴𝐺𝑖 = A,

(2) 𝐴𝐺𝑖 ∩ 𝐴𝐺𝑗 = 0, for each pair 𝐴𝐺𝑖, 𝐴𝐺𝑗 ∈ 𝐴 such
that 𝐴𝐺𝑖 = 𝐴𝐺𝑗,

(3) A is consistent with respect to a TBoxT if and only if
each 𝐴𝐺𝑖 is consistent with respect to a TBoxT.

Partition based on connectivity optimization technique
has several advantages. First, it is of polynomial complexity
and it can be applied to any fuzzy DL. In addition, If any 𝐴𝐺
is found to be inconsistent, this implies that the whole A is
inconsistent. A related benefit is to more precisely identify
the assertions that cause the inconsistency. Finally, the speed
of solving a few small constraint sets would be faster than
solving one large constraint set.

4.1.2. Dealt with TBox Axioms. If dealt with axioms of TBox
T naively, which maybe lead to a serious degradation in
reasoning performance, as each such axiom would cause a
disjunction to be added to every node of the completion
forest, leading to potentially enormous amounts on nonde-
terministic expansion [18].

Given 𝜍 ∈ T, with 𝜍 = ((𝐶1∨𝐷1)∧⋅ ⋅ ⋅∧(𝐶𝑛∨𝐷𝑛)), testing
the satisfiability of 𝜍 leads to the construction of a completion
forest containing 𝑘 nodes, then there are 2𝑘𝑛 different ways
to apply the ⊓- and ⊔-rules to the resulting 𝑘 copies of 𝐴,
which leads to the explosion in the size of the search space.
Fortunately, some notable works of optimisations known as
lazy unfolding and absorption had been used to identifying
these problems [19]. Herein we choose lazy unfolding optimi-
sation to address this issue. Due to the limitation of the paper,
detailed definition of lazy unfolding is omitted here, and we
refer the reader to the above literatures.

4.2. Core Satisfiability Optimisations. In the following, we
present core reasoning of 𝐿-SHIN, a satisfiability checking
algorithm, which implements a highly optimised version on
the basis of the tableau algorithm described in Section 3.
Before introducing the optimisations extended to the naive
tableau algorithm, we present a brief introduction to back-
jumping and global caching and show how such algorithms
are implemented in practice.

4.2.1. Dependency Directed Backtracking (Backjumping).
Backjumping is an optimisation that is crucial for effective
tableau based reasoning. Inherent unsatisfiability concealed
in subformulae can lead to large amounts of unproductive
backtracking search known as thrashing, especially if the
unsatisfiability caused by the modal subformulae had been
slightly less trivial [20]. Consider the following modified
formula 𝜍:

𝜍

= (𝑝1 ∨ 𝑞1) ∧ ⋅ ⋅ ⋅ ∧ (𝑝𝑛 ∨ 𝑞𝑛) ∧ (¬∃𝑅 ⋅ (𝐴, 𝐵)) ∧ (∀𝑅 ⋅ (¬𝐴)) .

(7)

�1

· · ·

�2

�

1

�

2

�

n

w1 w2n

�n

Figure 1: Runing the search using backjumping.

To avoid an exponential (2𝑛) search in the case of 𝜍, a
form of dependency directed backtracking called backjumping
can be adapted, which has also been used, for example,
in solving constraint satisfiability problems [21] and (in a
slightly different form) in the HARP theorem prover [22].
The arithmetic labels each formula 𝜍 in a node V with a
dependency set dep(𝜍, V) indicating the branching points on
which it depends.

In case nodeV is with dep (𝜍, ¬𝜍) ∈ Σ(V),
dep (𝜍, V) and dep (¬𝜍, V) are used to identify the most
recent branching point 𝑏 on which 𝜍 or ¬𝜍 depends. If
the dependance exists, the algorithm can then jump back
to 𝑏 over intervening branching points without exploring
any alternative branches (nondeterministic choices) and
make a different nondeterministic choice which might
not lead to the same closure condition being encountered.
Figure 1 illustrates how the expansion below V is pruned by
backjumping, with the number of 𝑅-𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 explored
being reduced by 2𝑛 − 1. We will go into particulars in
Algorithm 2. In case no such 𝑏 exists, the clash did not
depend on any nondeterministic choice, and the algorithm
stops, reporting the unsatisfiability of the TBox [20].

4.2.2. Global Caching. In order to avoid the same subproblem
being solved again and again, it is possible to cache and reuse
the results of such subproblems.The usual technique is to use
a hash table to store the satisfiability status of node labels (i.e.,
sets of concepts treated as a conjunction). At present, there are
various caching methods briefly outlined in [23]:

(i) no caching DFS (NC),
(ii) unsat caching DFS (UC),
(iii) mixed caching DFS (MC),
(iv) unrestricted global caching and propagation (GC-

NonDFS),
(v) global caching DFS with propagation (GC-DFS).

8 Journal of Applied Mathematics

Data: Let 𝑡 ∈ N+, 𝑡 ≈ 𝑚/2, 𝑑, 𝑑
𝑡
∈ 𝑁

Σ, 𝑑 = 𝑑
𝑡
.

Result: glb(Σ, 𝛼) = 𝑑.
begin

while 𝑁
Σ
> 1 do

if Σ ⊨ ⟨𝛼 ⪰ 𝑑
𝑡
⟩ then

𝑑 = 𝑑
𝑡

𝑁
Σ
← 𝑁

Σ
\ {𝑑

: 𝑑
 𝑑 ∪ {𝑑}}

𝑑
𝑡
← 𝑑

𝑡+1

else
𝑁

Σ
← 𝑁

Σ
\ {𝑑

: 𝑑
⪰ 𝑑}

𝑑
𝑡
← 𝑑

𝑡−1

Algorithm 1: Calculate glb.

Global caching means that each possible set of con-
cepts/formulas is expanded at most once. With respect to the
size of the given problem, the notion of global caching is an
ExpTime complexity procedure if the search space contains
at most an exponential number of different nodes and as long
as the extension of each node requires at most exponential
time.

4.2.3. Optimized GLB. From Table 2, we can conclude that
an 𝐿-SHIN ABoxA can contain a number of positive or
negative assertions without forming a contradiction. There-
fore, it is useful to compute lower and upper bounds of finite
lattice degree.

Given a fuzzy KB Σ and an assertion 𝛼, it is absorbing to
compute best lower and upper truth-value bounds of 𝛼. To
this end we define the greatest lower bound of 𝛼 with respect
to Σ (denoted by glb(Σ, 𝛼)) to be ⊕{𝑙 | Σ ⊨ ⟨𝛼 ⪰ 𝑙⟩}.
Similarly, we define the least upper bound of 𝛼 with respect
to Σ (denoted by lub(Σ, 𝛼)) to be ⊗{𝑙 | Σ ⊨ ⟨𝛼 ⪯ 𝑙⟩}.
lub(Σ, 𝛼)) could be computed from the glb as lub(Σ, 𝛼)) =
∼ glb(Σ, ∼ 𝛼)) because ∼ lub(Σ, 𝛼)) = ∼ ⊗{𝑙 | Σ ⊨ ⟨𝛼 ⪯

𝑙⟩}=⊗{∼ 𝑙 | Σ ⊨ ⟨𝛼 ⪯ 𝑙⟩} = ⊗{𝑙 | Σ ⊨ ⟨𝛼 ⪯∼ 𝑙⟩} =
⊕{𝑙 | Σ ⊨ ⟨∼ 𝛼 ⪰ 𝑙⟩} = ∼ glb(Σ, ∼ 𝛼)). Determining
the lub and the glb is called the Best Lattice Degree Bound
(BLDB) problem.

Concerning the BCVB problem, we may have a similar
algorithm as for fuzzyALC [9], and an optimization in the
search space is to use binary search algorithm reducing in that
way the satisfiability checks required. Let glb(Σ, 𝛼) ∈ 𝑁Σ and
lub(Σ, 𝛼) ∈ 1 − 𝑁Σ, where 𝑁Σ

= {0, 0.5, 1} ∪ {𝑙 : ⟨𝛼 ≥ 𝑐⟩ ∈

Σ} ∪ {1 − 𝑙 : ⟨𝛼 ≤ 𝑙⟩ ∈ Σ} and 1 −𝑁Σ
= {(1 − 𝑙) : 𝑙 ∈ 𝑁

Σ
}. We

employ the binary search algorithm, assuming that 0.5 is the
middle if we sort the elements of 𝑁Σ. We evaluate if Σ ⊨ (𝑥 :
𝐶) ≥ 0.5 is satisfied, in case it is we move on to higher degree
until Σ ⊭ (𝑥 : 𝐶) ≥ 𝑛, indicating that the previous degree is
the glb(Σ, (𝑥 : 𝐶)).

Let us assume that L = ⟨𝑙, ⪯⟩ is a linear order, 𝑁Σ is
ordered by ascending linear order, and ‖𝑁Σ

‖ is the numbers
of lattice degrees. A simple iterative approximation algorithm
computing glb(Σ, 𝛼) is described inAlgorithm 1.The similar
algorithm can be easily constructed for the lub.

The described optimizations in Algorithm 1 for glb
are very effective since they reduce the search space of
tableau independently of Σ used. Based on the previous
partition based on connectivity optimization, we could select
a partition A where the individual of assertion 𝛼 is con-
tained. Thus a new set of membership degrees only for
it with 𝑁A

⊆ 𝑁
Σ is evaluated, resulting to greatly less

satisfiability checks.

Proposition 14. By using a binary search on 𝑁Σ,
the glb(Σ, 𝛼) problem in 𝐿-SHIN with respect to witnessed
models can be decided in O(log |𝑁Σ

|).

Proof. The complexity of ordering and determining 𝑁Σ are
O(|𝑁Σ

| ⋅ log |Σ|) and O(Σ), respectively. Hence, the value
of glb(Σ, 𝛼) can be determined in at most O(log |𝑁Σ

|) fuzzy
entailment tests.

Moreover, the performance of calculating glb can be
further improved by preventing recurrent expansion of the
expansion rules in T. When F in which no expansion rule
can apply, which is then added to the cached completion-
forest.

5. The Optimized Algorithm

5.1. Algorithm Overview. Our optimized algorithm builds a
completion forestF consisting of a collection of trees whose
distinguished roots are arbitrarily connected by edges. We
firstly explain the structure ofF in more detail.

Definition 15. A node V in the completion forest
F = ⟨𝑉, 𝐸⟩ extends an and/or node which is a record
with extra two attributes: 𝑠𝑡𝑠V ∈ ℘

?, kindV ∈ 𝐼
?,

where ℘:= {unexpanded, expanded, sat, unsat},
𝐼:= {and-node, or-node}

The status of a non-leaf-node is computed from the status
of its 𝑅-𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 using its kind (and-node/or-node) and
treating satisfiability with respect to the TBoxT (i.e., sat) as
true and unsatisfiability with respect to the T (i.e. unsat) as
false. When a node gets status sat or unsat, the status can
be propagated to its 𝑅-𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 in a way appropriate to
the forest and/or structure if desired.

An and-node (resp., or-node) becomes unsat
(resp., sat) if one of its 𝑅-𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 becomes unsat
(resp., sat). For the remaining case, an and-node (resp.,
or-node) becomes sat (resp., unsat) if the number of
its 𝑅-𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 with 𝑠𝑡𝑎𝑡𝑢𝑠 ̸= sat (resp., ̸= unsat) reduces
to 0.

It is well known that different orders of expanding
nondeterministic rules can result in huge (up to several orders
of magnitude) differences in reasoning performance [24].
According to empirical analysis in [24], we have the definition
as below.

Definition 16. In our terminology, the following ordering
would be optimal for extending: the ⊔-rule has the lowest

Journal of Applied Mathematics 9

Input: A TBoxT in NNF and a finite set of concepts𝑋 in NNF
Output: an and-or forest 𝐺 = ⟨𝑉, 𝐸⟩, with 𝜎 ∈ 𝑉 as the initial node such that 𝜎.𝑠𝑡𝑎𝑡𝑢𝑠 = {sat, unsat}

begin
create a new node 𝜎 with Σ(𝜎) := 𝑋 ∪T and 𝜎.𝑠𝑡𝑎𝑡𝑢𝑠 = unexpanded;
let 𝑉 := {𝜎}, 𝐸 := 0;

(a) while V.status ∉ {sat, unsat} do
(b) choose an node V ∈ 𝑉, V.𝑠𝑡𝑎𝑡𝑢𝑠 := unexpanded;

if no 𝐿-SHIN-tableau rule is applicable to Σ(V) then
V.𝑠𝑡𝑎𝑡𝑢𝑠 = {sat };

else if ⊥ is applicable to Σ(V) then
V.𝑠𝑡𝑎𝑡𝑢𝑠 = {unsat};

else if 𝛾 (𝛾 ∈ 𝛾
1
) is applicable to Σ(V) giving concept 𝑌 then

V.𝑘𝑖𝑛𝑑:= and-node, Θ := {𝑌};
else if 𝛾 (𝛾 ∈ 𝛾

2
) is applicable to Σ(V) giving concepts 𝑌

1
and 𝑌

2
then

V.𝑘𝑖𝑛𝑑:= or-node, Θ := {𝑌
1
, 𝑌

2
};

else
(i) V.𝑘𝑖𝑛𝑑:= and-node;
(ii) for every ∃𝑅 ⋅ 𝐶 ∈L(V), apply 𝛾 (𝛾 ∈ 𝛾

3
) to Σ(V) giving concept trans

𝑅
(Σ(V), 𝑅) ∪ {𝐶} ∪T and add this

concept to Θ;
(c) for ∀𝑌 ∈ Θ do

(i) if 𝑠𝑜𝑚𝑒 𝑤 ∈ 𝑉 has Σ(𝑤) = 𝑌 then
then add edge (V, 𝑤) to 𝐸;

(ii) let 𝑤 be a new node, set Σ(𝑤) := 𝑌, 𝑤.𝑠𝑡𝑎𝑡𝑢𝑠:= unexpanded, add 𝑤 to 𝑉, and add edge (V, 𝑤) to 𝐸;
(d) if (V.kind = or-node and one of the successors of V has status sat) or (V.kind = and-node and all the

successors of V have status sat) then
V.𝑠𝑡𝑎𝑡𝑢𝑠:= sat, propagate(V);

else if (V.kind = and-node and one of the successors of V has status unsat) or (V.kind = or-node and all the
successors of V have status unsat) then

V.𝑠𝑡𝑎𝑡𝑢𝑠 := unsat, propagate(V);
else

V.𝑠𝑡𝑎𝑡𝑢𝑠:= expanded;
(e) if V.𝑠𝑡𝑎𝑡𝑢𝑠 = unsat and V inT, {𝜅, ¬𝜅} ∈ Σ(V) then

dep(𝜅, V) ∪ dep(¬𝜅, V);
else if V.𝑠𝑡𝑎𝑡𝑢𝑠:= unexpanded then

if Σ(V) is of the form 𝜅
1
∨ 𝜅

2
then

save(𝑇
𝑠
);

add 𝜅
1
to Σ(V) with dep(𝜅

1
, V) = {𝑏} ∪ dep(Σ(V), V);

(f) if 𝑏 ∈ 𝑆 then
add 𝜅

2
to Σ(V) with dep(𝜅

2
, V) = 𝑏 ∪ 𝑑;

else
break;

(g) If 𝜎.𝑠𝑡𝑎𝑡𝑢𝑠 = unsat then
return false;

else
return true;

Algorithm 2: A optimized decision procedure for checking satisfiability in 𝐿-SHIN.

priority, the generating rules (like the ⩾-rule and the ∃-
rule) have the second-lowest priority, all other rules except
for ⩽∗ have the second-highest priority, and the other rules
have the highest priority.

Instead of a top-down approach to most systems used for
ordering expansion rules, we use a new ordering heuristic
rule by an OrderedRule list to control the application of the

expansion rules. The fundamental idea is that expansion
rules may become applicable whenever a concept is added
to a node label, then the node/concept pair is added to the
OrderedRule list.

Definition 17. Granting the demand of Algorithm 2, the
tableau expansion rules in Table 3 are divided into three parts
{𝛾1, 𝛾2, 𝛾3}:

10 Journal of Applied Mathematics

𝛾1:= {⊓⊳, ⊓⊲, ∀⊲, ∀⊳, ∀+},

𝛾2:= {≤⊲, ≤⊲, ≤⊳, ≥⊲, ≤𝑟⊳, ≥𝑟⊲, ¬⋈, ⊔⊲, ⊓⊳},

𝛾3:= {∃⊳, ∃⊲, ∃+}.

Additionally, we use a OrderedRule list to control the
application of the expansion rules {𝛾1, 𝛾2, 𝛾3}. The Ordere-
dRule list sorts all these entries according to the descending
order queued above and gives access to the first element
in the list. The strategy for rule applications given above
is the standard one, by applying 𝛾1 and 𝛾2 rules as much
as possible and then applying 𝛾3 rules to realise existential
concepts. Besides, the strategy for choosingwhich node in the
𝛾𝑖 to expand next is in the descending order, and that means
that, for example, ⊓⊳ in 𝛾1 will be the first applied rule. The
setΘ contains the contents of the resulting Σ(V). If the applied
tableau rule is in 𝛾1 , then V has one formula in Θ; if the
applied rule is in 𝛾2 then V has two formulae inΘ; otherwise,
∃∗ supply one appropriate formula for Θ.

5.2. The Optimized Algorithm Design. In the following,
assume V is current expanded node, 𝑏 is a nonnegative inte-
ger indicating the 𝑏th-∨ rule application in the run of
the tableau algorithm, dep(𝜍, V) is a formula 𝜍 in the label
of a node V with a dependency set if a node V contains
both {𝜅, ¬𝜅} ∈ Σ(V), 𝑌 is finite sets of concepts, and the
set Λ contains the contents of the resulting 𝑌.

To check whether a given finite set 𝑋 is satisfiable in T,
whereT is a Box, the content of the initial node 𝜎 with status
unexpanded is 𝑋∪𝑇. Initially, the queue of nodes 𝑉 set cov-
ers initially only root node 𝜎 but can grow as the algorithm
proceeds. Next, we present an Exptime decision procedure
for 𝐿-SHIN to create a completion forest and/or structure.

We comment onAlgorithm 2 given in pseudocode, which
determines whether a concept 𝑋 ∈ A is satisfiable with
respect to a TBox T, both in NNF. The main while-loop (at
line (a)) continues processing nodes until the status of 𝜎 is
determined to be in {sat, unsat}, or until every node is
expanded, whichever happens first.

Inside the main loop, we choose an unexpanded node
(at line (b)) and try to apply one and only one of the
tableau rules in the order 𝛾1, 𝛾2, 𝛾3 to the current node V.
If the applied tableau rule is within 𝛾1 , then V has one 𝑌;
or, if the applied rule is within 𝛾2, then V has 𝑌1, 𝑌2;
otherwise, apply (∃⊳) and (∃⊲) to Σ(V) giving concept
trans𝑅(Σ(V), 𝑅) ∪ {𝐶} ∪ T and add this concept
to Θ.

After that, for every 𝑌 in Θ (at line (c)), we create the
required successor in the F only if it does not yet exist.
Then, the procedure attempts to compute the status of such a
non-leaf-node V employing the kind (or-node/and-node)
of V and the status of the 𝑅-𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 of V, regarding unsat
as irrevocably false and sat as irrevocably true.

On the condition that previous two steps cannot deter-
mine the status of V as sat or unsat, then its status is set
to be expanded. On the other side, if so (at line (d)), this
information is itself propagated to 𝑅-𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 of V in the
F via the routine 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒(V).

Sequentially, if V.𝑠𝑡𝑎𝑡𝑢𝑠 = unsat and V in T (at line
(e)), {𝜅, ¬𝜅} ∈ Σ(V), then the closure dependency set 𝑆 :=
dep(𝜅, V) ∪ dep(¬𝜅, V), and the algorithm backtracks to
the 𝑛th branching point 𝑏 to apply 𝑏th-∗-rule application.
T would be restored to its state prior to adding 𝜅1 to Σ(V),
and the rule would be applied again such that 𝜅2 was added
to Σ(V).

Using backjumping, the algorithm will return without
expanding the completion trees obtained by adding the
various 𝜅2 to Σ(V) immediately (at line (f)) because 𝑏 ∉

𝑆. Satisfiable will eventually return 0, concluding that 𝑋 is
unsatisfiable.

If 𝜎.𝑠𝑡𝑎𝑡𝑢𝑠 = unsat (at line (g)), the result is false, other-
wise true.

Proposition 18. Let F be constructed by Algorithm 2 for
Σ(V) and Γ, with 𝜎 as the initial node.Then Σ(V) is satisfiable
with respect to Γ if and only if 𝜎.status = sat.

Lemma 19. Algorithm 2 assumes that Σ(V) is consistent and
constructs a model of Γ that satisfies Σ(V). Let F = ⟨𝑉, 𝐸⟩ be
the completion forest constructed by the algorithm for Σ(V)∪Γ.
Suppose the set of concepts carried by the node V ∈ 𝑉 is ℎ(V),
for every V ∈ 𝑉, if V.status = unsat, then ℎ(V) is inconsistent
with respect to Γ.

Proof (sketch). Since V only depends on its successors and
by copying nodes to ensure that the resulting structure is a
completion-tree tableau, we can construct a closed tableau
with respect to Γ for the set of concepts carried by the
node V by induction.

5.3. Computational Complexity of the Optimized Algorithm.
Weproceed to analyse the runtime of the global caching algo-
rithm, under suitable sanity assumptions on the set of modal
rules. Specifically, in order to ensure that executions of the
algorithm run in exponential time, we need to assume 𝑛 is
the size of input, that is, the sum of the size of Σ(V) ∪ Γ. This
construction uses both caching and backjumping techniques.

Proposition 20. Algorithm 2 runs in ExpTime.

Proof (sketch). Since ℎ(V) ⊆ 𝑆(Σ(V) ∪ Γ), so the set
contains 2O(𝑛) concepts. Omitting the execution time of pro-
cedure propagate, every V ∈ 𝑉 is expanded only once and
every expansion takes 2O(𝑛) time units.

When V.𝑠𝑡𝑎𝑡𝑢𝑠 becomes sat or unsat, the propagate
procedure executes 2O(𝑛) basic steps directly involved with V,
so the total time of the executions of propagate is of
rank 22⋅O(𝑛).

Using backjumping, the algorithm returns from 𝑏th
branching point immediately because 𝑏 ∉ 𝑆.This is obviously
true for all of the preceding branching points, so all calls
to 𝑏-th branching point will return without expanding the
completion trees to Σ(V). So that the size of Σ(V) ∪ Γ can be
further reduced.

Journal of Applied Mathematics 11

6. Evaluation

In this section, we provide test results about the usefulness
of the optimizations of our algorithm on the test from
revised LogicsWork Bench (LWB) benchmarks [25] and the
DL98 benchmarks (http://dL.kr.org/dl98/comparison). All
the experiments were conducted underUbuntu 12.04 on a PC
with 2.40GHz Intel Core 2CPUQ8300 and 2GBRAM, using
the 1s time limit for each test problem. We consider only the
number of solved problems instead of the used CPU time.

6.1. Programming Language. The problem we are dealing
with in this work is whether the optimized tableau algorithm
proposed by us can be implemented to give an efficient
prover for 𝐿-SHIN. This problem can be raised as what
optimization techniques can be implemented to obtain a
prover for 𝐿-SHIN that is both optimal from the theo-
retical point of view and efficient in practice. To the best of
our knowledge, there is no DL/uncertainty prover/reasoner
for 𝐿-SHIN. Thus we have developed in C++ a tableau
prover for 𝐿-SHIN, which uses serial of optimization
methods described above.

C++ is chosen to implement tableau prover because of
its increase efficiency, portability, and extendibility. Pointers
are intensively used for the data structures of the tableau
prover to reduce memory use and to allow caching objects
like formulas, sets of formulas, and nodes of a completion
forest. Advanced data structures of C++ with low complexity
like the templates set, map, multimap, and priority queue are
also intensively used. And it is more convenient to extending
it for other description logics in a modular way [26].

6.2. Experimental Results on Usefulness of the Optimizations.
Because neither do good benchmarks for 𝐿-SHIN seem
to exist, so we found it hard to compile a good set of test
problems. Although the Tableaux’98 and random test suites
could show how optimisations perform on propositional
modal logics, neither is very good for our purposes.

We therefore recast the K, KT, and S4 problem sets from
the LogicsWork Bench (LWB) benchmarks and the T98-sat
problem set from the DL98 benchmarks (there are 4 sets
of DL98 test suite, and only concept satisfiability tests are
employed) to be compatible with the fuzzy logic 𝐿-SHIN
over finite lattices. Due to the space limit, we omit the detailed
process of transformation. The three anterior benchmarks
measure the performance of the system when testing the
satisfiability of large concept expressions without reference
to a Tbox. Moreover, DL98 TBox problem set textttT98-sat
test is added to contain TBox axioms. The correctness of
the system is also tested by checking that the answer is as
expected.

Our algorithm is fairly detailed, so a naive implemen-
tation should be straightforward. The preprocessing opti-
misations (“partition based on connectivity” and “dealting
with TBox axioms”) described in Section 4.1 take at most
polynomial time to run and reduce the search space more
significantly than the extended framework of Donini and
Massacci [27]. So it is sensible to use them in almost

every case in our tableau prover. After preprocessing, it is
crucial to employ core satisfiability optimisations presented
in Section 4.2 that try to improve the performance of the core
satisfiability tester.

We intend to show which of the optimisations are most
effective, so we have had compile-time configuration options
included that can be used to turn on and off or vary the pre-
vious optimisations. We chose to test various combinations
with all the other optimisations enabled and then to test the
same optimisations options, with each of the optimisations
turned off one by one. The optimisations that were removed
are as follows.

(i) ALL: turn on all the optimizations.
(ii) No partition based on connectivity (NP): turn offABox

partition.
(iii) No dealing with TBox axioms (ND): turn off dealing

with TBox axioms.
(iv) No backjumping (NB): turn off backjumping.
(v) No global caching (NC): turn off global caching.

We end up with 5 configurations and ran each of these
configurations over the nine test suites from satisfiability
checking problems. For the corresponding subset of tests
and the corresponding set of options, each table cell includes
the number of solved problems, where the diamond symbol
denotes 21 (the number of test problems in the subset). For
each configuration, there are five entries corresponding to
timeouts of 1 second, 2 seconds, 4 seconds, 8 seconds, and
16 seconds.

6.2.1. K(L) Tests. Table 4 obviously reveals that, amongst
the tested configurations, turning on all the optimizations
provides the most effective method. These two other optimi-
sations are the most effective, whose absence in the exper-
iments has made them unacceptably slow. For k lin n(L)
and k lin p(L), the methods of global caching significantly
outperform backjumping.There is a nice distinction between
the two preprocessing optimisations methods. Partition
based on connectivity and dealing with TBox axioms is less
important at least within our set of test cases. For k lin n(L),
k path n(L), and k path p(L), “dealing with TBox axioms”
significantly outperforms “partition based on connectivity,”
and for the other problems, “partition based on connectivity”
outperforms “dealing with TBox axioms.”

6.2.2. KT(L) Tests. Similar testing was performed onKT(L)
tests, and results are showed in Table 5. Again, there is too
much data to present it that global caching significantly
outperforms other optimization methods in both of its
incarnations. Particularly, we have undergone an increase
of memory usage by a worst-case factor of two in case of
backjumping in comparison to no backjumping. This time,
for the most problems, the “partition based on connectivity”
method is on par with “dealing with TBox axioms.”

6.2.3. S4(L) Tests. The results of S4(L) tests, given in
Table 6, show that backjumping performs verywell compared

12 Journal of Applied Mathematics

Table 4: Results for K(L) tests.

Problem ALL NP ND NB NC
k branch n(L) 18 ⬦ ⬦ ⬦ ⬦ 15 16 18 19 ⬦ 17 20 ⬦ ⬦ ⬦ 14 16 19 20 ⬦ 7 9 10 12 15
k branch p(L) ⬦ ⬦ ⬦ ⬦ ⬦ 17 18 20 ⬦ ⬦ 18 20 ⬦ ⬦ ⬦ 17 19 ⬦ ⬦ ⬦ 8 10 10 13 16
k d4 n(L) 10 11 12 14 14 5 6 6 7 7 7 7 8 8 9 4 4 5 6 6 3 4 4 5 6
k d4 p(L) 17 20 ⬦ ⬦ ⬦ 6 6 7 7 7 8 8 9 9 9 3 4 5 6 8 4 4 4 5 5
k dum n(L) ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ 20 ⬦ ⬦ ⬦ ⬦ 19 ⬦ ⬦ ⬦ ⬦

k dum p(L) ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ 19 ⬦ ⬦ ⬦ ⬦ 18 ⬦ ⬦ ⬦ ⬦

k grz n(L) ⬦

k grz p(L) ⬦ 20 ⬦ ⬦ ⬦ ⬦

k lin n(L) 19 ⬦ ⬦ ⬦ ⬦ 6 8 10 13 17 4 7 9 13 16 16 18 20 ⬦ ⬦ 15 17 19 20 ⬦
k lin p(L) 6 8 10 12 15 6 8 11 14 16 7 10 13 16 19 17 19 ⬦ ⬦ ⬦ 15 17 19 20 ⬦
k path n(L) 11 11 13 14 14 5 5 6 6 7 4 4 4 5 6 3 3 3 4 4 2 2 3 3 3
k path p(L) 12 12 13 14 15 5 5 6 7 8 4 4 4 4 6 3 3 4 4 5 3 3 3 3 4
k ph n(L) 8 8 9 10 10 8 8 8 8 9 8 8 8 9 10 8 8 8 8 8 7 7 7 7 8
k ph p(L) 8 8 9 9 10 7 8 8 8 8 8 8 9 9 10 7 8 8 8 8 7 7 7 7 8
k ploy n(L) 20 ⬦ ⬦ ⬦ ⬦ 17 18 20 ⬦ ⬦ 18 20 ⬦ ⬦ ⬦ 11 12 13 14 16 8 9 9 10 11
k ploy p(L) 19 ⬦ ⬦ ⬦ ⬦ 18 19 ⬦ ⬦ ⬦ 19 20 ⬦ ⬦ ⬦ 11 12 14 15 17 9 10 11 12 14
k t4p n(L) 20 ⬦ ⬦ ⬦ ⬦ 11 12 14 16 17 12 14 16 17 19 6 7 8 8 10 4 5 5 6 7
k t4p p(L) 20 ⬦ ⬦ ⬦ ⬦ 11 13 15 17 18 12 15 17 18 20 6 7 9 10 12 4 4 5 5 6

Table 5: Results for KT(L) tests.

Problem ALL NP ND NB NC
kt branch n(L) 10 11 12 14 14 5 6 6 7 7 7 7 8 8 9 4 4 5 6 6 3 4 4 5 6
kt branch p(L) 17 20 ⬦ ⬦ ⬦ 6 6 7 7 7 8 8 9 9 9 3 4 5 6 8 4 4 4 5 5
kt 45 n(L) 8 9 10 11 12 8 9 10 11 12 8 9 10 11 12 8 9 10 11 13 8 9 10 11 12
kt 45 p(L) 17 18 19 20 ⬦ 17 18 19 20 ⬦ 17 18 19 20 ⬦ 17 18 19 20 ⬦ 17 18 19 20 ⬦
k dum n(L) 20 ⬦ ⬦ ⬦ ⬦ 19 ⬦ ⬦ ⬦ ⬦ 19 ⬦ ⬦ ⬦ ⬦ 17 19 ⬦ ⬦ ⬦ 13 15 16 18 19
k dum p(L) 20 ⬦ ⬦ ⬦ ⬦ 19 ⬦ ⬦ ⬦ ⬦ 19 ⬦ ⬦ ⬦ ⬦ 18 20 ⬦ ⬦ ⬦ 19 ⬦ ⬦ ⬦ ⬦

k grz n(L) ⬦

k grz p(L) ⬦

k md n(L) 8 8 8 9 9 8 8 8 8 9 7 7 7 7 8 6 6 7 7 7 4 4 4 4 5
k md p(L) 7 7 7 7 8 8 8 9 9 9 6 7 7 7 7 6 7 7 7 7 3 3 3 4 4
k path n(L) 4 4 4 5 5 4 4 4 5 5 4 4 4 4 5 3 4 4 4 4 3 3 3 4 4
k path p(L) 4 5 5 5 6 4 4 5 5 5 4 4 4 5 5 3 3 4 4 4 3 3 4 4 4
k ph n(L) 7 7 8 8 9 6 7 7 8 8 7 7 8 8 8 6 6 7 7 8 5 5 6 6 7
k ph p(L) 6 7 7 8 8 6 6 7 7 8 6 6 7 7 8 6 7 7 8 8 5 6 6 7 7
k ploy n(L) 4 4 5 6 6 4 4 5 5 6 4 5 5 5 6 3 3 5 5 5 2 2 4 4 4
k ploy p(L) 8 8 10 10 11 8 8 10 10 10 8 8 9 10 10 6 6 9 9 10 4 4 6 6 7
k t4p n(L) 3 3 5 5 6 3 3 4 5 6 3 3 4 4 6 2 2 3 4 4 1 1 3 3 3
k t4p p(L) 5 5 7 7 7 5 5 6 7 7 5 5 7 7 7 1 2 2 4 4 1 1 2 2 3

to other methods. This result is surprising; global caching
is less effective at almost all in this test suite. The probable
reason for the ineffectiveness of the method is that, with
such a small number of literals in the successor nodes, the
purely propositional problems can always be worked out
deterministically, while the performance is contingent on the
efficiency of propositional reasoning at the root node.

There appears to be no clear winner between the two
methods “partition based on connectivity” and “dealing

with TBox axioms.” “Dealing with TBox axioms” method
outperforms the “partition based on connectivity” method
for most problems, and for the problems s4 ipc p(L) and
s4 path p(L), “dealing with TBox axioms” method beats
the “partition based on connectivity” method. However, the
differences are not great.

6.2.4. K(L) TBox Tests. Due to latticed LWB benchmarks
not covering TBox problem, so test on the test set DL’98

Journal of Applied Mathematics 13

Table 6: Results for S4(L) tests.

Problem ALL NP ND NB NC
s4 branch n(L) 10 11 12 13 15 9 10 11 12 14 8 9 10 11 12 8 9 10 12 13 8 9 10 11 13
s4 branch p(L) 12 13 14 16 17 11 12 13 14 15 10 11 12 13 14 10 11 13 14 16 10 11 13 14 16
s4 45 n(L) 12 15 19 ⬦ ⬦ 10 13 16 20 ⬦ 9 12 15 18 ⬦ 6 9 11 14 17 7 9 12 15 18
s4 45 p(L) 15 19 ⬦ ⬦ ⬦ 13 16 19 ⬦ ⬦ 12 15 18 20 ⬦ 9 12 16 20 ⬦ 10 13 17 20 ⬦
s4 ipc n(L) 9 11 12 15 16 11 13 15 16 18 10 12 14 16 17 10 12 12 14 15 10 12 12 15 15
s4 ipc p(L) 16 19 ⬦ ⬦ ⬦ 14 16 18 19 ⬦ 15 17 19 20 ⬦ 18 ⬦ ⬦ ⬦ ⬦ 17 20 ⬦ ⬦ ⬦

s4 grz n(L) 18 ⬦

s4 grz p(L) ⬦

s4 md n(L) 8 8 9 9 10 7 8 8 9 9 6 6 7 7 8 5 6 6 7 7 6 6 7 7 8
s4 md p(L) 7 7 8 8 9 6 6 7 8 8 6 7 7 8 8 4 4 5 5 5 5 5 6 6 7
s4 path n(L) 3 3 3 3 4 2 3 3 3 3 2 3 3 3 3 3 4 4 4 4 3 3 3 3 3
s4 path p(L) 4 4 4 4 4 3 3 4 4 4 3 4 4 4 4 4 4 5 5 5 3 4 4 4 4
k ph n(L) 9 9 9 10 10 8 9 9 9 10 8 8 9 9 10 8 8 8 9 9 10 10 10 10 11
k ph p(L) 11 11 11 11 12 10 10 10 10 11 9 10 10 10 10 7 8 8 8 8 12 12 12 13 13
s4 s5 n(L) 7 7 8 8 8 7 7 7 8 8 7 7 7 7 8 6 7 7 7 7 6 6 6 6 7
s4 s5 p(L) ⬦ 20 ⬦ ⬦ ⬦ ⬦

s4 t4p n(L) 3 4 4 6 7 3 3 4 6 7 3 3 4 6 6 2 2 3 3 4 1 1 3 3 4
s4 t4p p(L) 5 7 7 9 10 5 7 8 9 10 5 7 8 8 10 4 4 6 6 8 3 4 4 6 6

Table 7: Results for K(L) TBox tests.

Problem ALL NP ND NB NC
k branch n(L) 5 5 6 6 7 5 5 5 6 7 4 5 5 6 6 4 4 5 5 6 5 5 6 6 7
k branch p(L) 8 8 9 9 10 8 8 9 9 9 7 7 8 8 9 6 7 7 8 8 8 8 9 9 10
k d4 n(L) 4 5 5 5 6 4 4 5 5 6 3 3 4 5 6 3 3 4 4 5 4 5 5 5 5
k d4 p(L) 16 18 19 20 ⬦ 15 18 19 20 20 13 15 17 18 18 14 14 15 16 17 13 15 16 17 18
k dum n(L) 17 19 20 ⬦ ⬦ 17 18 20 ⬦ ⬦ 10 12 15 17 20 8 10 13 16 19 16 18 19 20 ⬦
k dum p(L) ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ 20 ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦ ⬦

k grz n(L) 13 15 17 19 ⬦ 12 14 16 18 ⬦ 11 13 14 17 20 10 12 14 17 19 13 15 17 18 20
k grz p(L) 6 9 11 14 16 5 8 10 13 15 5 7 9 11 15 4 6 9 11 13 4 7 10 12 14
k lin n(L) 10 10 11 11 12 10 10 10 11 11 9 10 10 10 11 9 9 10 10 10 9 10 10 11 11
k lin p(L) 7 7 7 8 8 7 7 7 7 8 6 6 7 7 8 6 6 7 7 7 6 6 7 7 7
k path n(L) 12 12 13 14 14 11 12 13 13 14 6 6 9 10 10 5 5 7 7 7 11 12 13 13 14
k path p(L) 14 14 15 15 16 13 14 14 15 15 11 11 9 9 11 12 12 7 7 8 9 9 10 10 11
k ph n(L) 10 10 13 13 15 9 10 12 12 15 9 10 13 13 15 6 7 7 8 8 10 10 12 13 14
k ph p(L) 12 12 16 16 19 11 12 15 16 18 10 11 14 14 14 8 8 10 10 11 10 10 12 12 13
k ploy n(L) 16 19 ⬦ ⬦ ⬦ 17 18 20 ⬦ ⬦ 12 16 20 ⬦ ⬦ 11 15 19 20 ⬦ 12 16 20 ⬦ ⬦
k ploy p(L) 18 ⬦ ⬦ ⬦ ⬦ 17 20 ⬦ ⬦ ⬦ 15 18 ⬦ ⬦ ⬦ 14 17 20 ⬦ ⬦ 14 17 19 ⬦ ⬦
k t4p n(L) 7 9 11 14 17 7 9 11 15 17 6 8 10 13 15 4 7 9 13 16 5 7 9 12 15
k t4p p(L) 10 13 15 17 20 10 12 15 17 19 7 11 14 16 18 6 10 13 15 18 6 10 13 15 17

T98 kb is employed. As shown in Table 7, in this test, “dealing
with TBox axioms” is by far themost important optimisation.
The next most important optimisations are global caching
and backjumping. That is because of explosion in the large
size of the search space (2𝑘𝑛) in the problems, which results
in a destructive degradation in performance, even when
optimisations such as global caching and backjumping are
used. “Partition based on connectivity” method is almost
totally ineffective.

The results reveal that, amongst the tested configurations,
global caching is more efficient over the other methods in
most but not all cases. Since global caching severely prunes
the search space by avoiding multiple expansions of the same
node, by enabling greater propagation of sat and unsat
via subset checking and hence allowing more cutoffs to be
done [28]. Backjumping approach can be applied together
with global caching well, which reduces the number of
tested nondeterministic branches largely especially for S4(L)

14 Journal of Applied Mathematics

Tests, while in particular, the method may increase memory
usage. When considering TBox problem, “dealing with TBox
axioms” is the most important optimisation. Sometimes
“partition based on connectivity”method is very effective but
not all the time.

As shown in the test results, the difference between using
preprocessing optimizations or not is less significant than the
core satisfiability optimization at least within our set of test
cases. Furthermore, preprocessing optimizations cooperates
very well with core satisfiability optimization techniques in
most of the time.

7. Conclusion and Future Work

Many papers offer technical contributions but without prac-
tical motivations. Our method for 𝐿-SHIN is definitely
promising and should be extended to more expressive logics
to test whether it remains feasible. In the further way, the
tableau algorithm can be used on the large scale data set
such as linked data to solve the practical problem. As far as
we know 𝐿-SHIN is the first presentation of a reasoning
algorithm for such complex fuzzy DL languages over finite
residuated lattices. Besides, this is the first time that optimized
techniques were used to tableau reasoning for completion
forest in DLs augmented by DeMorgan lattices. This enabled
us to treat the case of general concept inclusions instead of
the simpler acyclic TBoxes.

Of course, there remains plenty of work to do with the
tableau algorithm of 𝐿-SHIN, such as to directly and
efficiently handle general TBoxes and to deal with concrete
domains. We intend to extend 𝐿-SHIN also for more
description logics under more semantics. Besides, the pre-
sented dependency management allows for more informed
backjumping, while also supporting the creation of precise
cache unsatisfiability entries [29]. Among others, better
heuristics are needed to guide the choices needed during
tableau reasoning, and better use of cached information is
expected to provide significant benefits. Additionally, like
other related research areas such as Semantic Web, most
DL reasoners are implemented in Java for usability by many
applications, so the Java implementation of the optimized
algorithm will be carried out in the future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] F. Bobillo and U. Straccia, “Reasoning with the finitely many-
valued Łukasiewicz fuzzy description logic 𝑆𝑅𝑂𝐼𝑄,” Informa-
tion Sciences, vol. 181, no. 4, pp. 758–778, 2011.

[2] U. Straccia, “Description logics over lattices,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 14, no. 1, pp. 1–16, 2006.

[3] S. Borgwardt and R. Peñaloza, “Description logics over lat-
tices with multi-valued ontologies,” in Proceedings of the 22nd

International Joint Conference onArtificial Intelligence, vol. 2, pp.
768–773, AAAI Press, 2011.

[4] S. Borgwardt and R. Peñaloza, “Fuzzy ontologies over lattices
with t-norms,” inProceedings of the 24th InternationalWorkshop
on Description Logics (DL ’11), CEUR Electronic Workshop
Proceedings, 2011.

[5] S. Borgwardt and R. Peñaloza, “A tableau algorithm for fuzzy
description logics over residuated de morgan lattices,” in Pro-
ceedings of the 6th International Conference on Web Reasoning
andRule Systems (RR ’12),M.Krötzsch andU. Straccia, Eds., vol.
7497 of Lecture Notes in Computer Science, pp. 9–24, Springer,
2012.

[6] S. Borgwardt and R. Peñaloza, “Finite lattices do not make
reasoning inALC harder,” in URSW, pp. 51–62, 2011.

[7] P. Hájek, “Making fuzzy description logic more general,” Fuzzy
Sets and Systems, vol. 154, no. 1, pp. 1–15, 2005.

[8] P. Hájek, “On witnessed models in fuzzy logic. III. Witnessed
Gödel logics,” Mathematical Logic Quarterly, vol. 56, no. 2, pp.
171–174, 2010.

[9] U. Straccia, “Reasoning within fuzzy description logics,” Journal
of Artificial Intelligence Research, vol. 14, pp. 137–166, 2001.

[10] G. Stoilos, G. Stamou, J. Pan, N. Simou, and V. Tzouvaras,
“Reasoning with the fuzzy description logic f -SHIN: theory,
practice and applications,” in Uncertainty Reasoning For the
Semantic Web I, pp. 262–281, 2008.

[11] G. Stoilos, G. Stamou, J. Z. Pan, V. Tzouvaras, and I. Horrocks,
“Reasoning with very expressive fuzzy description logics,”
Journal of Artificial Intelligence Research, vol. 30, no. 5, pp. 273–
320, 2007.

[12] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall,
Upper Saddle River, NJ, USA, 1995.

[13] I. Horrocks, U. Sattler, and S. Tobies, “Reasoning with indi-
viduals for the description logic SHIQ,” in Proceedings of the
17th International Conference on Automated Deduction (CADE
’00), D. McAllester, Ed., vol. 1831 of Lecture Notes in Computer
Science, pp. 482–496, Springer, 2000.

[14] S. Tobies, “Complexity results and practical algorithms for log-
ics in knowledge representation,” Journal of Artificial Intelligence
Research, vol. 12, pp. 199–217, 2000.

[15] F. Bou, M. Cerami, and F. Esteva, “Finite-valued lukasiewicz
moda logic is pspace-complete,” in Proceedings of the 22nd
International Joint Conference On Artificial Intelligence (IJCAI
’11), vol. 2, pp. 774–779, AAAI Press, 2011.

[16] V. Haarslev, H. I. Pai, and N. Shiri, Optimizing Tableau Reason-
ing in Alc Extended with Uncertainty, 2008.

[17] N. Simou, T. Mailis, G. Stoilos, and G. Stamou, “Optimization
techniques for fuzzy description logics,” in Proceedings of the
International Workshop on Description Logics (DL ’10), pp. 244–
254, 2010.

[18] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider, “Optimizing
terminological reasoning for expressive description logics,”
Journal of Automated Reasoning, vol. 39, no. 3, pp. 277–316, 2007.

[19] D. Tsarkov and I. Horrocks, “Efficient reasoning with range
and domain constraints,” in Proceedings of the Description Logic
Workshop (DL ’04), vol. 104, pp. 41–50, 2004.

[20] I. Horrocks, U. Hustadt, U. Sattler, and R. Schmidt, “Computa-
tional modal logic,” in Handbook of Modal Logic, P. Blackburn,
J. van Benthem, and F. Wolter, Eds., chapter 4, pp. 181–245,
Elsevier, 2006.

[21] A. B. Baker, Intelligent backtracking on constraint satisfaction
problems: experimental and theoretical results [Ph.D. thesis],

Journal of Applied Mathematics 15

University of Oregon, Eugene, Ore, USA, 1995, UMI Order no.
GAX95-29049.

[22] F. Oppacher and E. Suen, “HARP: a tableau-based theorem
prover,” Journal of Automated Reasoning, vol. 4, no. 1, pp. 69–
100, 1988.

[23] R. Goré and L. Postniece, “An experimental evaluation of
global caching for ALC (system description),” in Automated
Reasoning, pp. 299–305, 2008.

[24] D. Tsarkov and I.Horrocks, “Ordering heuristics for description
logic reasoning,” in Proceedings of the 19th International Joint
Conference on Artificial Intelligence, pp. 609–614, 2005.

[25] P. Balsiger, A. Heuerding, and S. Schwendimann, “A benchmark
method for the propositional modal logics K, KT, S4,” Journal of
Automated Reasoning, vol. 24, no. 3, pp. 297–317, 2000.

[26] L. A. Nguyen, “An efficient tableau prover using global caching
for the description logicALC,” Fundamenta Informaticae, vol.
93, no. 1–3, pp. 273–288, 2009.

[27] F. M. Donini and F. Massacci, “EXPtime tableaux for ALC,”
Artificial Intelligence, vol. 124, no. 1, pp. 87–138, 2000.

[28] R. Goré and L. A. Nguyen, “Optimised exptime tableaux for
ALC using sound global caching, propagation and cutoffs,”
2007, http://www.mimuw.edu.pl/∼nguyen/papers.

[29] A. Steigmiller, T. Liebig, and B. Glimm, “Extended caching,
backjumping and merging for expressive description logics,” in
Automated Reasoning, vol. 7364 of Lecture Notes in Computer
Science, pp. 514–529, Springer, Heidelberg, Germany, 2012.

