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This paper deals with the computation of the eigenvalues of two-parameter Sturm-Liouville (SL) problems using the Regularized
Sampling Method, a method which has been effective in computing the eigenvalues of broad classes of SL problems (singular, non-
self-adjoint, nonlocal, impulsive, etc.). We have shown, in this work that it can tackle two-parameter SL problems with equal ease.
An example was provided to illustrate the effectiveness of the method.

1. Introduction

In an interesting paper published in 1963, Arscott [1] showed
that the method of separation of variables used in solving
boundary value problems for Laplace’s equation leads to a
two-parameter eigenvalue problem for ordinary differential
equations with the auxiliary requirement that the solutions
satisfy boundary conditions at several points. This has led to
an extensive development of multiparameter spectral theory
for linear operators (see, e.g., [2–8]). In [9], the authors give
an overview of results on two-parameter eigenvalue prob-
lems for second order linear differential equations. Several
properties of corresponding eigencurves are given. In [5], the
authors have obtained interesting geometric properties of the
eigencurves (e.g., the condition of transversal intersections is
equivalent to the simplicity of the eigenvalues in the sense
of Chow and Hale). All the above works are concerned with
the theoretical aspect of the existence of eigenvalues. Also,
several authors have dealt with the theoretical numerical
analysis of two-parameter eigenvalue problems, [10, 11] and
the references therein as well as the works of Plestenjak
and his collaborators [12–15]. Eigenvalue problems have
played a major role in the applied sciences. Consequently,

the problem of computing eigenvalues of one-parameter
problems has attractedmany researchers (see, e.g., [16, 17] and
the references therein).

Concerning the computations of eigenvalues of one-
parameter Sturm-Liouville problems, the authors in [18]
introduced a new method based on Shannon’s sampling the-
ory. It uses the analytic properties of the boundary function.
The method has been generalized to a class of singular prob-
lems of Bessel type [19]. The books by Atkinson [20], Chow
and Hale [21], Faierman [22], McGhee and Picard [23], Slee-
man [24], Volkmer [25], and the long awaited monograph by
Atkinson andMingarelli [26] contain several results on eigen-
values of multiparameter Sturm-Liouville problems and the
corresponding bifurcation problems. However, no attempt
has been made to compute the eigenvalues of two-parameter
Sturm-Liouville problems using the approach based on the
Regularized Sampling Method introduced recently by the first
author in [27] to compute the eigenvalues of general Sturm-
Liouville problems and extended to the case of singular
[28], non-self-adjoint [29], nonlocal [30], and impulsive SLPs
[31]. We will consider, in this paper, the computation of
the eigenpairs of two-parameter Sturm-Liouville problems
with three-point boundary conditions using the Regularized
Sampling Method.
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2. The Characteristic Function

Consider the two-parameter Sturm-Liouville problem as fol-
lows,
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are positive and inC2[0, 1], 𝑞 ∈ 𝐿[0, 1], and

𝑐 ∈ (0, 1) some given constant.
By an eigenvalue of (1) we mean a value of the couple
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, 𝜇

2
) for which problem (1) has a nontrivial solution.

Conditions that insure the existence of eigenvalue are given
in [2–4, 7, 32, 33]. In fact, under fairly general conditions,
it has been shown (see [21, 34]) that there are smooth
curves of eigenvalues (actually eigenpairs). Our objective
is to effectively localize the eigencurves in the parameter
(𝜇

1
, 𝜇

2
)-plane. We should point out that we have restricted

our attention to Dirichlet boundary conditions in order to
eliminate technical details that might obscure the ideas.

We will associate with (1) the initial value problem as
follows,
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and deal first with the unperturbed case (𝑞 = 0) then with the
perturbed case (𝑞 ̸= 0).

2.1.The Unperturbed Case (𝑞 = 0). In this case, (2) reduces to
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Theorem 1. The solution 𝜑
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for
𝑖 = 1, 2.

Proof. From (3), we get the following integral equation,
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It is true for 𝑛 = 0. Assume it is true for 𝑛. We will show that
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and using the fact that (𝑛 + 1)/(𝑛 + 2) < 1, we obtain

󵄨

󵄨

󵄨

󵄨

𝜑

1,𝑛+1
(𝑥)

󵄨

󵄨

󵄨

󵄨

≤

𝑥

(𝑛 + 1)! (𝑛 + 2)!

× {𝑥∫

𝑥

0

[

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

2

𝑤

1
(𝜏) +

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

2

𝑤

2
(𝜏)] 𝑑𝜏}

𝑛+1

;

(10)

that is, (7) is true for 𝑛 + 1. Hence, it is true for all 𝑛 ≥ 0.
Now, 𝜑

1
(𝑥) = ∑

𝑛≥0
(−1)

𝑛
𝜑

1,𝑛
(𝑥) and the series is abso-

lutely and uniformly convergent since

󵄨

󵄨

󵄨

󵄨

𝜑

1
(𝑥)

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∑

𝑛≥0

(−1)

𝑛
𝜑

1,𝑛
(𝑥)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ ∑

𝑛≥0

󵄨

󵄨

󵄨

󵄨

𝜑

1,𝑛
(𝑥)

󵄨

󵄨

󵄨

󵄨

≤ 𝑥∑

𝑛≥0

1

𝑛! (𝑛 + 1)!

× {𝑥∫

𝑥

0

[

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

2

𝑤

1
(𝜏) +

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

2

𝑤

2
(𝜏)] 𝑑𝜏}

𝑛

= 𝑥𝐼

1
(

{

{

{

2

√

𝑥∫

𝑥

0

[

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

2

𝑤

1
(𝜏) +

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

2

𝑤

2
(𝜏)] 𝑑𝜏

}

}

}

)

× {𝑥∫

𝑥

0

[

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

2

𝑤

1
(𝜏) +

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

2

𝑤

2
(𝜏)] 𝑑𝜏}

−1/2

,

(11)



Abstract and Applied Analysis 3
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We will present next some estimates whose proofs are
immediate and left to the reader.
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is an entire function of (𝜇

1
, 𝜇

2
) ∈

C2 for each fixed 𝑥 ∈ (0, 1] of order (1, 1) and type ((𝑚 +

1)𝜎

1
(𝑥), (𝑚 + 1)𝜎

2
(𝑥)) and satisfies the estimate

󵄨

󵄨

󵄨

󵄨

𝛼 (𝑥) 𝜑

1
(𝑥)

󵄨

󵄨

󵄨

󵄨

∼

𝐾 (𝑥)

(

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

)

𝑚+1
,

as 󵄨󵄨
󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

󳨀→ ∞, (𝜇

1
, 𝜇

2
) ∈ R
2
,

(23)

where𝐾 depends on 𝑥 ∈ (0, 1] but is independent of (𝜇
1
, 𝜇

2
).

Let PW
𝛽
1
,𝛽
2

denote the Paley-Wiener space as follows,

PW
𝛽
1
,𝛽
2

=

{

{

{

ℎ (𝑧
1
, 𝑧
2
) entire, 󵄨󵄨󵄨󵄨ℎ (𝑧1, 𝑧2)

󵄨󵄨󵄨󵄨
≤ 𝐶 exp {𝛽

1

󵄨󵄨󵄨󵄨
𝑧
1

󵄨󵄨󵄨󵄨
+ 𝛽
2

󵄨󵄨󵄨󵄨
𝑧
2

󵄨󵄨󵄨󵄨
} ,

∬

∞

−∞

󵄨󵄨󵄨󵄨
ℎ (𝑧
1
, 𝑧
2
)
󵄨󵄨󵄨󵄨

2

𝑑𝑧
1
𝑑𝑧
2
< ∞

}

}

}

;

(24)

we have the following.

Theorem 6. 𝛼(𝑥)𝜑
1
(𝑥), as a function of (𝜇

1
, 𝜇

2
), belongs to

the Paley-Wiener space PW
𝛽
1
,𝛽
2

, where (𝛽
1
, 𝛽

2
) = ((𝑚 +

1)𝜎

1
(𝑥), (𝑚 + 1)𝜎

2
(𝑥)) for each fixed 𝑥 ∈ (0, 1].

2.2. The Perturbed Case (𝑞 ̸= 0). Let 𝜑
1
and 𝜑

2
be two linearly

independent solutions of 𝜑󸀠󸀠 + 𝑤𝜑 = 0 satisfying 𝜑
1
(0) =

𝜑

󸀠

2
(0) = 0 and 𝜑

󸀠

1
(0) = 𝜑

2
(0) = 1; then, the method of

variation of parameters shows that (2) can be written as the
integral equation as follows,

𝑦 (𝑥) = 𝜑

1
(𝑥) + ∫

𝑥

0

Φ (𝑥, 𝜉) 𝑞 (𝜉) 𝑦 (𝜉) 𝑑𝜉,
(25)

where Φ(𝑥, 𝜉) = 𝜑
1
(𝜉)𝜑

2
(𝑥) − 𝜑

2
(𝜉)𝜑

1
(𝑥).
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Here again, it is not hard to show that 𝑦(𝑥) is an entire
function of (𝜇

1
, 𝜇

2
) for each 𝑥 ∈ (0, 1], of order (1, 1) and type

(𝜎

1
(𝑥), 𝜎

2
(𝑥)). Multiplication by 𝛼 gives a function 𝛼(𝑥)𝑦(𝑥)

of (𝜇
1
, 𝜇

2
) in a Paley-Wiener space PW

𝛽
1
,𝛽
2

for each 𝑥 ∈ (0, 1].
More specifically, we have the following.

Theorem 7. The function 𝑦, defined by 𝑦(𝑥) = 𝛼(𝑥)𝑦(𝑥),
belongs to 𝑃𝑊

𝛽
1
,𝛽
2

, where (𝛽
1
, 𝛽

2
) = ((𝑚 + 1)𝜎

1
(𝑥), (𝑚 +

1)𝜎

2
(𝑥)) as a function of (𝜇

1
, 𝜇

2
) ∈ C for each 𝑥 ∈ (0, 1], and

satisfies the following estimate,

󵄨

󵄨

󵄨

󵄨

𝛼 (𝑥) 𝑦 (𝑥)

󵄨

󵄨

󵄨

󵄨

∼

𝐾 (𝑥)

(

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

)

𝑚+1
,

as 󵄨󵄨
󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

󳨀→ ∞, (𝜇

1
, 𝜇

2
) ∈ R
2
,

(26)

where𝐾 depends on 𝑥 ∈ (0, 1] but is independent of (𝜇
1
, 𝜇

2
).

Proof. Since Φ
𝑥𝑥
+ 𝑤Φ = 0, Φ(𝑡, 𝑡) = 0, and Φ

𝑥
(𝑡, 𝑡) = 1, we

have

Φ (𝑥, 𝑡) = {𝑤 (𝑡) 𝑤 (𝑥)}

−1/4 sin(∫
𝑥

𝑡

√

𝑤 (𝜉)𝑑𝜉)

− ∫

𝑥

𝑡

sin(∫
𝑥

𝑥

√

𝑤 (𝜉)𝑑𝜉)𝜓 (𝑥, 𝑥)Φ (𝑥, 𝑡) 𝑑𝑥

(27)

so that

|Φ (𝑥, 𝑡)| ∼

𝐾

4

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

≤ 𝐾

5
,

as 󵄨󵄨
󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

󳨀→ ∞, (𝜇

1
, 𝜇

2
) ∈ R
2
,

(28)

fromwhich we get, after using Gronwall’s lemma [35] on (25)
and the estimate for 𝜑

1
,

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑥)

󵄨

󵄨

󵄨

󵄨

≤𝐾

1
exp [𝜎

1
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+ 𝜎

2
(𝑥)

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

]exp{𝐾
5
∫

𝑥

0

󵄨

󵄨

󵄨

󵄨

𝑞 (𝑡)

󵄨

󵄨

󵄨

󵄨

𝑑𝑡} ,

󵄨

󵄨

󵄨

󵄨

𝑦 (1)

󵄨

󵄨

󵄨

󵄨

≤ 𝐾

7
exp [𝜎

1
(1)

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+ 𝜎

2
(1)

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

] ,

as 󵄨󵄨
󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

󳨀→ ∞, (𝜇

1
, 𝜇

2
) ∈ R
2
,

󵄨

󵄨

󵄨

󵄨

𝛼 (1) 𝑦 (1)

󵄨

󵄨

󵄨

󵄨

≤ 𝐾

8
exp [(𝑚 + 1) 𝜎

1
(1)

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+ (𝑚 + 1) 𝜎

2
(1)

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

] ,

as 󵄨󵄨
󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

󳨀→ ∞, (𝜇

1
, 𝜇

2
) ∈ R
2
.

(29)

Furthermore, we have

󵄨

󵄨

󵄨

󵄨

𝛼 (𝑥) 𝑦 (𝑥)

󵄨

󵄨

󵄨

󵄨

∼

𝐾 (𝑥)

(

󵄨

󵄨

󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

)

𝑚+1
,

as 󵄨󵄨
󵄨

󵄨

𝜇

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜇

2

󵄨

󵄨

󵄨

󵄨

󳨀→ ∞, (𝜇

1
, 𝜇

2
) ∈ R
2
,

(30)

where𝐾 depends on 𝑥 ∈ (0, 1] but is independent of (𝜇
1
, 𝜇

2
).

To summarize, in both cases, unperturbed and perturbed,
the transform 𝑦(𝑥; 𝜇

1
, 𝜇

2
) of the solution 𝑦(𝑥; 𝜇

1
, 𝜇

2
) of (2)

is in a Paley-Wiener space PW
𝛽
1
,𝛽
2

, where (𝛽
1
, 𝛽

2
) = ((𝑚 +

1)𝜎

1
(𝑥), (𝑚 + 1)𝜎

2
(𝑥)). Thus 𝑦(𝑥; 𝜇

1
, 𝜇

2
) can be recovered

at each 𝑥 ∈ (0, 1] from its samples at the lattice points
(𝜇

1𝑗
, 𝜇

2𝑘
) = (𝑗(𝜋/(𝑚 + 1)𝜎

1
(𝑥)), 𝑘(𝜋/(𝑚 + 1)𝜎

2
(𝑥))), (𝑗, 𝑘) ∈

Z2 using the rectangular cardinal series [36, 37].

Theorem 8. Let 𝑓 ∈ PW
𝛽
1
,𝛽
2

; then,

𝑓 (𝜇

1
, 𝜇

2
)

=

∞

∑

𝑗=−∞

∞

∑

𝑘=−∞

𝑓 (𝜇

1𝑗
, 𝜇

2𝑘
)

×

sin𝛽
1
(𝜇

1
− 𝜇

1𝑗
)

𝛽

1
(𝜇

1
− 𝜇

1𝑗
)

sin𝛽
2
(𝜇

2
− 𝜇

2𝑘
)

𝛽

2
(𝜇

2
− 𝜇

2𝑘
)

(31)

with the convergence of the series being uniform and in
𝐿

2

𝑑𝜇
1
𝑑𝜇
2

(R2), and 𝜇
𝑚𝑛

= 𝑛𝜋/𝛽

𝑚
,𝑚 = 1, 2, 𝑛 ∈ Z.

Let 𝜎
11
= 𝜎

1
(1), 𝜎
21
= 𝜎

2
(1), 𝜎
12
= 𝜎

1
(𝑐), and 𝜎

22
= 𝜎

2
(𝑐).

The eigenpairs are therefore (𝜇2
1
, 𝜇

2

2
), where (𝜇

1
, 𝜇

2
) solve

the nonlinear system as follows,

𝐵

1
(𝜇

1
, 𝜇

2
) = 0,

𝐵

2
(𝜇

1
, 𝜇

2
) = 0,

(32)

where

𝐵

1
(𝜇

1
, 𝜇

2
)

≜

1

𝛼 (1)

∞

∑

𝑗=−∞

∞

∑

𝑘=−∞

𝑦 (1; 𝜇

1𝑗
, 𝜇

2𝑘
)

×

sin 2 (𝑚 + 1) 𝜎

11
(𝜇

1
− 𝜇

1𝑗
)

2 (𝑚 + 1) 𝜎

11
(𝜇

1
− 𝜇

1𝑗
)

×

sin 2 (𝑚 + 1) 𝜎

21
(𝜇

2
− 𝜇

2𝑘
)

2 (𝑚 + 1) 𝜎

21
(𝜇

2
− 𝜇

2𝑘
)

,

𝐵

1
(𝜇

1
, 𝜇

2
)

≜

1

𝛼 (𝑐)

∞

∑

𝑗=−∞

∞

∑

𝑘=−∞

𝑦 (𝑐; 𝜇

1𝑗
, 𝜇

2𝑘
)

×

sin 2 (𝑚 + 1) 𝜎

12
(𝜇

1
− 𝜇

1𝑗
)

2 (𝑚 + 1) 𝜎

12
(𝜇

1
− 𝜇

1𝑗
)

×

sin 2 (𝑚 + 1) 𝜎

22
(𝜇

2
− 𝜇

2𝑘
)

2 (𝑚 + 1) 𝜎

22
(𝜇

2
− 𝜇

2𝑘
)

.

(33)
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Table 1

𝜇

1
(exact) 𝜇

2
(exact) 𝜇

1
(RSM) 𝜇

2
(RSM)

7.788149097670813 7.5908224365786845 7.78814883048352 7.590823605399021

4.194056047341936 22.273796542861913 4.194057357011064 22.273795699572364

15.597607295800684 15.165889997583099 15.597605904429917 15.1658929384375

13.87615754699624 30.597837626955204 13.876157718920586 30.59783713797321

23.40242244972004 22.744341450749697 23.40242640980619 22.744329536815076

9.51130982713563 44.296491367611544 9.511333341150682 44.29647446214639

39.31833491621106 15.670248767892955 39.31833152483279 15.670257662031721

47.18632817417246 24.620489734469363 47.186345272524804 24.62038504864854

46.81208951678993 45.483251580157955 46.813097550330646 45.480149444567346

30.03437464767369 46.558148101315844 30.034392317076748 46.55811263809656

3. A Numerical Example

We will consider in this section the two-parameter Sturm-
Liouville problem with three-point boundary conditions
given by

−𝑦

󸀠󸀠
= (𝜇

2

1
+ 𝜇

2

2
𝑥) 𝑦, 0 < 𝑥 < 1,

𝑦 (0) = 𝑦 (0.7) = 𝑦 (1) .

(34)

The general solution𝑦 of the first differential equation can
be expressed in terms of Ai and Bi functions [38] and their
first derivatives as

𝑦 (𝑥; 𝜇

1
, 𝜇

2
)

= (−1)

2/3
(Ai(

3
√

−1𝜇

2

1

𝜇

4/3

2

)Bi(
3
√

−1 (𝜇

2

1
+ 𝜇

2

2
𝑥)

𝜇

4/3

2

)

−Ai(
3
√

−1 (𝜇

2

1
+ 𝜇

2

2
𝑥)

𝜇

4/3

2

)Bi(
3
√

−1𝜇

2

1

𝜇

4/3

2

))

× (𝜇

2/3

2
(Ai󸀠(

3
√

−1𝜇

2

1

𝜇

4/3

2

)Bi(
3
√

−1𝜇

2

1

𝜇

4/3

2

)

−Ai(
3
√

−1𝜇

2

1

𝜇

4/3

2

)Bi󸀠(
3
√

−1𝜇

2

1

𝜇

4/3

2

)))

−1

.

(35)

Thus the eigenpairs (𝜇2
1
, 𝜇

2

2
) can be obtained from the

solutions (𝜇
1
, 𝜇

2
) of the following system,

𝑦 (1; 𝜇

1
, 𝜇

2
) = 0,

𝑦 (𝑐; 𝜇

1
, 𝜇

2
) = 0.

(36)

For numerical purposes, we have truncated the associated
series to |𝑗|, |𝑘| ≤ 𝑁 = 50 and took 𝑚 = 5 in the function 𝛼.
Thus, the approximate eigenpairs are seen as solutions of the
following system,

𝑦

[𝑁]
(1; 𝜇

1
, 𝜇

2
) = 0,

𝑦

[𝑁}
(𝑐; 𝜇

1
, 𝜇

2
) = 0.

(37)

Table 1 shows the exact eigenpairs together with their
approximations using the Regularized Sampling Method
(RSM).

4. Conclusion

In this paper, we have successfully computed the eigenpairs
of two-parameter Sturm-Liouville problems using the reg-
ularized sampling method, a method which has been very
efficient in computing the eigenvalues of broad classes of
Sturm-Liouville problems (singular, non-self-adjoint, non-
local, impulsive, etc.). We have shown in this work that it
can tackle two-parameter SL problems with equal ease. An
example was provided to illustrate the effectiveness of the
method.
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