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In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete, but in the
real natural ecosystem, impulsive diffusion provides a more suitable manner to model the actual dispersal (or migration) behavior
for many ecological species. In addition, the species not only requires some time to disperse or migrate among the patches but also
has some possibility of loss during dispersal. In view of these facts, a single speciesmodel with dissymmetric bidirectional impulsive
diffusion and dispersal delay is formulated. Criteria on the permanence and extinction of species are established. Furthermore, the
realistic conditions for the existence, uniqueness, and the global stability of the positive periodic solution are obtained. Finally,
numerical simulations and discussion are presented to illustrate our theoretical results.

1. Introduction

In the last few years, mathematicians and ecologists have
been actively investigating the dispersal of populations, a
ubiquitous phenomenon in population dynamics. Levin [1]
showed that both spatial dispersal of populations and popu-
lation dynamics aremuch affected by spatial heterogeneity. In
real life, dispersal often occurs among patches in ecological
environments; because of the ecological effects of human
activities and industries, such as the location of manufac-
turing industries and the pollution of the atmosphere, soil,
and rivers, reproduction- and population-based territories
and other habitats have been broken into patches. Thus,
realistic models should include dispersal processes that take
into consideration the effects of spatial heterogeneity.

In recent years, increasing attention has been paid to the
dynamics of a large number of mathematical models with
diffusion, and many nice results have been obtained. The
persistence and extinction for ordinary differential equation
and delayed differential equationmodels were investigated in
[2–6]. Global stability of equilibrium and periodic solution
for diffusing model were studied in [7–12]. However, in all
of above population dispersing systems, it is always assumed
that the dispersal occurs at every time. For example, in [7],

Beretta and Takeuchi proposed the following single-species
diffusion Volterra models with continuous time delays:
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where𝑁 = {1, . . . , 𝑛}𝑛 is the number of patches, and 𝑥

𝑖
is the

population density in the 𝑖th patch.The form of the dispersal
established in this model is continuous; that is, the dispersal
is always happening at any time.

Actually, real dispersal behavior is very complicated and
is always influenced by environmental change and human
activities. In many practical situations, it is often the case
that maybe one of the species suffers a significant loss or
increase in density for some reason at some transitory time
slots. These short-term perturbations are often assumed to
be in the form of impulses in the modeling process. For
example, when winter comes, birds will migrate between
patches in search for a better environment, whereas they do
not diffuse in other seasons, and the excursion of foliage
seeds occurs during a fixed period of time every year.
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Therefore, impulsive differential equations [13] provide a
natural description of such system. With the developments
and applications of impulsive differential equations, theories
of impulsive differential equations have been introduced into
population dynamics, andmany important studies have been
performed [14–20].

In [14], the authors studied the following autonomous
single-speciesmodel with impulsively bidirectional diffusion:
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𝑖
(𝑛𝜏

−
) =

lim
𝑡→𝑛𝜏

−𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝜏) represents the density of population

in the 𝑖th patch before the 𝑛th diffusion pulse at time 𝑡 =

𝑛𝜏 (𝜏 the period of dispersal between any two pulse events
is a positive constant, 𝑛 = 1, 2, . . .). It is assumed here
that the net exchange from the 𝑗th patch to 𝑖th patch is
proportional to the difference 𝑥

𝑗
−𝑥

𝑖
of population densities.

The dispersal behavior of populations between two patches
occurs only at the impulsive instants 𝑛𝜏. Obviously, in this
model, species 𝑥 inhabits, respectively, two patches before the
pulse appears, and when the time at the pulse comes, species
𝑥 in two patches disperses from one patch to the other. The
boundedness and global stability of positive periodic solution
were obtained.

Time delay often appears in many control systems (such
as aircraft, chemical, or process control systems) either in
the state, the control input, or the measurements. In order
to reflect the dynamical behaviors of models that depend on
the past history of system, it is often necessary to incorporate
time delays into systems [21]. There have been extensive
theoretical works on delay differential equations in the past
three decades. The research topics include global asymptotic
stability of equilibria, existence of periodic solutions, compli-
cated behavior, and chaos (e.g., [8, 22–24]).

Takeuchi et al. in [25] studied the following population
model with time delays that introduced the dispersal time for
individuals to move from one patch to other patches:
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where 𝑏
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𝑖 = 1, . . . , 𝑛, are constants, and some of themmay be negative.

In this paper, the authors took account of dispersal delay;
however, they assumed that the dispersal is continuous.

It is well known that the application of impulsive delay
differential equations to population dynamics has been an
interesting topic since it is reasonable and correct in mod-
elling the evolution of population, such as pest management
[26].

However, in all of the impulsive dispersal models studied
up till now, there are few papers considering the dispersal
delay, which is really a pity. Actually, in the real world, the
migration between patches is usually not immediate; that is,
dispersal processes often involve time delay. For example,
elks move from higher to lower elevations to escape cold in
winter, and ungulates migrate annually among grazing areas
to follow spatiotemporal changes in rainfall. Obviously, this
kind of dispersal delay between patches extensively exists
in the real world. Therefore, it is a very basilic problem to
research this kind of population dynamic systems.

Moreover, in the above impulsive dispersal models, it
is assumed that the dispersal occurs between homogeneous
habitat patches; that is, the dispersal rate between any two
patches is equal or symmetrical [1, 11], which is really too
idealized for a real ecosystem. Actually, in the real world, due
to the heterogeneity of the spatiotemporal distributions in
nature, movement between fragments of patches is usually
not the same rate in both directions. In addition, once
the individuals leave their present habitat, they may not
successfully reach a new one, due to predation, harvesting,
or other reasons, so that there are traveling losses. Thus,
the dispersal rates among these patches are not always the
same. Rather, in real ecological situations they are different
(or dissymmetrical) [27, 28].

Therefore, it is our basilic goal to investigate a single
species model with dissymmetric impulse dispersal and
dispersal delay. Motivated by the calculation hereinbefore,
in this paper, we extend system (2) with dispersal delay and
dispersal loss and consider it

𝑑𝑥

1 (
𝑡)

𝑑𝑡

= 𝑥

1 (
𝑡) [𝑎1

− 𝑏

1
𝑥

1 (
𝑡)] ,

𝑑𝑥

2 (
𝑡)

𝑑𝑡

= 𝑥

2 (
𝑡) [𝑎2

− 𝑏

2
𝑥

2 (
𝑡)] , 𝑡 ̸= 𝑛𝜏,

Δ𝑥

1 (
𝑡) = 𝑑

2
𝑥

2
(𝑡 − 𝜏

0
) − 𝐷

1
𝑥

1 (
𝑡) ,

Δ𝑥

2 (
𝑡) = 𝑑

1
𝑥

1
(𝑡 − 𝜏

0
) − 𝐷

2
𝑥

2 (
𝑡) , 𝑡 = 𝑛𝜏,

(4)

where 𝐷

𝑖
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emigrating

from the 𝑖th patch and 𝑑
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immigrating from the 𝑖th patch. Here we assume 0 ≤ 𝑑
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≤
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≤ 1, which means that there possibly exists mortality

during migration between two patches. 𝜏
0
≤ 𝜏 stands for the

time delay; that is, a period of time of species 𝑥 dispersing
between patches.

The organization of this paper is as follows. In Section 2,
as preliminaries, the definition of permanence and some
useful lemmas are introduced. Fromdiscrete dynamic system
theory, we establish the stroboscopic map of system (4),
by which we can obtain the dynamical behaviors of it. In
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Section 3, the results of permanence and extinction for the
system are presented. The existence and the uniqueness of
the positive periodic solution for system (4) are established
in Section 4. In Section 5, using the discrete dynamic system
theory in [29], we can get the global stability of the positive
periodic solution for the system. Finally, we give a brief
discussion and our theoretical results are conformed by
numerical simulations.

2. Preliminaries

In this section we introduce a definition and some notations
and state some results which will be useful in subsequent
sections.
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Motivated by the biological background of system (4), in
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by the fundamental theory of impulsive functional differ-
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Remark 6. System (12) is a difference system, which means
that densities of population in two patches have values at
the previous pulse. We are, in other words, stroboscopically
sampling at its pulsing period. The dynamical behavior of
system (12), coupled with (11), determines the dynamical
behavior of system (4). In the following sections, wewill focus
our attention on system (12) and investigate various aspects of
its dynamical behavior.
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ℎ

2
𝑒

𝑎
2
𝜏
0
+ 𝑙

2
𝑥

2

,

𝐹

2
(𝑥

1
, 𝑥

2
) =

(1 − 𝐷

2
) 𝑥

2

ℎ

2
+ 𝑐

2
𝑥

2

+

𝑑

1
𝑥

1

ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1

.

(13)

The set of all iterations of the map 𝐹 is equivalent to the set
of all density sequences generated by system (12); 𝐹(𝑥) is the
map evaluated at the point 𝑥 = (𝑥

1
, 𝑥

2
) ∈ 𝑅

2

+
. Consequently,

in system (12), 𝐹𝑛 describes the population densities in the
time 𝑛𝜏.

On the positivity of solutions of system (4) we have the
following result.

Lemma 7. The solution 𝑥(𝑡, 𝑡

0
, 𝜙) of system (4) with initial

condition (5) is positive, that is, 𝑥(𝑡, 𝑡
0
, 𝜙) > 0 on the interval

of the existence.

The proof of Lemma 7 is simple; we hence omit it here.

3. Permanence and Extinction

In this section, we present conditions to ensure that system
(12) is permanent and extinct which will imply the perma-
nence and extinction of system (4).The permanence plays an
important role in mathematical ecology since the criterion of
permanence for ecological systems is a condition ensuring the
long-term survival of all species. So, we firstly prove system
(12) is permanent.

Theorem 8. Suppose

1 − 𝐷

𝑖
− ℎ

𝑖
> 0, 𝑖 = 1, 2, (H

1
)

hold; then system (12) is permanent.

Proof. Let 𝑥
𝑖
(𝑡) ∈ 𝑃𝐶

 be the solution of system (4) satisfying
the initial conditions (5). From the first equation of system
(12), we have

𝑥

𝑛+1

1
=

1 − 𝐷

1

ℎ

1
(𝑥

𝑛

1
)

−1
+ 𝑐

1

+

𝑑

2

ℎ

2
𝑒

𝑎
2
𝜏
0
(𝑥

𝑛

2
)

−1
+ 𝑙

2

<

1 − 𝐷

1

𝑐

1

+

𝑑

2

𝑙

2

.

(14)

Similarly, we have

𝑥

𝑛+1

2
=

1 − 𝐷

2

ℎ

2
(𝑥

𝑛

2
)

−1
+ 𝑐

2

+

𝑑

1

ℎ

1
𝑒

𝑎
1
𝜏
0
(𝑥

𝑛

1
)

−1
+ 𝑙

1

<

1 − 𝐷

2

𝑐

2

+

𝑑

1

𝑙

1

.

(15)

Hence, by (14) and (15) we know that system (12) has an
ultimately upper bound.

Next, we prove that all the solutions of system (4) are
ultimately below bounded. Since 𝑑

𝑖
≥ 0 (𝑖 = 1, 2), from the

third equation of system (4), we have

𝑥

1
(𝑛𝜏

+
) = 𝑥

1
(𝑛𝜏

−
) + Δ𝑥

1 (
𝑛𝜏)

= (1 − 𝐷

1
) 𝑥

1 (
𝑛𝜏) + 𝑑

2
𝑥

2
(𝑛𝜏 − 𝜏

0
)

≥ (1 − 𝐷

1
) 𝑥

1 (
𝑛𝜏) .

(16)

Similarly,

𝑥

2
(𝑛𝜏

+
) ≥ (1 − 𝐷

2
) 𝑥

2 (
𝑛𝜏) . (17)

Thus, system (4) becomes

�̇�

1 (
𝑡) = 𝑥

1 (
𝑡) [𝑎1

− 𝑏

1
𝑥

1 (
𝑡)] , �̇�2 (

𝑡)

= 𝑥

2 (
𝑡) [𝑎2

− 𝑏

2
𝑥

2 (
𝑡)] , 𝑡 ̸= 𝑛𝜏,

𝑥

1
(𝑛𝜏

+
) ≥ (1 − 𝐷

1
) 𝑥

1 (
𝑛𝜏) , 𝑥2

(𝑛𝜏

+
)

≥ (1 − 𝐷

2
) 𝑥

2 (
𝑛𝜏) , 𝑡 = 𝑛𝜏.

(18)

From (18), we find that there is no relation between 𝑥

1
(𝑡) and

𝑥

2
(𝑡). Therefore, we will discuss them, respectively;

�̇�

1 (
𝑡) = 𝑥

1 (
𝑡) [𝑎1

− 𝑏

1
𝑥

1 (
𝑡)] , 𝑡 ̸= 𝑛𝜏,

𝑥

1
(𝑛𝜏

+
) ≥ (1 − 𝐷

1
) 𝑥

1 (
𝑛𝜏) , 𝑡 = 𝑛𝜏,

�̇�

2 (
𝑡) = 𝑥

2 (
𝑡) [𝑎2

− 𝑏

2
𝑥

2 (
𝑡)] , 𝑡 ̸= 𝑛𝜏,

𝑥

2
(𝑛𝜏

+
) ≥ (1 − 𝐷

2
) 𝑥

2 (
𝑛𝜏) , 𝑡 = 𝑛𝜏.

(19)

If (H
1
) holds, fromRemark 4, we can obtain that the auxiliary

system

�̇�

1 (
𝑡) = 𝑢

1 (
𝑡) [𝑎1

− 𝑏

1
𝑢

1 (
𝑡)] , 𝑡 ̸= 𝑛𝜏,

𝑢

1
(𝑛𝜏

+
) = (1 − 𝐷

1
) 𝑢

1 (
𝑛𝜏) , 𝑡 = 𝑛𝜏,

(20)

has a unique positive periodic solution 𝑢

∗

1
(𝑡) = 𝑥

∗

1
(𝑡) which

is globally asymptotically stable.
Let 𝑢
1
(𝑡) be the solution of system (20) with initial value

𝑢

1
(0

+
) = 𝑥

1
(0

+
). By Lemma 2, we have

𝑥

1 (
𝑡) ≥ 𝑢

1 (
𝑡) , ∀𝑡 ≥ 0. (21)

Hence, for any 𝜀 > 0 sufficiently small, there exists a 𝑇

1
> 0

such that

𝑥

1 (
𝑡) ≥ 𝑥

∗

1
(𝑡) − 𝜀 ≜ 𝑚

1
, for 𝑡 ≥ 𝑇

1
. (22)
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Similarly, if (H
1
) holds, for above 𝜀 > 0, there exists a 𝑇

2
> 0

such that

𝑥

2 (
𝑡) ≥ 𝑥

∗

2
(𝑡) − 𝜀 ≜ 𝑚

2
, for 𝑡 ≥ 𝑇

2
. (23)

Denote𝑚 = min{𝑚
1
, 𝑚

2
} and 𝑇 = max{𝑇

1
, 𝑇

2
}; then we have

𝑥

1
(𝑡) > 𝑚 and 𝑥

2
(𝑡) > 𝑚, 𝑡 ≥ 𝑇. Finally, we can determine

that there exist constants 𝛼

𝑖
, 𝛽
𝑖
(0 < 𝛼

𝑖
< 𝛽

𝑖
) (𝑖 = 1, 2),

such that 𝛼
1

≤ lim inf
𝑛→∞

𝑥

𝑛

1
≤ lim sup

𝑛→∞
𝑥

𝑛

1
≤ 𝛽

1
, and

𝛼

2
≤ lim inf

𝑛→∞
𝑥

𝑛

2
≤ lim sup

𝑛→∞
𝑥

𝑛

2
≤ 𝛽

2
. The proof of

Theorem 8 is completed.

Next, we present condition to ensure that system (12) is
extinct.

Theorem 9. System (12) is extinct if

[

𝑑

1
𝑑

2

𝑒

(𝑎
1
+𝑎
2
)𝜏
0

− (1 − 𝐷

1
) (1 − 𝐷

2
)] 𝑒

(𝑎
1
+𝑎
2
)𝜏

+ 𝑒

𝑎
1
𝜏
(1 − 𝐷

1
) + 𝑒

𝑎
2
𝜏
(1 − 𝐷

2
) ≤ 1.

(24)

Proof. Let us consider the system (13). Obviously, 𝐹(𝑥
1
, 𝑥

2
) is

continuous 𝐶1 in int (𝑅2
+
), and 𝐹(0, 0) = 0. We obtain

𝐷𝐹 (𝑥

1
, 𝑥

2
) = (

(1 − 𝐷

1
) ℎ

1

(ℎ

1
+ 𝑐

1
𝑥

1
)

2

𝑑

2
ℎ

2
𝑒

𝑎
2
𝜏
0

(ℎ

2
𝑒

𝑎
2
𝜏
0
+ 𝑙

2
𝑥

2
)

2

𝑑

1
ℎ

1
𝑒

𝑎
1
𝜏
0

(ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1
)

2

(1 − 𝐷

2
) ℎ

2

(ℎ

2
+ 𝑐

2
𝑥

2
)

2

),

𝐷𝐹 (0, 0) = (

1 − 𝐷

1

ℎ

1

𝑑

2

ℎ

2
𝑒

𝑎
2
𝜏
0

𝑑

1

ℎ

1
𝑒

𝑎
1
𝜏
0

1 − 𝐷

2

ℎ

2

).

(25)

Obviously, lim
(𝑥
1
,𝑥
2
)→ (0,0)

𝐷𝐹(𝑥

1
, 𝑥

2
) = 𝐷𝐹(0, 0); if 𝑥 >

0, 𝐷𝐹(𝑥) > 0; if 0 < 𝑥 < 𝑦, 𝐷𝐹(𝑦) < 𝐷𝐹(𝑥). We have the
characteristic equation of𝐷𝐹(0, 0):

𝜆

2
− (

1 − 𝐷

1

ℎ

1

+

1 − 𝐷

2

ℎ

2

)𝜆 +

(1 − 𝐷

1
) (1 − 𝐷

2
)

ℎ

1
ℎ

2

−

𝑑

1
𝑑

2

ℎ

1
ℎ

2
𝑒

(𝑎
1
+𝑎
2
)𝜏
0

= 0.

(26)

Let 𝜆 = 𝜌(𝐷𝐹(0, 0)); then we have

𝜆 = (

1 − 𝐷

1

ℎ

1

+

1 − 𝐷

2

ℎ

2

+ ((

1 − 𝐷

1

ℎ

1

+

1 − 𝐷

2

ℎ

2

)

2

−

4 (1 − 𝐷

1
) (1 − 𝐷

2
)

ℎ

1
ℎ

2

+

4𝑑

1
𝑑

2

ℎ

1
ℎ

2
𝑒

(𝑎
1
+𝑎
2
)𝜏
0

)

1/2

) × (2)

−1

= (

1 − 𝐷

1

ℎ

1

+

1 − 𝐷

2

ℎ

2

+

√

(

1 − 𝐷

1

ℎ

1

−

1 − 𝐷

2

ℎ

2

)

2

+

4𝑑

1
𝑑

2

ℎ

1
ℎ

2
𝑒

(𝑎
1
+𝑎
2
)𝜏
0

) × (2)

−1
.

(27)

Assume 𝜆 > 1; then by (27) we can obtain

1 − 𝐷

1

ℎ

1

+

1 − 𝐷

2

ℎ

2

+

𝑑

1
𝑑

2

ℎ

1
ℎ

2
𝑒

(𝑎
1
+𝑎
2
)𝜏
0

−

(1 − 𝐷

1
) (1 − 𝐷

2
)

ℎ

1
ℎ

2

> 1;

(28)

that is,

[

𝑑

1
𝑑

2

𝑒

(𝑎
1
+𝑎
2
)𝜏
0

− (1 − 𝐷

1
) (1 − 𝐷

2
)] 𝑒

(𝑎
1
+𝑎
2
)𝜏

+ 𝑒

𝑎
1
𝜏
(1 − 𝐷

1
) + 𝑒

𝑎
2
𝜏
(1 − 𝐷

2
) > 1,

(29)

which contradicts with (24). Therefore we have 𝜆 ≤ 1. By
Lemma 5, we can get 𝐹

𝑛
(𝑥

1
, 𝑥

2
) → (0, 0) as 𝑛 → ∞,

which means that system (12) is extinct. This completes the
proof.

4. Existence and Uniqueness of Positive
Periodic Solution

In this part, we will prove the existence and uniqueness of the
fixed points of system (12), which means that system (4) has
a uniquely positive periodic solution.

Theorem 10. If (H
1
) holds, then there exists a unique positive

fixed point 𝑥∗ = (𝑥

∗

1
, 𝑥

∗

2
) of system (12).

Proof. Corresponding to (12), let us consider the following
system:

𝑥

1
=

(1 − 𝐷

1
) 𝑥

1

ℎ

1
+ 𝑐

1
𝑥

1

+

𝑑

2
𝑥

2

ℎ

2
𝑒

𝑎
2
𝜏
0
+ 𝑙

2
𝑥

2

,

𝑥

2
=

(1 − 𝐷

2
) 𝑥

2

ℎ

2
+ 𝑐

2
𝑥

2

+

𝑑

1
𝑥

1

ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1

.

(30)

From (30), we have

𝑥

1
−

(1 − 𝐷

1
) 𝑥

1

ℎ

1
+ 𝑐

1
𝑥

1

> 0, 𝑥

2
−

(1 − 𝐷

2
) 𝑥

2

ℎ

2
+ 𝑐

2
𝑥

2

> 0; (31)

hence

𝑥

1
>

1

𝑐

1

(1 − 𝐷

1
− ℎ

1
) = 𝜉,

𝑥

2
>

1

𝑐

2

(1 − 𝐷

2
− ℎ

2
) = 𝜂.

(32)
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From (30), we also obtain

𝑥

2
=

ℎ

2
𝑒

𝑎
2
𝜏
0
[𝑥

1
− ((1 − 𝐷

1
) 𝑥

1
) / (ℎ

1
+ 𝑐

1
𝑥

1
)]

𝑑

2
− 𝑙

2
[𝑥

1
− ((1 − 𝐷

1
) 𝑥

1
) / (ℎ

1
+ 𝑐

1
𝑥

1
)]

,

𝐺 (𝑥

1
, 𝑥

2
) =

𝑑

1
𝑥

1

ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1

+

(1 − 𝐷

2
) 𝑥

2

ℎ

2
+ 𝑐

2
𝑥

2

− 𝑥

2
.

(33)

Thus

𝑥

2 (
𝜉) = 0, 𝐺 (𝜉) =

𝑑

1
𝜉

ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝜉

> 0. (34)

Let 𝑥
2

→ +∞; then𝑓(𝑥

1
) = 𝑥

1
−((1−𝐷

1
)𝑥

1
)/(ℎ

1
+𝑐

1
𝑥

1
) →

𝑑

2
/𝑙

2
. And 𝑓(𝑥

1
) is an increasing function on the interval

[𝜉, +∞). Since 𝑓(𝜉) = 0, so there exists �̄�

1
> 𝜉 such that

𝑓(�̄�

1
) = 𝑑

2
/𝑙

2
. We can easily find that 𝐺(�̄�

1
) < 0. By the zero

theory of continuous function, there exists (𝑥∗
1
, 𝑥

∗

2
) such that

𝜉 < 𝑥

∗

1
< �̄�

1
, 𝐺 (𝑥

∗

1
, 𝑥

∗

2
) = 0, (35)

𝑥

∗

2
=

ℎ

2
𝑒

𝑎
2
𝜏
0
[𝑥

∗

1
− ((1 − 𝐷

1
) 𝑥

∗

1
) / (ℎ

1
+ 𝑐

1
𝑥

∗

1
)]

𝑑

2
− 𝑙

2
[𝑥

∗

1
− ((1 − 𝐷

1
) 𝑥

∗

1
) / (ℎ

1
+ 𝑐

1
𝑥

∗

1
)]

. (36)

Next, we will prove the uniqueness of the fixed point.
It follows from (33) that we obtain

𝑑𝑥

2

𝑑𝑥

1

=

𝑑

2
ℎ

2
𝑒

𝑎
2
𝜏
0
[1 − ℎ

1
(1 − 𝐷

1
) /(ℎ

1
+ 𝑐

1
𝑥

1
)

2
]

{𝑑

2
− 𝑙

2
[𝑥

1
− ((1 − 𝐷

1
) 𝑥

1
) / (ℎ

1
+ 𝑐

1
𝑥

1
)]}

2
,

𝑑𝐺

𝑑𝑥

1

=

𝑑

1
ℎ

1
𝑒

𝑎
1
𝜏
0

(ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1
)

2
+ [

ℎ

2
(1 − 𝐷

2
)

(ℎ

2
+ 𝑐

2
𝑥

2
)

2
− 1]

𝑑𝑥

2

𝑑𝑥

1

,

𝑑𝐺

𝑑𝑥

1

= 1

× ({𝑑

2
− 𝑙

2
[𝑥

1
−

(1 − 𝐷

1
) 𝑥

1

ℎ

1
+ 𝑐

1
𝑥

1

]}

2

× (ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1
)

2
)

−1

∗ {𝑑

1
ℎ

1
𝑒

𝑎
1
𝜏
0
{𝑑

2
− 𝑙

2
[𝑥

1
−

(1 − 𝐷

1
) 𝑥

1

ℎ

1
+ 𝑐

1
𝑥

1

]}

2

+ 𝑑

2
ℎ

2
𝑒

𝑎
2
𝜏
0
(ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1
)

2

×[1 −

ℎ

1
(1 − 𝐷

1
)

(ℎ

1
+ 𝑐

1
𝑥

1
)

2
][

ℎ

2
(1 − 𝐷

2
)

(ℎ

2
+ 𝑐

2
𝑥

2
)

2
− 1]} .

(37)

Let

𝜑 (𝑥) = 𝑑

1
ℎ

1
𝑒

𝑎
1
𝜏
0
{𝑑

2
− 𝑙

2
[𝑥

1
−

(1 − 𝐷

1
) 𝑥

1

ℎ

1
+ 𝑐

1
𝑥

1

]}

2

+ 𝑑

2
ℎ

2
𝑒

𝑎
2
𝜏
0
(ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1
)

2

× [1 −

ℎ

1
(1 − 𝐷

1
)

(ℎ

1
+ 𝑐

1
𝑥

1
)

2
][

ℎ

2
(1 − 𝐷

2
)

(ℎ

2
+ 𝑐

2
𝑥

2
)

2
− 1] ;

(38)

then
𝑑𝜑 (𝑥)

𝑑𝑥

1

= 2𝑑

1
ℎ

1
𝑒

𝑎
1
𝜏
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− 𝑙
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1
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(1 − 𝐷

1
) 𝑥

1

ℎ

1
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𝑥

1

]}

× {−𝑙

2
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ℎ

1
(1 − 𝐷

1
)

(ℎ

1
+ 𝑐

1
𝑥

1
)

2
]}

+ 2𝑙

1
𝑑

2
ℎ

2
𝑒

𝑎
2
𝜏
0
(ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1
)
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ℎ

1
(1 − 𝐷

1
)

(ℎ

1
+ 𝑐

1
𝑥

1
)

2
][

ℎ

2
(1 − 𝐷

2
)

(ℎ

2
+ 𝑐

2
𝑥

2
)

2
− 1]

+ 𝑑

2
ℎ

2
𝑒

𝑎
2
𝜏
0
(ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙

1
𝑥

1
)

2

×

2𝑐

1
ℎ

1
(1 − 𝐷

1
)

(ℎ

1
+ 𝑐

1
𝑥

1
)

3
[

ℎ

2
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2
)

(ℎ
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+ 𝑐

2
𝑥

2
)

2
− 1]

+ 𝑑
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ℎ
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𝑒

𝑎
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𝜏
0
(ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑙
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𝑥
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)

2

× [1 −

ℎ
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(ℎ

1
+ 𝑐
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𝑥
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)

2
][−
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ℎ

2
(1 − 𝐷

2
)

(ℎ

2
+ 𝑐

2
𝑥
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)

3
] .

(39)

By (31), we have (1 − 𝐷

1
)/(ℎ

1
+ 𝑐

1
𝑥

1
) < 1; since ℎ

1
/(ℎ

1
+

𝑐

1
𝑥

1
) < 1, so ℎ

1
(1 − 𝐷

1
)/(ℎ

1
+ 𝑐

1
𝑥

1
)

2
< 1. Similarly, we have

ℎ

2
(1−𝐷

2
)/(ℎ

2
+𝑐

2
𝑥

2
)

2
< 1.Therefore, we obtain 𝑑𝜑(𝑥)/𝑑𝑥 <

0, which implies that 𝜑(𝑥) is a decreasing function on the
interval [𝜉, +∞).

Since
𝜑 (𝜉) = 𝑑

1
𝑑

2

2
ℎ

1
𝑒

𝑎
1
𝜏
0
+ 𝑑
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𝑒

𝑎
2
𝜏
0

× [ℎ

1
𝑒
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> 0;

(40)
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(41)

using the zero theory of continuous function, there exists a
unique point 𝜉

1
∈ (𝜉, �̄�

1
) such that 𝜑(𝜉

1
) = 0. Besides,

𝜑 (𝑥

1
) > 0, ∀𝑥

1
∈ (𝜉, 𝜉

1
) ,

𝜑 (𝑥

1
) < 0, ∀𝑥

1
∈ (𝜉

1
, +∞) ;

(42)
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Figure 1: (a), (b), (c), and (d) Dynamical behavior of system (4). Here, we take three sets of initial values (1, 1.2), (0.6, 0.8), and (0.2, 1).

thus

𝑑𝐺 (𝑥

1
)

𝑑𝑥

1

> 0, ∀𝑥

1
∈ (𝜉, 𝜉

1
) ,

𝑑𝐺 (𝑥

1
)

𝑑𝑥

1

< 0, ∀𝑥

1
∈ (𝜉

1
, +∞) ,

(43)

which, together with 𝐺(𝜉) > 0, leads to 𝐺(𝑥

1
) > 0, ∀𝑥

1
∈

(𝜉, 𝜉

1
). By 𝐺(𝜉

1
) > 0, 𝐺(�̄�

1
) < 0, we have that there exists a

unique point 𝑥∗
1
∈ (𝜉

1
, �̄�

1
) such that𝐺(𝑥

∗

1
, 𝑥

∗

2
) = 0. The proof

is completed.

5. Global Stability

Now,we prove that the positive fixed points (𝑥∗
1
, 𝑥

∗

2
) of system

(30) are globally stable by using Lemma 5, which means that
the positive periodic solution of system (4) is globally stable.

Theorem 11. If (H
1
) holds, then there exists a unique positive

fixed point 𝑥∗ = (𝑥

∗

1
, 𝑥

∗

2
) of the map 𝐹, and, for every 𝑥 =

(𝑥

1
, 𝑥

2
) > 0, 𝐹

𝑛
(𝑥) → 𝑥

∗ as 𝑛 → ∞.

Proof. For any small 𝜀
1
> 0, 𝜀

2
> 0, we make the change of

variable

𝑥

1
= 𝑢 + 𝜀

1
, 𝑥

2
= V + 𝜀

2
. (44)
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Figure 2: (a) and (b) Dynamical behavior of system (4). Here, we take three sets of initial values (1.7, 2.1), (1.9, 1.5), and (1.4, 2.2).

By (13), we get the map 𝐹(𝑢, V) = (𝐹

1
(𝑢, V), 𝐹

2
(𝑢, V)); that is,

𝑢 =

(1 − 𝐷

1
) (𝑢 + 𝜀

1
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2
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𝑒
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𝜏
0
+ 𝑙

1
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− 𝜀

2
= 𝐹

2 (
𝑢, V) .

(45)

Now, we show that 𝐹(𝑢, V) satisfies the hypotheses of
Lemma 5. It is easy to see that 𝐹(𝑢, V) is continuous, 𝐶1 in
int (𝑅

2

+
), and 𝐹(0, 0) ̸= 0.

Since

𝐷𝐹 (𝑢, V)

= (
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1
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(46)

so, lim
(𝑢,V)→ (0+ ,0+)𝐷𝐹(𝑢, V) = 𝐷𝐹(0, 0). Obviously, if (𝑢, V) >

0, then 𝐷𝐹(𝑢, V) > 0; if (0, 0) < (𝑢

1
, V
1
) < (𝑢

2
, V
2
), then

𝐷𝐹(𝑢

1
, V
1
) > 𝐷𝐹(𝑢

2
, V
2
). It satisfies all the conditions of

Lemma 5; then, for every 𝑢 > 0, V > 0, we have 𝐹

𝑛
(𝑢, V) →

(𝑥

∗

1
− 𝜀

1
, 𝑥

∗

2
− 𝜀

2
) as 𝑛 → ∞. Corresponding to 𝑥 − 𝑦

coordinate, this means, for 𝑥
1
> 𝜀

1
, 𝑥
2
> 𝜀

2
, the system (30)

tends to the unique fixed point.
It follows from the permanence of system (12) that we

have 𝑥

𝑛

1
> 𝜀

1
, 𝑥𝑛
2
> 𝜀

2
for any initial value (𝑥

1
(0

+
), 𝑥

2
(0

+
)) >

(0, 0).
From the above analysis, we can know that, for every

𝑥

1
(0

+
) > 0, 𝑥

2
(0

+
) > 0, the trajectory of system (12) will tend

to (𝑥

∗

1
, 𝑥

∗

2
). The proof is completed.

6. Numerical Simulation and Discussion

In order to test the validity of our results, first, for (4)
we use the parameters values (Val. 1) in Table 1. We can
easily test that the assumptions in Theorems 8 and 10 hold,
which means the populations 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡)) in the

two patches are permanent and have a unique periodic
solution 𝑥

∗
(𝑡) = (𝑥

∗

1
(𝑡), 𝑥

∗

2
(𝑡)) which is globally stable

(see Figure 1(a)). Moreover, if, in Table 1, we consider the
influence of time delay, then we can see that the permanence
and stability for species 𝑥 unchanged.The details are given in
Table 2. However, the longer the duration of the time delay,
the lower the limit inferior and the limit superior of 𝑥 (see
Figures 1(b), 1(c), and 1(d)). This implies that the case with
dispersal delay is harmful to live for species 𝑥.

Next, we take the parameters values (Val. 2)
in Table 1. We can easily test that assumption in
Theorem 9[(𝑑

1
𝑑

2
/𝑒

(𝑎
1
+𝑎
2
)𝜏
0
) − (1 − 𝐷

1
)(1 − 𝐷

2
)]𝑒

(𝑎
1
+𝑎
2
)𝜏

+

𝑒

𝑎
1
𝜏
(1 − 𝐷

1
) + 𝑒

𝑎
2
𝜏
(1 − 𝐷

2
) = 0.5865 < 1 holds, which
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Figure 3: (a), (b), (c), and (d) Dynamical behavior of system (4). Here, we take the initial value 𝑥

0
= (𝑥

10
, 𝑥

20
) = (1.735, 1.873).

implies the populations 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡)) in the two

patches are extinct (see Figure 2). Comparing Figure 2(a)
and Figure 2(b), we realize that system (4) with time delay
accelerates the extinction comparing with no delay (see
Figure 2). This is reasonable from a biological point of view.
Without delay means less loss during dispersion, which
implies that more members can arrive to other patches.
Otherwise, populations go extinct due to much loss. The
details are given in Table 3.

Furthermore, we take 𝑎

1
= 1.1 + 0.04 cos(𝜋𝑡), 𝑎

2
=

0.8 + 0.01 sin(𝜋𝑡), 𝑏

1
= 0.5 + 0.04 sin(𝜋𝑡), 𝑏

2
= 0.4 +

0.12 cos(𝜋𝑡),𝑑
2
= 0.55 and keep other parameters unchanged

from in Val. 1. Here we can see that the period of individual
intrinsic growth rate and density dependence rate 𝑇 =

2 is equal to the period of migration 𝜏. In this case, we
have let the period of the environment match the period
of migration. If we take 𝜏

0
= 0, from simulation (see

Figure 3(a)), we can see the populations 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡))

are permanent and have a uniquely periodic solutionwhich is
globally stable. However, if we take the migration period 𝜏 =

2.009, 2.022, respectively, with other parameters unchanged,
from numerical simulations (see Figures 3(b) and 3(c)),
we can see that population dynamics change from almost
periodic to chaotic. For Case 4 of Table 4, we consider the
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Figure 4: (a) and (b) Dynamical behavior of system (4). We take a series of initial points, such as (1.935,2.3), (1.939,2.34), and (1.943,2.38).

Table 1: Parameter values used in the simulations of Model (4).

Parameter Interpretation Val. 1 Val. 2
𝑎

1
Intrinsic growth rate of populations in patch 1 0.9 0.3

𝑎

2
Intrinsic growth rate of populations in patch 2 0.8 0.4

𝑏

1
Density dependence rate of populations in patch 1 0.75 0.1

𝑏

2
Density dependence rate of populations in patch 2 0.5 0.2

𝐷

1
Successfully emigrant rate of populations from patch 1 0.8 0.9

𝐷

2
Successfully emigrant rate of populations from patch 2 0.7 0.8

𝑑

1
Successfully immigrant rate from patch 1 to patch 2 0.6 0.7

𝑑

2
Successfully immigrant rate from patch 2 to patch 1 0.1 0.5

𝜏 The period of dispersal between two pulse events 2 2
𝜏

0
Dispersal delay between two pulse events 0 1

Val: value.

Table 2: Simulations of Model (4).

Case 𝜏

0
𝑥

1
𝑥

2
Figure

1 0 Permanent Permanent Figure 1(a)
2 1 Permanent Permanent Figure 1(b)
3 1.5 Permanent Permanent Figure 1(c)
4 2 Permanent Permanent Figure 1(d)

Table 3: Simulations of Model (4).

Case 𝜏

0
𝑥

1
𝑥

2
Figure

1 0 Extinct Extinct Figure 2(a)
2 1 Extinct Extinct Figure 2(b)

influence of time delay (see Figure 3(d)). Comparing Figures
3(c) and 3(d), we realize that system (4) with time delay
is more complicated than without. The details are given in
Table 4.

Table 4: Simulations of Model (4).

Case 𝜏 𝜏

0
𝑥

1
𝑥

2
Figure

1 2 0 PP PP Figure 3(a)
2 2.009 0 PAP PAP Figure 3(b)
3 2.022 0 PC PC Figure 3(c)
4 2.05 1.1 PC PC Figure 3(d)
PP: permanent and periodic, PAP: permanent and almost periodic, and PC:
permanent and chaotic.

Lastly, if we take 𝑎

1
= 0.9 + 0.04 cos(𝜋𝑡) and keep

other parameters unchanged with Figure 3, by numerical
simulations (see Figure 4), we find that all of the solutions
of system (4) which through the initial points will converge
to the positive periodic solution (𝑥

∗

1
, 𝑥

∗

2
). Therefore, we can

guess that under the assumptions of Theorem 10 system (4)
has a unique positive periodic solution which is globally
asymptotically stable. In addition, the periodic solution with
time delay is larger than without delay which indicates that
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the duration of the time delay is beneficial to live for species
𝑥

2
compared with species 𝑥

1
.
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