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The Sturm-Liouville boundary-value problem for fourth-order impulsive differential equations is studied.The existence results for
one solution and multiple solutions are obtained. The main ideas involve variational methods and three critical points theory.

1. Introduction

The aim of the present paper is to study the following
Sturm-Liouville boundary-value problem for the fourth-
order impulsive differential equation:

𝑢
(4)
(𝑡) + 𝑢 (𝑡) = 𝜆𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ̸= 𝑡𝑖, 𝑡 ∈ [0, 𝑇] ,

Δ𝑢
󸀠󸀠󸀠
(𝑡𝑖) = 𝜆𝐼1𝑖 (𝑢 (𝑡𝑖)) , 𝑖 = 1, 2, . . . , 𝑙,

−Δ𝑢
󸀠󸀠
(𝑡𝑖) = 𝜆𝐼2𝑖 (𝑢

󸀠
(𝑡𝑖)) , 𝑖 = 1, 2, . . . , 𝑙,

𝑎𝑢 (0) + 𝑏𝑢
󸀠󸀠󸀠
(0) = 0, 𝑎𝑢 (𝑇) − 𝑏𝑢

󸀠󸀠󸀠
(𝑇) = 0,

𝑐𝑢
󸀠
(0) − 𝑑𝑢

󸀠󸀠
(0) = 0, 𝑐𝑢

󸀠
(𝑇) + 𝑑𝑢

󸀠󸀠
(𝑇) = 0,

(1)

where 𝑎, 𝑏, 𝑐, and 𝑑 are real constants, 𝜆 is a positive
parameter, 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑙 < 𝑡𝑙+1 = 𝑇, 𝑎, 𝑏, 𝑐, 𝑑 > 0,
Δ𝑢

󸀠󸀠󸀠
(𝑡𝑖) = 𝑢

󸀠󸀠󸀠
(𝑡
+
𝑖 ) − 𝑢

󸀠󸀠󸀠
(𝑡
−
𝑖 ), Δ𝑢

󸀠󸀠
(𝑡𝑖) = 𝑢

󸀠󸀠
(𝑡
+
𝑖 ) − 𝑢

󸀠󸀠
(𝑡
−
𝑖 ),

𝑢
󸀠󸀠󸀠
(𝑡
+
𝑖 ), 𝑢

󸀠󸀠
(𝑡
+
𝑖 )(𝑢

󸀠󸀠󸀠
(𝑡
−
𝑖 ), 𝑢

󸀠󸀠
(𝑡
−
𝑖 )) denote the right (left) limits,

respectively, of 𝑢󸀠󸀠󸀠(𝑡), 𝑢󸀠󸀠(𝑡) at 𝑡 = 𝑡𝑖, and𝑓 ∈ 𝐶([0, 𝑇]×𝑅, 𝑅),
𝐼1𝑖, 𝐼2𝑖 ∈ 𝐶(𝑅; 𝑅), 𝑖 = 1, 2, . . . , 𝑙.

Recently, many authors have studied the existence of
solutions for boundary-value problemswith impulsive effects
[1–16]. Variational methods are powerful tools for them. We
refer the readers to [17–19] for related basic information.

In [10], the authors studied the following equation with
impulsive effects:

−𝑢
󸀠󸀠
(𝑡) = 𝜆𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ̸= 𝑡𝑖, 𝑡 ∈ [0, 𝑇] ,

−Δ𝑢
󸀠
(𝑡𝑖) = 𝐼𝑖 (𝑢 (𝑡𝑖)) , 𝑖 = 1, 2, . . . , 𝑙,

𝑢
󸀠
(0) = 0, 𝑢 (𝑇) = 0.

(2)

By applying critical point theory to (2), several existence
results are obtained when 𝑓 is imposed some assumptions
and 𝜆 lies in suitable interval. In [8], the authors studied the
existence of solutions for the following problem:

𝑢
(𝑖V)

(𝑡) + 𝐴𝑢
󸀠󸀠
(𝑡) + 𝐵𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , a.e. 𝑡 ∈ [0, 𝑇] ,

−Δ𝑢
󸀠󸀠
(𝑡𝑗) = 𝐼1𝑗 (𝑢

󸀠
(𝑡𝑗)) , 𝑗 = 1, 2, . . . , 𝑙,

−Δ𝑢
󸀠󸀠󸀠
(𝑡𝑗) = 𝐼2𝑗 (𝑢 (𝑡𝑗)) , 𝑗 = 1, 2, . . . , 𝑙,

𝑢 (0) = 𝑢 (𝑇) = 𝑢
󸀠󸀠
(0

+
) = 𝑢

󸀠󸀠
(𝑇

−
) = 0.

(3)

They essentially proved that when 𝑓, 𝐼1𝑗, and 𝐼2𝑗 satisfy some
conditions, (3) has at least one solution or infinitely many
classical solutions via variational methods.

To the best of our knowledge, besides [12, 13] for second-
order differential equations, [8] for fourth-order differential
equation, limited work has been done in the Sturm-Liouville
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boundary-value problem, let alone higher order. Motivated
by the above facts, we study the existence of solutions
for problem (1) by applying variational methods. With the
impulse effects and the Sturm-Liouville boundary conditions
taken into consideration, the corresponding variational func-
tional 𝐽will bemore complicated than the ones of any fourth-
order boundary-value problems before. In our study, some
difficulties such as how to prove that the critical points of 𝐽
are just the solutions of problem (1) and how to prove the
space 𝑋 and the functional 𝐽 to satisfy the conditions of
the related theorems must be overcome. To verify that the
weak solution of problem (1) is just the classical solution of
(1), we construct a Fundamental Lemma 5, by which we can
easily prove that the critical point of the functional is just the
solution of problem (1).

This paper is organized as follows. In Section 2, we present
some preliminaries and establish the variational structure. In
Section 3, we discuss the existence results for one solution
and multiple solutions. In Section 4, we discuss the existence
results for positive solutions. In Section 5, we will give some
examples.

2. Preliminaries and Variational Structure

First we present some theorems that will be needed in the
proof of main results.

Theorem 1 (see Theorem 2.2 [19]). Let 𝐸 be a real Banach
space and 𝐼 ∈ 𝐶

1
(𝐸, 𝑅) satisfying the Palais-Smale condition

(PS). Suppose 𝐼(0) = 0 and

(C1) there are constants 𝜌, 𝛼 > 0 such that 𝐼|𝜕𝐵𝜌 ≥ 𝛼,

(C2) there is an 𝑒 ∈ 𝐸\𝐵𝜌 such that 𝐼(𝑒) ≤ 0.Then 𝐼 possesses
a critical value 𝑐 ≥ 𝛼. Moreover, 𝑐 can be characterized
as

𝑐 = inf
𝑔∈Γ

max
𝑢∈𝑔([0,1])

𝐼 (𝑢) , (4)

where

Γ = {𝑔 ∈ (𝐶 [0, 1] , 𝐸) : 𝑔 (0) = 0, 𝑔 (1) = 𝑒} . (5)

Theorem 2 (see Theorem 9.12 [19]). Let 𝐸 be an infinite
dimensional Banach space and let 𝐼 ∈ 𝐶

1
(𝐸, 𝑅) be even,

satisfy (PS), and 𝐼(0) = 0. If 𝐸 = 𝑉⨁𝑋, where 𝑉 is finite
dimensional, and 𝐼 satisfies that

(C3) there exist constants 𝜌, 𝛼 > 0 such that 𝐼|𝜕𝐵𝜌∩𝑋 ≥ 𝛼,

(C4) for each finite dimensional subspace𝑊 ⊂ 𝐸, there is an
𝑅 = 𝑅(𝑊) such that 𝐼 ≤ 0 on𝑊 \ 𝐵𝑅(𝑊).

Then 𝐼 has unbounded sequence of critical values.

Let 𝑋 be a nonempty set and Φ,Ψ : 𝑋 → 𝑅 two
functionals. For all 𝑟, 𝑟1, 𝑟2 > inf𝑋Φ, 𝑟2 > 𝑟1, 𝑟3 > 0, we define

𝜑 (𝑟) := inf
𝑢∈Φ−1(]−∞,𝑟[)

(sup𝑢∈Φ−1(]−∞,𝑟[)Ψ (𝑢)) − Ψ (𝑢)

𝑟 − Φ (𝑢)

,

𝛽 (𝑟1, 𝑟2) := inf
𝑢∈Φ−1(]−∞,𝑟1[)

sup
V∈Φ−1([𝑟1 ,𝑟2[)

Ψ (V) − Ψ (𝑢)

Φ (V) − Φ (𝑢)

,

𝛾 (𝑟2, 𝑟3) :=

sup𝑢∈Φ−1(]−∞,𝑟2+𝑟3[)
Ψ (𝑢)

𝑟3

,

𝛼 (𝑟1, 𝑟2, 𝑟3) := max {𝜑 (𝑟1) , 𝜑 (𝑟2) , 𝛾 (𝑟2, 𝑟3)} .

(6)

Theorem 3 (see Theorem 2.1 [2]). Let 𝑋 be a reflexive real
Banach space, Φ : 𝑋 → 𝑅 a convex, coercive, and
continuously Gâteaux differentiable functional whose Gâteaux
derivative admits a continuous inverse on 𝑋

∗, and Ψ :

𝑋 → 𝑅 a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact, such that

(1) inf𝑋Φ = Φ(0) = Ψ(0) = 0;

(2) for every 𝑢1, 𝑢2 such thatΨ(𝑢1) ≥ 0 andΨ(𝑢2) ≥ 0 one
has

inf
𝑡∈[0,1]

Ψ (𝑡𝑢1 + (1 − 𝑡) 𝑢2) ≥ 0. (7)

Assume that there are three positive constants 𝑟1, 𝑟2, 𝑟3 with
𝑟1 < 𝑟2, such that

(i) 𝜑(𝑟1) < 𝛽(𝑟1, 𝑟2);

(ii) 𝜑(𝑟2) < 𝛽(𝑟1, 𝑟2);

(iii) 𝛾(𝑟2, 𝑟3) < 𝛽(𝑟1, 𝑟2).

Then, for each 𝜆 ∈]1/𝛽(𝑟1, 𝑟2), 1/𝛼(𝑟1, 𝑟2, 𝑟3)[, the functional
Φ − 𝜆Ψ admits three distinct critical points 𝑢1, 𝑢2, 𝑢3 such
that 𝑢1 ∈ Φ

−1
(] − ∞, 𝑟1[), 𝑢2 ∈ Φ

−1
([𝑟1, 𝑟2[), and 𝑢3 ∈ Φ

−1

(] −∞, 𝑟2 + 𝑟3[).

Let us define the space𝑋 = 𝑊
2,2
([0, 𝑇], 𝑅) equipped with

the norm

‖𝑢‖ = (∫

𝑇

0

|𝑢 (𝑡)|
2
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡)

1/2

. (8)

We set the functional 𝐽 : 𝑋 → 𝑅 defined by

𝐽 (𝑢) =

1

2

‖𝑢‖
2

𝑋 − 𝜆∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡 − 𝜆

𝑙

∑

𝑖=1

∫

𝑢(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠

− 𝜆

𝑙

∑

𝑖=1

∫

𝑢
󸀠
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠,

(9)
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where ‖𝑢‖𝑋 = (∫

𝑇

0
|𝑢

󸀠󸀠
(𝑡)|

2
+ |𝑢(𝑡)|

2
𝑑𝑡 + (𝑎/𝑏)𝑢

2
(𝑇) +

(𝑎/𝑏)𝑢
2
(0) + (𝑐/𝑑)|𝑢

󸀠
(𝑇)|

2
+ (𝑐/𝑑)|𝑢

󸀠
(0)|

2
)
1/2, 𝐹(𝑡, 𝑢) =

∫

𝑢

0
𝑓(𝑡, 𝑠)𝑑𝑠. 𝐽 is differentiable for any 𝑢 ∈ 𝑋 and

𝐽
󸀠
(𝑢) (V)

= ∫

𝑇

0

(𝑢
󸀠󸀠V󸀠󸀠 + 𝑢V) 𝑑𝑡 − 𝜆

𝑙

∑

𝑖=1

𝐼1𝑖 (𝑢 (𝑡𝑖)) V (𝑡𝑖)

− 𝜆

𝑙

∑

𝑖=1

𝐼2𝑖 (𝑢
󸀠
(𝑡𝑖)) V

󸀠
(𝑡𝑖) − 𝜆∫

𝑇

0

𝑓 (𝑡, 𝑢 (𝑡)) V (𝑡) 𝑑𝑡

+

𝑎

𝑏

𝑢 (𝑇) V (𝑇) +
𝑎

𝑏

𝑢 (0) V (0) +
𝑐

𝑑

𝑢
󸀠
(𝑇) V󸀠 (𝑇)

+

𝑐

𝑑

𝑢
󸀠
(0) V󸀠 (0) .

(10)

Set the usual norm of 𝐶1
([0, 𝑇]), 𝐿2(0, 𝑇), respectively, as

follows:

‖𝑢‖𝐶1 = max{max
𝑡∈[0,𝑇]

|𝑢 (𝑡)| , max
𝑡∈[0,𝑇]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
} ,

‖𝑢‖𝐿2 = (∫

𝑇

0

𝑢
2
(𝑡) 𝑑𝑡)

1/2

.

(11)

Lemma4. Thenorm ‖𝑢‖𝑋 is equivalent to the usual norm ‖𝑢‖.

Proof. First, we will show that there exists𝑀1 > 0 such that
‖𝑢‖

2
≤ 𝑀1‖𝑢‖

2
𝑋. Since 𝑢

󸀠 is absolutely continuous in 𝑋, we
have 𝑢󸀠(𝑡) = 𝑢󸀠(0) + ∫𝑡

0
𝑢
󸀠󸀠
(𝑠)𝑑𝑠. So

∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡 = ∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢
󸀠
(0) + ∫

𝑡

0

𝑢
󸀠󸀠
(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡

≤ 2𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

2
+ 2𝑇

2
∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠,

(12)

which implies

‖𝑢‖
2

≤ ∫

𝑇

0

|𝑢 (𝑡)|
2
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡 + 2𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

2
+ 2𝑇

2
∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡

≤ (1 + 2𝑇
2
)∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠 + ∫

𝑇

0

|𝑢 (𝑡)|
2
𝑑𝑡 + 2𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ max{1 + 2𝑇2, 2𝑇𝑑
𝑐

}(∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2
+ |𝑢 (𝑡)|

2
𝑑𝑡 +

𝑐

𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

2
)

:= 𝑀1‖𝑢‖
2

𝑋,

(13)

where𝑀1 = max{1 + 2𝑇2, 2𝑇𝑑/𝑐}.
Next, we prove that there exists𝑀2 > 0 such that ‖𝑢‖2𝑋 ≤

𝑀2‖𝑢‖
2.

Obviously, max𝑡∈[0,𝑇]|𝑢(𝑡)| = 𝑢(𝜉) = 𝑢 + ∫

𝜉

𝜂
𝑢
󸀠
(𝑠)𝑑𝑠 ≤ 𝑢 +

∫

𝑇

0
|𝑢

󸀠
(𝑠)|𝑑𝑠, where 𝑢 = ∫𝑇

0
𝑢(𝑠)𝑑𝑠/𝑇 = 𝑢(𝜂). Thus, we have

(max
𝑡∈[0,𝑇]

|𝑢 (𝑡)|)

2

≤ 2(|𝑢|
2
+ (∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

2

)

≤

2

𝑇

∫

𝑇

0

|𝑢 (𝑠)|
2
𝑑𝑠 + 2𝑇∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠.

(14)

Similar to the above proof, we have

(max
𝑡∈[0,𝑇]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

≤

2

𝑇

∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠 + 2𝑇∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠.

(15)

By (14) and (15), we have

‖𝑢‖
2

𝑋 ≤ ∫

𝑇

0

|𝑢 (𝑠)|
2
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠

+

2𝑎

𝑏

(

2

𝑇

∫

𝑇

0

|𝑢 (𝑠)|
2
𝑑𝑠 + 2𝑇∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠)

+

2𝑐

𝑑

(

2

𝑇

∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠 + 2𝑇∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠)

≤ (1 +

4𝑎

𝑏𝑇

)∫

𝑇

0

|𝑢 (𝑠)|
2
𝑑𝑠 + (1 +

4𝑐𝑇

𝑑

)∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠

+ (

4𝑎𝑇

𝑏

+

4𝑐

𝑑𝑇

)∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠 := 𝑀2‖𝑢‖

2
,

(16)

where𝑀2 = max{1 + 4𝑎/𝑏𝑇, 1 + 4𝑐𝑇/𝑑, 4𝑎𝑇/𝑏 + 4𝑐/𝑑𝑇}. By
(13) and (16), the proof is complete.

Lemma 5 (Fundamental Lemma). Let 𝑢, V ∈ 𝐿1([0, 𝑇]; 𝑅). If
for every 𝑓 ∈ 𝐶

1
[0, 𝑇] with 𝑓󸀠󸀠

∈ 𝐿
1
[0, 𝑇], 𝑓(0) = 𝑓(𝑇) =

𝑓
󸀠
(0) = 𝑓

󸀠
(𝑇) = 0 satisfying ∫𝑇

0
𝑢(𝑡)𝑓

󸀠󸀠
(𝑡)𝑑𝑡 = ∫

𝑇

0
V(𝑡)𝑓(𝑡)𝑑𝑡,

then there exist 𝐶1, 𝐶2 ∈ 𝑅 such that 𝑢(𝑡) = ∫

𝑡

0
∫

𝑠

0
V(𝜃)𝑑𝜃𝑑𝑠 +

𝐶1𝑡 + 𝐶2 a.e. on [0, 𝑇].

Proof. Define 𝑤(𝑡) ∈ 𝐶([0, 𝑇]; 𝑅) by 𝑤(𝑡) = ∫

𝑡

0
∫

𝑠

0
V(𝜃)𝑑𝜃𝑑𝑠;

we have

∫

𝑇

0

𝑤 (𝑡) 𝑓
󸀠󸀠
(𝑡) 𝑑𝑡 = ∫

𝑇

0

∫

𝑡

0

∫

𝑠

0

V (𝜃) 𝑑𝜃𝑑𝑠𝑓󸀠󸀠
(𝑡) 𝑑𝑡. (17)
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By the Fubini theorem, we have

∫

𝑇

0

𝑤 (𝑡) 𝑓
󸀠󸀠
(𝑡) 𝑑𝑡 = ∫

𝑇

0

∫

𝑇

𝑠

∫

𝑠

0

V (𝜃) 𝑑𝜃𝑓󸀠󸀠
(𝑡) 𝑑𝑡𝑑𝑠

= ∫

𝑇

0

∫

𝑠

0

V (𝜃) 𝑑𝜃 (𝑓󸀠
(𝑇) − 𝑓

󸀠
(𝑠)) 𝑑𝑠

= −∫

𝑇

0

∫

𝑠

0

V (𝜃) 𝑑𝜃𝑓󸀠
(𝑠) 𝑑𝑠

= −∫

𝑇

0

∫

𝑇

𝜃

V (𝜃) 𝑓󸀠
(𝑠) 𝑑𝑠 𝑑𝜃

= −∫

𝑇

0

V (𝜃) (𝑓 (𝑇) − 𝑓 (𝜃)) 𝑑𝜃

= ∫

𝑇

0

V (𝜃) 𝑓 (𝜃) 𝑑𝜃.

(18)

So

∫

𝑇

0

(𝑢 (𝑡) − 𝑤 (𝑡)) 𝑓
󸀠󸀠
(𝑡) 𝑑𝑡 = 0. (19)

In particular, we choose 𝑓(𝑡) = ∫

𝑡

0
∫

𝑠

0
(𝑢(𝜃) − 𝑤(𝜃) − 𝐶1𝜃 −

𝐶2)𝑑𝜃𝑑𝑠, where

𝐶1 =
12

𝑇
3
(∫

𝑇

0

𝑡 (𝑢 (𝑡) − 𝑤 (𝑡)) 𝑑𝑡 −

𝑇

2

∫

𝑇

0

𝑢 (𝑠) − 𝑤 (𝑠) 𝑑𝑠) ,

𝐶2 =
4

𝑇

∫

𝑇

0

𝑢 (𝑠) − 𝑤 (𝑠) 𝑑𝑠 −

6

𝑇
2
∫

𝑇

0

𝑡 (𝑢 − 𝑤) 𝑑𝑡.

(20)

By computation, 𝑓 ∈ 𝐶
1
0[0, 𝑇], 𝑓

󸀠󸀠
∈ 𝐿

1
[0, 𝑇], 𝑓(0) = 𝑓(𝑇) =

𝑓
󸀠
(0) = 𝑓

󸀠
(𝑇) = 0, and

∫

𝑇

0

(𝐶1𝑡 + 𝐶2) 𝑓
󸀠󸀠
(𝑡) 𝑑𝑡 = 0. (21)

By (19) and (21), ∫𝑇
0
(𝑢(𝑡) − 𝑤(𝑡) − 𝐶1𝑡 − 𝐶2)𝑓

󸀠󸀠
(𝑡)𝑑𝑡 = 0; that

is, ∫𝑇
0
|𝑢(𝑡) − 𝑤(𝑡) − 𝐶1𝑡 − 𝐶2|

2
𝑑𝑡 = 0, which means 𝑢(𝑡) =

𝑤(𝑡) + 𝐶1𝑡 + 𝐶2. The proof is complete.

Definition 6. A function 𝑢 ∈ 𝑋 is said to be a weak solution
of (1), if 𝑢 satisfies 𝐽󸀠(𝑢)(V) = 0 for all V ∈ 𝑋.

Definition 7. A function 𝑢 ∈ 𝑋 is said to be a classical
solution of problem (1) if 𝑢 satisfies the equation in (1) for
a.e. 𝑡 ∈ [0, 𝑇] \ {𝑡1, 𝑡2, . . . , 𝑡𝑙} and the impulsive condition
and boundary condition in (1). Moreover, 𝑢 is said to be a
positive classical solution of problem (1) if 𝑢(𝑡) ≥ 0, 𝑢(𝑡) ̸≡ 0,
𝑡 ∈ [0, 𝑇].

Lemma 8. If 𝑢 ∈ 𝑋 is a weak solution of problem (1), then 𝑢 is
a classical solution of problem (1).

Proof. By Definition 6, if 𝑢 ∈ 𝑋 is a weak solution of (1),
then 𝐽󸀠(𝑢)(V) = 0 holds for all V ∈ 𝑋 and hence for all V ∈

𝐶
∞
0 (𝑡𝑖, 𝑡𝑖+1), V

󸀠
∈ 𝐶

∞
0 (𝑡𝑖, 𝑡𝑖+1), V(𝑡) ≡ 0, 𝑡 ∈ [0, 𝑡𝑖] ∪ [𝑡𝑖+1, 𝑇].

So ∫𝑡𝑖+1
𝑡𝑖

𝑢
󸀠󸀠V󸀠󸀠 + 𝑢V − 𝜆𝑓(𝑡, 𝑢)V𝑑𝑡 = 0. By Lemma 5, we have

𝑢
󸀠󸀠
(𝑡) = ∫

𝑡

𝑡𝑖

(∫

𝑠

0

−𝑢 (𝜃) + 𝜆𝑓 (𝜃, 𝑢 (𝜃)) 𝑑𝜃) 𝑑𝑠 + 𝐶1𝑡 + 𝐶2

(22)

for a.e. 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] and some 𝐶1, 𝐶2 ∈ 𝑅. So 𝑢
(4)

+ 𝑢 −

𝜆𝑓(𝑡, 𝑢) = 0, a.e. 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝑖 = 0, 1, . . . , 𝑙. Thus 𝑢 satisfies
the equation in problem (1) and 𝑢 ∈ 𝐶4

([0, 𝑇]\{𝑡1, 𝑡2, . . . , 𝑡𝑙}).
By integration by parts for two times, we have that

∫

𝑇

0

(𝑢
󸀠󸀠V󸀠󸀠 + 𝑢V) 𝑑𝑡 − 𝜆∫

𝑇

0

𝑓 (𝑡, 𝑢 (𝑡)) V (𝑡) 𝑑𝑡

− 𝜆

𝑙

∑

𝑖=1

𝐼1𝑖 (𝑢 (𝑡𝑖)) V (𝑡𝑖)

− 𝜆

𝑙

∑

𝑖=1

𝐼2𝑖 (𝑢
󸀠
(𝑡𝑖)) V

󸀠
(𝑡𝑖) +

𝑎

𝑏

𝑢 (𝑇) V (𝑇) +
𝑎

𝑏

𝑢 (0) V (0)

+

𝑐

𝑑

𝑢
󸀠
(𝑇) V󸀠 (𝑇) +

𝑐

𝑑

𝑢
󸀠
(0) V󸀠 (0)

=

𝑙

∑

𝑖=1

𝑢
󸀠󸀠
(𝑡) V󸀠 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡𝑖+1

𝑡=𝑡
𝑖
+

−

𝑙

∑

𝑖=1

𝑢
󸀠󸀠󸀠
(𝑡) V (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡𝑖+1

𝑡=𝑡
𝑖
+

+ ∫

𝑇

0

[𝑢
(4)
(𝑡) + 𝑢 (𝑡) − 𝜆𝑓 (𝑡, 𝑢 (𝑡))] V (𝑡) 𝑑𝑡

− 𝜆

𝑙

∑

𝑖=1

𝐼1𝑖 (𝑢 (𝑡𝑖)) V (𝑡𝑖) − 𝜆
𝑙

∑

𝑖=1

𝐼2𝑖 (𝑢
󸀠
(𝑡𝑖)) V

󸀠
(𝑡𝑖)

+

𝑎

𝑏

𝑢 (𝑇) V (𝑇)

+

𝑎

𝑏

𝑢 (0) V (0) +
𝑐

𝑑

𝑢
󸀠
(𝑇) V󸀠 (𝑇) +

𝑐

𝑑

𝑢
󸀠
(0) V󸀠 (0)

=

𝑙

∑

𝑖=1

(Δ𝑢
󸀠󸀠󸀠
(𝑡𝑖) − 𝜆𝐼1𝑖 (𝑢 (𝑡𝑖))) V (𝑡𝑖)

+ ∫

𝑇

0

[𝑢
(4)
(𝑡) + 𝑢 (𝑡) − 𝜆𝑓 (𝑡, 𝑢 (𝑡))] V (𝑡) 𝑑𝑡

−

𝑙

∑

𝑖=1

(Δ𝑢
󸀠󸀠
(𝑡𝑖) + 𝜆𝐼2𝑖 (𝑢

󸀠
(𝑡𝑖))) V

󸀠
(𝑡𝑖) + 𝑢

󸀠󸀠
(𝑇) V󸀠 (𝑇)

− 𝑢
󸀠󸀠
(0) V󸀠 (0) − 𝑢󸀠󸀠󸀠 (𝑇) V (𝑇)

+ 𝑢
󸀠󸀠󸀠
(0) V (0) +

𝑎

𝑏

𝑢 (𝑇) V (𝑇) +
𝑎

𝑏

𝑢 (0) V (0)

+

𝑐

𝑑

𝑢
󸀠
(𝑇) V󸀠 (𝑇) +

𝑐

𝑑

𝑢
󸀠
(0) V󸀠 (0)

(23)
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holds for all V ∈ 𝑋. Since 𝑢 satisfies the equation of problem
(1), (23) becomes

𝑙

∑

𝑖=1

(Δ𝑢
󸀠󸀠󸀠
(𝑡𝑖) − 𝜆𝐼1𝑖 (𝑢 (𝑡𝑖))) V (𝑡𝑖)

−

𝑙

∑

𝑖=1

(Δ𝑢
󸀠󸀠
(𝑡𝑖) + 𝜆𝐼2𝑖 (𝑢

󸀠
(𝑡𝑖))) V

󸀠
(𝑡𝑖)

+ [𝑢
󸀠󸀠
(𝑇) +

𝑐

𝑑

𝑢
󸀠
(𝑇)] V󸀠 (𝑇)

− [𝑢
󸀠󸀠
(0) −

𝑐

𝑑

𝑢
󸀠
(0)] V󸀠 (0) − [𝑢󸀠󸀠󸀠 (𝑇) −

𝑎

𝑏

𝑢 (𝑇)] V (𝑇)

+ [𝑢
󸀠󸀠󸀠
(0) +

𝑎

𝑏

𝑢 (0)] V (0) = 0

(24)

for all V ∈ 𝑋.
Next we will verify that 𝑢 satisfies impulsive condition in

(1). If not, without loss of generality, we assume (24) holds for
V(𝑡) ≡ 0 for 𝑡 ∈ [0, 𝑡𝑖] ∪ [𝑡𝑖+1, 𝑇], V

󸀠
(𝑡𝑖) ̸= 0. So (Δ𝑢󸀠󸀠(𝑡𝑖) +

𝜆𝐼2𝑖(𝑢
󸀠
(𝑡𝑖)))V

󸀠
(𝑡𝑖) = 0, and then Δ𝑢

󸀠󸀠
(𝑡𝑖) + 𝜆𝐼2𝑖(𝑢

󸀠
(𝑡𝑖)) = 0.

We assume V(𝑡) ≡ 0 for 𝑡 ∈ [0, 𝑡𝑖] ∪ [𝑡𝑖 + (𝑡𝑖+1 − 𝑡𝑖)/2, 𝑇],
V󸀠(𝑡𝑖) ̸= 0. So (24) becomes (Δ𝑢󸀠󸀠(𝑡𝑖) + 𝜆𝐼2𝑖(𝑢

󸀠
(𝑡𝑖)))V

󸀠
(𝑡𝑖) = 0,

which means Δ𝑢󸀠󸀠(𝑡𝑖) + 𝜆𝐼2𝑖(𝑢
󸀠
(𝑡𝑖) = 0. Similarly, by choosing

particular V ∈ 𝑋, we can show that 𝑢 satisfies boundary
conditions in problem (1).

Lemma 9. Let 𝑢 ∈ 𝑋; then ‖𝑢‖𝐶1 ≤ 𝑀‖𝑢‖𝑋, where 𝑀 =

max{1/√𝑇,√𝑇}max{1 + 2𝑇2, 2𝑇𝑑/𝑐}.

Proof. For any𝑢 ∈ 𝑋, it follows from themean-value theorem
that

𝑢 (𝜏) =

1

𝑇

∫

𝑇

0

𝑢 (𝑠) 𝑑𝑠 (25)

for some 𝜏 ∈ [0, 𝑇]. Hence, for 𝑡 ∈ [0, 𝑇], using (25) and
Hölder’s inequality, we have

|𝑢 (𝑡)| =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢 (𝜏) + ∫

𝑡

𝜏

𝑢
󸀠
(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

√𝑇

(∫

𝑇

0

|𝑢 (𝑠)|
2
𝑑𝑠)

1/2

+ √𝑇(∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑠)

1/2

≤ max{ 1

√𝑇

,√𝑇} ‖𝑢‖ .

(26)

Similarly, we have |𝑢󸀠(𝑡)| ≤ max{1/√𝑇,√𝑇}‖𝑢‖. So ‖𝑢‖𝐶1 ≤
max{1/√𝑇,√𝑇}‖𝑢‖, which together with (13) yields the
results.

Lemma 10. Suppose the following conditions hold.

(H1) There exist constants 𝜇 > 2 and 𝑟 ≥ 0 such that, for
|𝜉| ≥ 𝑟,

0 < 𝜇𝐹 (𝑡, 𝜉) ≤ 𝜉𝑓 (𝑡, 𝜉) . (27)

(H2) The impulsive functions 𝐼1𝑖 satisfy sublinear growth;
that is, there exist constants 𝛼𝑖 > 0, 𝛽𝑖 > 0, and
𝛾𝑖 ∈ [0, 1), 𝑖 = 1, 2, . . . , 𝑙, such that

󵄨
󵄨
󵄨
󵄨
𝐼1𝑖 (𝑢)

󵄨
󵄨
󵄨
󵄨
≤ 𝛼𝑖 + 𝛽𝑖|𝑢|

𝛾𝑖
. (28)

(H3) The impulsive functions 𝐼2𝑖, 𝑖 = 1, 2, . . . , 𝑙, are bounded.

(H4) 𝑓(𝑡, 𝑢) = 𝑜(|𝑢|), 𝐼1𝑖(𝑢) = 𝑜(|𝑢|), 𝐼2𝑖(𝑢) = 𝑜(|𝑢|) as
|𝑢| → 0, 𝑖 = 1, 2, . . . , 𝑙.

Then the functional 𝐽 defined by (9) is continuously differen-
tiable. Moreover, it satisfies the Palais-Smale (PS) condition.

Proof. By the continuity of 𝑓, 𝐼1𝑖 and 𝐼2𝑖, 𝑖 = 1, 2, . . . , 𝑙, we
know that 𝐽 is continuously differentiable. Next, we will prove
that 𝐽 satisfies the Palais-Smale condition. Let {𝐽(𝑢𝑘)} be a
bounded sequence such that |𝐽󸀠(𝑢𝑘)| → 0 as 𝑘 → ∞. Then
there exist two constants 𝑘, 𝐶1 > 0 such that for 𝑘 sufficiently
large

󵄨
󵄨
󵄨
󵄨
𝐽 (𝑢𝑘)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶1. (29)

By (H3), there exists a constant 𝐶2 > 0 such that

󵄨
󵄨
󵄨
󵄨
𝐼2𝑖
󵄨
󵄨
󵄨
󵄨
≤ 𝐶2, 𝑖 = 1, 2, . . . , 𝑙. (30)

Then for 𝑘 sufficiently large, by (H1) (H2) and the definitions
of 𝐽, 𝐽󸀠, we have

󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩

2

𝑋
= 2𝐽 (𝑢𝑘) + 2𝜆

𝑙

∑

𝑖=1

∫

𝑢𝑘(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠

+ 2𝜆

𝑙

∑

𝑖=1

∫

𝑢
󸀠

𝑘
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠 + 2𝜆∫

𝑇

0

𝐹 (𝑡, 𝑢𝑘 (𝑡)) 𝑑𝑡

≤ 2𝐽 (𝑢𝑘) + 2𝜆

𝑙

∑

𝑖=1

∫

𝑢𝑘(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠

+ 2𝜆

𝑙

∑

𝑖=1

∫

𝑢
󸀠

𝑘
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠 +
2𝜆

𝜇

∫

𝑇

0

𝑓 (𝑡, 𝑢𝑘 (𝑡)) 𝑢𝑘 (𝑡) 𝑑𝑡

= 2𝐽 (𝑢𝑘) + 2𝜆

𝑙

∑

𝑖=1

∫

𝑢𝑘(𝑡𝑖)

0

𝐼1𝑖 (𝑡) 𝑑𝑡

+ 2𝜆

𝑙

∑

𝑖=1

∫

𝑢
󸀠

𝑘
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠 +
2

𝜇

󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩

2

𝑋

−

2𝜆

𝜇

𝑙

∑

𝑖=1

𝐼1𝑖 (𝑢𝑘 (𝑡𝑖)) 𝑢𝑘 (𝑡𝑖) −
2𝜆

𝜇

𝑙

∑

𝑖=1

𝐼2𝑖 (𝑢
󸀠

𝑘 (𝑡𝑖)) 𝑢
󸀠

𝑘 (𝑡𝑖)

−

2

𝜇

𝐽
󸀠
(𝑢𝑘) (𝑢𝑘) .

(31)
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By Lemma 8, (29), (30), (31), (H2), and (H3), one has

(

1

2

−

1

𝜇

)
󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩

2

𝑋

= 𝐽 (𝑢𝑘) −
1

𝜇

𝐽
󸀠
(𝑢𝑘) (𝑢𝑘) + 𝜆

𝑙

∑

𝑖=1

∫

𝑢𝑘(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠

+ 𝜆

𝑙

∑

𝑖=1

∫

𝑢
󸀠

𝑘
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠

−

𝜆

𝜇

𝑙

∑

𝑖=1

𝐼1𝑖 (𝑢𝑘 (𝑡𝑖)) 𝑢𝑘 (𝑡𝑖) −
𝜆

𝜇

𝑙

∑

𝑖=1

𝐼2𝑖 (𝑢
󸀠

𝑘 (𝑡𝑖)) 𝑢
󸀠

𝑘 (𝑡𝑖)

≤ 𝐶1 +
𝐶1

𝜇

󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩
+ 𝜆

󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩𝐶1

𝑙

∑

𝑖=1

(𝛼𝑖 + 𝛽𝑖
󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩

𝛾𝑖

𝐶1
) + 𝑙𝜆𝐶2

󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩𝐶1

+

𝜆

𝜇

󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩𝐶1

𝑙

∑

𝑖=1

(𝛼𝑖 + 𝛽𝑖
󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩

𝛾𝑖

𝐶1
) +

𝑙𝜆𝐶2

𝜇

󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩𝐶1

= 𝐶1 +
𝐶1

𝜇

󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩
+ 𝜆(1 +

1

𝜇

)𝑀
󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩

𝑙

∑

𝑖=1

(𝛼𝑖 + 𝛽𝑖𝑀
󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩

𝛾𝑖
)

+ 𝑙𝜆𝐶2 (1 +
1

𝜇

)𝑀
󵄩
󵄩
󵄩
󵄩
𝑢𝑘
󵄩
󵄩
󵄩
󵄩
.

(32)

So {𝑢𝑘} is bounded in𝑋, which implies that the sequence {𝑢𝑘}
weakly converges to 𝑢.

Next we show that {𝑢𝑘} strongly converges to 𝑢 in𝑋:

(𝐽
󸀠
(𝑢𝑘) − 𝐽

󸀠
(𝑢)) (𝑢𝑘 − 𝑢)

=
󵄩
󵄩
󵄩
󵄩
𝑢𝑘 − 𝑢

󵄩
󵄩
󵄩
󵄩

2

𝑋
− 𝜆

𝑙

∑

𝑖=1

[𝐼1𝑖 (𝑢𝑘 (𝑡𝑖)) − 𝐼1𝑖 (𝑢 (𝑡𝑖))] [𝑢𝑘 (𝑡𝑖) − 𝑢 (𝑡𝑖)]

− 𝜆

𝑙

∑

𝑖=1

[𝐼2𝑖 (𝑢
󸀠

𝑘 (𝑡𝑖)) − 𝐼2𝑖 (𝑢
󸀠
(𝑡𝑖))] [𝑢

󸀠

𝑘 (𝑡𝑖) − 𝑢
󸀠
(𝑡𝑖)]

− 𝜆∫

𝑇

0

[𝑓 (𝑡, 𝑢𝑘 (𝑡)) − 𝑓 (𝑡, 𝑢 (𝑡))] [𝑢𝑘 (𝑡𝑖) − 𝑢 (𝑡𝑖)] 𝑑𝑡.

(33)

Similar to the proof of Proposition 1.2 in [18], the weak
convergence 𝑢𝑘 ⇀ 𝑢 implies that {𝑢𝑘} uniformly converges
to 𝑢 in 𝐶([0, 𝑇]). Since 𝑢𝑘 ∈ 𝑋, 𝑢

󸀠
𝑘 converges to 𝑢

󸀠 in 𝐶[0, 𝑇].
Thus

(𝐽
󸀠
(𝑢𝑘) − 𝐽

󸀠
(𝑢)) (𝑢𝑘 − 𝑢) 󳨀→ 0,

𝜆

𝑙

∑

𝑖=1

[𝐼1𝑖 (𝑢𝑘 (𝑡𝑖)) − 𝐼1𝑖 (𝑢 (𝑡𝑖))] [𝑢𝑘 (𝑡𝑖) − 𝑢 (𝑡𝑖)] 󳨀→ 0,

𝜆

𝑙

∑

𝑖=1

[𝐼2𝑖 (𝑢
󸀠

𝑘 (𝑡𝑖)) − 𝐼2𝑖 (𝑢
󸀠
(𝑡𝑖))] [𝑢

󸀠

𝑘 (𝑡𝑖) − 𝑢
󸀠
(𝑡𝑖)] 󳨀→ 0,

𝜆∫

𝑇

0

[𝑓 (𝑡, 𝑢𝑘 (𝑡)) − 𝑓 (𝑡, 𝑢 (𝑡))] [𝑢𝑘 (𝑡𝑖) − 𝑢 (𝑡𝑖)] 𝑑𝑡 󳨀→ 0.

(34)

So ‖𝑢𝑘 − 𝑢‖𝑋 → 0 as 𝑘 → ∞. In otherwords, {𝑢𝑘} converges
strongly to 𝑢 in𝑋.

Remark 11. By (H1), there exist 𝑎1, 𝑎2 > 0 such that

𝐹 (𝑡, 𝜉) ≥ 𝑎1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

𝜇
− 𝑎2, (35)

for all 𝑡 ∈ [0, 𝑇], 𝜉 ∈ 𝑅.

3. Existence Results for One Solution and
Infinitely Many Solutions

Theorem 12. Suppose that (H1)–(H3) hold. Furthermore, we
assume (H4) holds.Then problem (1) has at least one nontrivial
solution.

Proof. We will use Theorem 1 to prove the theorem. By
Lemma 10, we have known that 𝐽 satisfies the (PS) condition
and it is obvious that 𝐽(0) = 0. By (H4), for any 𝜀 > 0, there
exists a 𝛿 > 0 such that |𝜉| ≤ 𝛿, which implies

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑡, 𝜉)

󵄨
󵄨
󵄨
󵄨
≤

1

2

𝜀
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑙

∑

𝑖=1

∫

𝜉

0

𝐼1𝑖 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

𝑙𝜀
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑙

∑

𝑖=1

∫

𝜉

0

𝐼2𝑖 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

𝑙𝜀
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

(36)

for all 𝑡 ∈ [0, 𝑇]. Consequently, by Lemma 9, one has, for
‖𝑢‖𝑋 ≤ 𝛿/𝑀,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

𝑀
2
𝑇𝜀‖𝑢‖

2

𝑋,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑙

∑

𝑖=1

∫

𝑢(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

𝑀
2
𝑙𝜀‖𝑢‖

2

𝑋,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑙

∑

𝑖=1

∫

𝑢
󸀠
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

𝑀
2
𝑙𝜀‖𝑢‖

2

𝑋.

(37)

Thus

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑙

∑

𝑖=1

∫

𝑢(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑙

∑

𝑖=1

∫

𝑢
󸀠
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

𝑀
2
(𝑇 + 2𝑙) 𝜀‖𝑢‖

2

𝑋 = 𝑜 (‖𝑢‖
2

𝑋)

(38)
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as ‖𝑢‖𝑋 → 0. Therefore,

𝐽 (𝑢) =

1

2

‖𝑢‖
2

𝑋 − 𝜆

𝑙

∑

𝑖=1

∫

𝑢(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠 − 𝜆

𝑙

∑

𝑖=1

∫

𝑢
󸀠
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠

− 𝜆∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥

1

2

‖𝑢‖
2

𝑋 + 𝑜 (‖𝑢‖
2

𝑋)

(39)

as 𝑢 → 0. Thus (C1) holds.
To verify (C2), we choose 𝑒(𝑡) ∈ 𝑋, 𝜅 ∈ 𝑅 such that 𝐾1 =

‖𝑒‖𝑋 > 0,𝐾2 = ‖𝑒‖𝐿2 > 0,𝐾1,𝐾2 are constants. Then by (H1),
(H2), Remark 11, Lemma 8, and (30), one has

𝐽 (𝜅𝑒) =

𝜅
2

2

‖𝑒‖
2

𝑋 − 𝜆

𝑙

∑

𝑖=1

∫

𝜅𝑒(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠 − 𝜆

𝑙

∑

𝑖=1

∫

𝜅𝑒
󸀠
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠

− 𝜆∫

𝑇

0

𝐹 (𝑡, 𝜅𝑒 (𝑡)) 𝑑𝑡

≤

𝜅
2

2

‖𝑒‖
2

𝑋 + 𝜆

𝑙

∑

𝑖=1

(𝛼𝑖‖𝜅𝑒‖𝐶1 +

𝛽𝑖‖𝜅𝑒‖
𝛾𝑖+1

𝐶1

𝛾𝑖 + 1
)

+ 𝜆𝑙𝐶2 |𝜅| ‖𝑒‖𝐶1 − 𝜆∫

𝑇

0

(𝑎1|𝜅|
𝜇
|𝑒 (𝑡)|

𝜇
− 𝑎2) 𝑑𝑡

≤

𝜅
2

2

𝐾
2

1 + 𝜆

𝑙

∑

𝑖=1

(𝛼𝑖 |𝜅|𝑀𝐾1 +
𝛽𝑖|𝜅|

𝛾𝑖+1
𝑀

𝛾𝑖+1
𝐾
𝛾𝑖+1

1

𝛾𝑖 + 1
)

+ 𝜆𝑙𝐶2𝑀𝐾1 |𝜅| − 𝜆∫

𝑇

0

(𝑎1|𝜅|
𝜇
|𝑒 (𝑡)|

𝜇
− 𝑎2) 𝑑𝑡.

(40)

By Hölder’s inequality, we have

∫

𝑇

0

|𝑒 (𝑡)|
𝜇
𝑑𝑡 ≥ [∫

𝑇

0

𝑒
2
(𝑡) 𝑑𝑡𝑇

(2−𝜇)/𝜇
]

𝜇/2

= ‖𝑒‖
𝜇

𝐿2
𝑇
(2−𝜇)/2

= 𝐾
𝜇

2𝑇
(2−𝜇)/2

.

(41)

Substituting (41) into (40), we have

𝐽 (𝜅𝑒) ≤

𝜅
2

2

𝐾
2

1 + 𝜆[𝑀𝐾1

𝑙

∑

𝑖=1

(𝛼𝑖 +
𝛽𝑖|𝜅𝑒|

𝛾𝑖+1
𝑀

𝛾𝑖+1
𝐾
𝛾𝑖+1

1

𝛾𝑖 + 1
)

+𝑙𝐶2𝐾1𝑀] |𝜅|

− 𝑎1𝜆|𝜅|
𝜇
𝐾
𝜇

2𝑇
(2−𝜇)/2

+ 𝑎2𝜆𝑇 󳨀→ −∞

(42)

as |𝜅| → +∞. Hence (C2) holds. Therefore, applying
Theorem 1, we deduce that 𝐽 admits a critical value 𝑐 >

0 characterized as in the statement of Theorem 1 to 𝐽, 𝐽
possesses critical value 𝑐 > 0 given by

𝑐 = inf
𝑔∈Γ

max
𝑢∈𝑔([0,1])

𝐽 (𝑢) , (43)

where

Γ = {𝑔 ∈ 𝐶 ([0, 1] , 𝐸) : 𝑔 (0) = 0, 𝑔 (1) = 𝑒} . (44)

Let 𝑢∗ ∈ 𝑋 be a critical point associatedwith the critical value
𝑐 of 𝐽 (i.e., 𝐽(𝑢∗) = 𝑐). Condition 𝑐 > 0 implies that 𝑢∗ ̸≡

0. Lemma 8 means that IBVP (1) has at least one nontrivial
solution.

Theorem 13. Suppose that (H1)–(H4) hold. Moreover, assume
that the nonlinearity 𝑓(𝑡, 𝑢) and impulsive functions 𝐼1𝑖, 𝐼2𝑖
are all odd in 𝑢. Then IBVP (1) has infinitely many classical
solutions.

Proof. We apply Theorem 2 to complete the proof. Clearly
𝐽 ∈ 𝐶

1
(𝑋, 𝑅) is even and 𝐽(0) = 0. Lemma 10 shows that 𝐽

satisfies (PS) condition. The arguments of Theorem 12 show
that 𝐽 satisfies (C3) inTheorem 2. To verify (C4), let𝑊 be any
finite dimensional space in 𝑋. For any 𝑢 ∈ 𝑊, by (H1), (H2),
Remark 11, Lemma 4, and (30), one has

𝐽 (𝑢) =

1

2

‖𝑢‖
2

𝑋 − 𝜆

𝑙

∑

𝑖=1

∫

𝑢(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠 − 𝜆

𝑙

∑

𝑖=1

∫

𝑢
󸀠
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠

− 𝜆∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

≤

1

2

‖𝑢‖
2

𝑋 + 𝜆

𝑙

∑

𝑖=1

(𝛼𝑖 +
𝛽𝑖|𝑢|

𝛾𝑖+1

𝛾𝑖 + 1
) + 𝑙𝜆𝐶2‖𝑢‖𝐶1

− 𝜆∫

𝑇

0

(𝑎1|𝑢 (𝑡)|
𝜇
− 𝑎2) 𝑑𝑡

≤

1

2

‖𝑢‖
2

𝑋 + 𝜆𝑀‖𝑢‖𝑋

𝑙

∑

𝑖=1

(𝛼𝑖 +
𝛽𝑖𝑀

𝛾𝑖+1
‖𝑢‖

𝛾𝑖+1

𝑋

𝛾𝑖 + 1
)

+ 𝑙𝜆𝐶2𝑀‖𝑢‖𝑋 − 𝜆∫

𝑇

0

(𝑎1|𝑢 (𝑡)|
𝜇
− 𝑎2) 𝑑𝑡.

(45)

For finite dimensional space𝑊, the norm ‖ ⋅ ‖𝑋 is equivalent
to ‖ ⋅ ‖𝑊.

So there exists 𝑐0 > 0 satisfying

‖𝑢‖𝑋 ≤ 𝑐0‖𝑢‖𝐿𝜇 (46)

for 𝑢 ∈ 𝑊. Thus,

∫

𝑇

0

𝑎1|𝑢 (𝑡)|
𝜇
𝑑𝑡 ≥ 𝑎1𝑐

−𝜇

0 ‖𝑢‖
𝜇

𝑋
. (47)

By (45) (46) (47) we have

𝐽 (𝑢) ≤

1

2

‖𝑢‖
2

𝑋 + 𝜆

𝑙

∑

𝑖=1

(𝛼𝑖 +
𝛽𝑖𝑀

𝛾𝑖+1
‖𝑢‖

𝛾𝑖+1

𝑋

𝛾𝑖 + 1
) + 𝑙𝜆𝐶2𝑀‖𝑢‖𝑋

− 𝜆𝑎1𝑐
−𝜇

0 ‖𝑢‖
𝜇

𝑋
+ 𝜆𝑎2𝑇 󳨀→ −∞

(48)

as ‖𝑢‖𝑋 → +∞. That is, there exists 𝑅 > 0 such that 𝐽(𝑢) < 0
for 𝑢 ∈ 𝑊 \ 𝐵𝑅(𝑊). The proof is complete.
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4. Existence Result for Three
Nonnegative Solutions

In this part, we need the following conditions.

(H5) For 𝐼1𝑖, 𝐼2𝑖, and 𝑓,

(C5) 𝑓 ∈ 𝐶([0, 𝑇] × [0, +∞); [0, +∞)), 𝐼1𝑖 ∈ 𝐶(𝑅; 𝑅),
𝐼2𝑖 ∈ 𝐶(𝑅; 𝑅), 𝑖 = 1, 2, . . . , 𝑙;

(C6) 𝑓(𝑡, 0) = 𝐼1𝑖(0) = 𝐼2𝑖(0) = 0 for almost every
𝑡 ∈ [0, 𝑇] and 𝐼2𝑖(𝑥)𝑥 ≥ 0 for all 𝑥 ∈ 𝑅.

Lemma 14 (see Lemma 2.2 [12]). For 𝑢 ∈ 𝑋, let 𝑢± =

max{±𝑢, 0}. Then the following five properties hold:

(i) 𝑢 ∈ 𝑋 ⇒ 𝑢
+, 𝑢− ∈ 𝑋;

(ii) 𝑢 = 𝑢+ − 𝑢−;

(iii) ‖𝑢+‖𝑋 ≤ ‖𝑢‖𝑋;

(iv) if (𝑢𝑛) uniformly converges to u in 𝐶([0, 𝑇]), then (𝑢+𝑛 )
uniformly converges to 𝑢+ in 𝐶([0, 𝑇]);

(v) 𝑢+(𝑡)𝑢−(𝑡) = 0, (𝑢+)󸀠(𝑡)(𝑢−)󸀠(𝑡) = 0 for a.e. 𝑡 ∈ [0, 𝑇].

Lemma 15. If 𝑢 ∈ 𝐶([0, 𝑇]) is a classical solution of problem

𝑢
(4)
(𝑡) + 𝑢 (𝑡) = 𝜆𝑓 (𝑡, 𝑢

+
(𝑡)) , 𝑡 ̸= 𝑡𝑖, 𝑡 ∈ [0, 𝑇] ,

Δ𝑢
󸀠󸀠󸀠
(𝑡𝑖) = 𝜆𝐼1𝑖 (𝑢

+
(𝑡𝑖)) , 𝑖 = 1, 2, . . . , 𝑙,

−Δ𝑢
󸀠󸀠
(𝑡𝑖) = 𝜆𝐼2𝑖 ((𝑢

+
)

󸀠
(𝑡𝑖)) , 𝑖 = 1, 2, . . . , 𝑙,

𝑎𝑢 (0) + 𝑏𝑢
󸀠󸀠󸀠
(0) = 0, 𝑎𝑢 (𝑇) − 𝑏𝑢

󸀠󸀠󸀠
(𝑇) = 0,

𝑐𝑢
󸀠
(0) − 𝑑𝑢

󸀠󸀠
(0) = 0, 𝑐𝑢

󸀠
(𝑇) + 𝑑𝑢

󸀠󸀠
(𝑇) = 0,

(49)

then 𝑢(𝑡) ≥ 0 for 𝑡 ∈ [0, 𝑇], and hence it is a nonnegative
classical solution of (1).

Proof. Since 𝑢 ∈ 𝐶[0, 𝑇] and 𝑓 ∈ 𝐶([0, 𝑇] × [0, +∞);

[0, +∞)), we have 𝑢(4) ∈ 𝐶[0, 𝑇] \ {𝑡1, 𝑡2, . . . , 𝑡𝑖}. If 𝑢 ∈

𝐶([0, 𝑇]) is a classical solution of problem (49), by Lemma 14,
(H5) and boundary conditions, we have

0 = ∫

𝑇

0

(𝑢
(4)
(𝑡) + 𝑢 (𝑡) − 𝜆𝑓 (𝑡, 𝑢

+
(𝑡))) 𝑢

−
(𝑡) 𝑑𝑡

= −𝜆

𝑙

∑

𝑖=1

𝐼1𝑖 (𝑢
+
(𝑡𝑖)) 𝑢

−
(𝑡𝑖) − 𝜆

𝑙

∑

𝑖=1

𝐼2𝑖 ((𝑢
+
)

󸀠
(𝑡𝑖)) (𝑢

−
)

󸀠
(𝑡𝑖)

+ 𝑢
󸀠󸀠󸀠
(𝑇) 𝑢

−
(𝑇)

− 𝑢
󸀠󸀠󸀠
(0) 𝑢

−
(0) − 𝑢

󸀠󸀠
(𝑇) (𝑢

−
)

󸀠
(𝑇) + 𝑢

󸀠󸀠
(0) (𝑢

−
)

󸀠
(0)

+ ∫

𝑇

0

𝑢
󸀠󸀠
(𝑡) (𝑢

−
)

󸀠󸀠
(𝑡) 𝑑𝑡

+ ∫

𝑇

0

𝑢 (𝑡) (𝑢
−
) (𝑡) 𝑑𝑡 − 𝜆∫

𝑇

0

𝑓 (𝑡, 𝑢
+
(𝑡)) 𝑢

−
(𝑡) 𝑑𝑡

=

𝑎

𝑏

𝑢 (𝑇) 𝑢
−
(𝑇) +

𝑎

𝑏

𝑢 (0) 𝑢
−
(0) +

𝑐

𝑑

𝑢
󸀠
(𝑇) (𝑢

−
)

󸀠
(𝑇)

+

𝑐

𝑑

𝑢
󸀠
(0) (𝑢

−
)

󸀠
(0)

+ ∫

𝑇

0

𝑢
󸀠󸀠
(𝑡) (𝑢

−
)

󸀠󸀠
(𝑡) + 𝑢 (𝑡) (𝑢

−
) (𝑡) 𝑑𝑡 ≤ −

󵄩
󵄩
󵄩
󵄩
𝑢
−󵄩
󵄩
󵄩
󵄩

2

𝑋
.

(50)

So 𝑢−(𝑡) = 0 for 𝑡 ∈ [0, 𝑇]; that is, 𝑢(𝑡) ≥ 0. The proof is
complete.

Remark 16. By Lemmas 14 and 15, in order to obtain the
nonnegative solutions of (1), it is sufficient to show the
existence of solutions of (49).

For each 𝑢 ∈ 𝑋, set

Φ (𝑢) =

1

2

‖𝑢‖
2

𝑋,
(51)

Ψ (𝑢) =

𝑙

∑

𝑖=1

∫

𝑢
+
(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠 +

𝑙

∑

𝑖=1

∫

(𝑢
+
)
󸀠
(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠

+ ∫

𝑇

0

𝐹 (𝑡, 𝑢
+
(𝑡)) 𝑑𝑡,

𝐽 (𝑢) = Φ (𝑢) − 𝜆Ψ (𝑢) .

(52)

It is obvious thatΦ,Ψ, and 𝐽 are differentiable for any 𝑢 ∈ 𝑋.
Then we have

Φ
󸀠
(𝑢) (V) = ∫

𝑇

0

(𝑢
󸀠󸀠V󸀠󸀠 + 𝑢V) 𝑑𝑡 +

𝑎

𝑏

𝑢 (𝑇) V (𝑇) +
𝑎

𝑏

𝑢 (0) V (0)

+

𝑐

𝑑

𝑢
󸀠
(𝑇) V󸀠 (𝑇) +

𝑐

𝑑

𝑢
󸀠
(0) V󸀠 (0) ,

(53)

Ψ
󸀠
(𝑢) (V) =

𝑙

∑

𝑖=1

𝐼1𝑖 (𝑢
+
(𝑡𝑖)) V (𝑡𝑖) +

𝑙

∑

𝑖=1

𝐼2𝑖 ((𝑢
+
)

󸀠
(𝑡𝑖)) V

󸀠
(𝑡𝑖)

+ ∫

𝑇

0

𝑓 (𝑡, 𝑢
+
(𝑡)) V (𝑡) 𝑑𝑡.

(54)

Definition 17. A function 𝑢 ∈ 𝑋 is said to be a weak solution
of (49), if 𝑢 satisfies 𝐽󸀠(𝑢)(V) = 0 for all V ∈ 𝑋.

Lemma 18. If 𝑢 ∈ 𝑋 is a weak solution of (49), then 𝑢 is a
classical solution of (49).

Proof. It is similar to the proof of Lemma 8, sowe omit it here.
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Lemma 19. Φ󸀠
: 𝑋 → 𝑋

∗ admits a continuous inverse on
𝑋
∗.

Proof. First, for every 𝑢 ∈ 𝑋 \ {0}, by (53), we have

lim
‖𝑢‖𝑋→+∞

Φ
󸀠
(𝑢) (𝑢)

‖𝑢‖𝑋

= lim
‖𝑢‖𝑋→+∞

‖𝑢‖
2
𝑋

‖𝑢‖𝑋

= +∞, (55)

whichmeans thatΦ󸀠 is coercive. Furthermore, given 𝑢, V ∈ 𝑋,
one has

(Φ
󸀠
(𝑢) − Φ

󸀠
(V)) (𝑢 − V) ≥ ‖𝑢 − V‖2𝑋, (56)

so Φ󸀠 is uniformly monotone. By Theorem 26.A(d) of [20],
we have that (Φ󸀠

)

−1 exists and (Φ󸀠
)

−1 is continuous on 𝑋
∗.

Thus,Φ󸀠
: 𝑋 → 𝑋

∗ admits a continuous inverse on𝑋∗. The
proof is complete.

Lemma 20. Ψ󸀠
: 𝑋 → 𝑋

∗ is a continuous and compact
operator.

Proof. First we will show thatΨ󸀠 is strongly continuous on𝑋.
Let 𝑢𝑛 ⇀ 𝑢 as 𝑛 → ∞ on𝑋. By [20], we have (𝑢𝑛) converges
uniformly to 𝑢 on [0, 𝑇] as 𝑛 → ∞. Since 𝑓 is continuous,
one has 𝑓(𝑡, 𝑢𝑛) → 𝑓(𝑡, 𝑢) as 𝑛 → ∞. Furthermore, 𝐼1𝑖,
𝐼2𝑖 are all continuous. So Ψ󸀠

(𝑢𝑛) → Ψ
󸀠
(𝑢), which implies

that Ψ󸀠 is continuous and that Ψ󸀠 is a compact operator by
Proposition 26.2 of [20]. The proof is complete.

Theorem 21. Suppose that the condition (H5) holds. Let
𝑘 := {2𝑀

2
(1024/𝑇

3
+ (83/240)𝑇)}

−1, 𝐼(𝑠) := ∑
𝑙

𝑖=1 |𝐼1𝑖(𝑠)| +

∑
𝑙

𝑖=1 |𝐼2𝑖(𝑠)|. There exist four positive constants𝑚, 𝑛, 𝑝, 𝑞, with
√𝑘𝑚 < 𝑛 < √𝑘𝑝 < √𝑘𝑞 such that

(H6) (C7) (∫𝑚
0
𝐼(𝑠)𝑑𝑠 + ∫

𝑇

0
𝐹(𝑡, 𝑚)𝑑𝑡)/𝑚

2
< 𝑘((− ∫

𝑚

0
𝐼(𝑠)𝑑𝑠

+ ∫

3𝑇/4

𝑇/4
𝐹(𝑡, 𝑛)𝑑𝑡 − ∫

𝑇

0
𝐹(𝑡, 𝑚)𝑑𝑡)/𝑛

2
),

(C8) (∫𝑝
0
𝐼(𝑠)𝑑𝑠+∫

𝑇

0
𝐹(𝑡, 𝑝)𝑑𝑡)/𝑝

2
< 𝑘((− ∫

𝑚

0
𝐼(𝑠)𝑑𝑠+

∫

3𝑇/4

𝑇/4
𝐹(𝑡, 𝑛)𝑑𝑡 − ∫

𝑇

0
𝐹(𝑡, 𝑚)𝑑𝑡)/𝑛

2
),

(C9) (∫𝑞
0
𝐼(𝑠)𝑑𝑠+∫

𝑇

0
𝐹(𝑡, 𝑞)𝑑𝑡)/(𝑞

2
−𝑝

2
)<𝑘((−∫

𝑚

0
𝐼(𝑠)𝑑𝑠

+ ∫

3𝑇/4

𝑇/4
𝐹(𝑡, 𝑛)𝑑𝑡 − ∫

𝑇

0
𝐹(𝑡, 𝑚)𝑑𝑡)/𝑛

2
).

Then, for every

𝜆 ∈ ]

𝑛
2

2𝑀
2
𝑘

(−∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑛) 𝑑𝑡

−∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑𝑡)

−1

,

min{ 𝑚
2

2𝑀
2
(∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑𝑡)

−1

,

𝑝
2

2𝑀
2
(∫

𝑝

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑝) 𝑑𝑡)

−1

,

𝑞
2
− 𝑝

2

2𝑀
2
(∫

𝑞

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑞) 𝑑𝑡)

−1

}[ ,

(57)
the problem (1) has at least three distinct nonnegative classical
solutions 𝑢𝑖 (𝑖 = 1, 2, 3), such that ‖𝑢𝑖‖𝐶1 < 𝑞, which means
that the problem (1) has at least two distinct positive classical
solutions.

Proof. The proof is based on Theorem 3. First, we will prove
that Φ and Ψ satisfy the hypotheses in Theorem 3. On the
one hand, Φ is coercive and its Gâteaux derivative admits a
continuous inverse by Lemma 19. On the other hand, Φ is
obviously convex. Ψ’s Gâteaux derivative is continuous and
compact by Lemma 20. In addition, inf𝑋Φ = Φ(0) = Ψ(0) =

0. By (H5), we have

∫

𝑠

0

𝐼1𝑖 (𝑠) 𝑑𝑠 ≥ 0, ∫

𝑠

0

𝐼2𝑖 (𝑠) 𝑑𝑠 ≥ 0,

𝐹 (𝑡, 𝑠) = ∫

𝑠

0

𝑓 (𝑡, 𝑠) 𝑑𝑠 ≥ 0,

(58)

which deduces that Ψ(𝑢) ≥ 0 for all 𝑢 ∈ 𝑋.
Next, we will verify the conditions (i), (ii), (iii) in

Theorem 3. First, we define

V (𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

32𝑛

𝑇
2
𝑡
2
, 𝑡 ∈ [0,

𝑇

8

] ,

−

32𝑛

𝑇
2
(𝑡 −

𝑇

4

)

2

+ 𝑛, 𝑡 ∈ ]

𝑇

8

,

𝑇

4

] ,

𝑛, 𝑡 ∈ ]

𝑇

4

,

3𝑇

4

] ,

−

32𝑛

𝑇
2
(𝑡 −

3𝑇

4

)

2

+ 𝑛, 𝑡 ∈ ]

3𝑇

4

,

7𝑇

8

] ,

32𝑛

𝑇
2
(𝑡 − 𝑇)

2
, 𝑡 ∈ ]

7𝑇

8

, 𝑇] .

(59)

It is easy to verify that
V+ = V, V− = 0. (60)

By computing,

Φ (V) = (
1024

𝑇
3

+

83

240

𝑇) 𝑛
2
=

𝑛
2

2𝑀
2
𝑘

. (61)

Let 𝑟1 = 𝑚
2
/2𝑀

2, 𝑟2 = 𝑝
2
/2𝑀

2, and 𝑟3 = (𝑞
2
− 𝑝

2
)/2𝑀

2.
By √𝑘𝑚 < 𝑛 < √𝑘𝑝 < √𝑘𝑞, one has 𝑟1 < Φ(V) < 𝑟2, which
means that V ∈ Φ−1

([𝑟1, 𝑟2[) and 𝑟3 > 0. When Φ(𝑢) < 𝑟1, by
Lemma 9 and (51), we have

max{max
𝑡∈[0,𝑇]

󵄨
󵄨
󵄨
󵄨
𝑢
+
(𝑡)
󵄨
󵄨
󵄨
󵄨
, max
𝑡∈[0,𝑇]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑢
+
)

󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ 𝑀
󵄩
󵄩
󵄩
󵄩
𝑢
+󵄩
󵄩
󵄩
󵄩𝑋

≤ 𝑀‖𝑢‖𝑋 ≤ √2𝑀
2
Φ (𝑢) < 𝑚.

(62)
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In view of (51) and 𝐼(𝑠), we have

sup
𝑢∈Φ−1(]−∞,𝑟1[)

Ψ (𝑢)

≤ max
|𝜉|≤𝑚

𝑙

∑

𝑖=1

∫

𝜉

0

󵄨
󵄨
󵄨
󵄨
𝐼1𝑖 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 +max

|𝜉|≤𝑚

𝑙

∑

𝑖=1

∫

𝜉

0

󵄨
󵄨
󵄨
󵄨
𝐼2𝑖 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ ∫

𝑇

0

max
|𝜉|≤𝑚

𝐹 (𝑡, 𝜉) 𝑑𝑡

= ∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑𝑡.

(63)

Similarly, we have

sup
𝑢∈Φ−1(]−∞,𝑟2[)

Ψ (𝑢) ≤ ∫

𝑝

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑝) 𝑑𝑡,

sup
𝑢∈Φ−1(]−∞,𝑟2+𝑟3[)

Ψ (𝑢) ≤ ∫

𝑞

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑞) 𝑑𝑡.

(64)

Therefore, taking into consideration that 0 ∈ Φ−1
(] −∞, 𝑟1[)

and 0 ∈ Φ−1
(] −∞, 𝑟2[), by (63) and (64), we have

𝜑 (𝑟1) ≤

sup𝑢∈Φ−1(]−∞,𝑟1[)
Ψ (𝑢)

𝑟1

≤

2𝑀
2

𝑚
2
(∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑𝑡) ,

𝜑 (𝑟2) ≤

sup𝑢∈Φ−1(]−∞,𝑟2[)
Ψ (𝑢)

𝑟2

≤

2𝑀
2

𝑝
2
(∫

𝑝

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑝) 𝑑𝑡) ,

𝛾 (𝑟2, 𝑟3) =

sup𝑢∈Φ−1(]−∞,𝑟2+𝑟3[)
Ψ (𝑢)

𝑟3

≤

2𝑀
2

𝑞
2
− 𝑝

2
(∫

𝑞

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑞) 𝑑𝑡) .

(65)

Furthermore, by (60) and the definition of V,

Ψ (V) =
𝑙

∑

𝑖=1

∫

V(𝑡𝑖)

0

𝐼1𝑖 (𝑠) 𝑑𝑠 +

𝑙

∑

𝑖=1

∫

V󸀠(𝑡𝑖)

0

𝐼2𝑖 (𝑠) 𝑑𝑠

+ ∫

𝑇

0

𝐹 (𝑡, V (𝑡)) 𝑑𝑡

≥

𝑙

∑

𝑖=1

∫

min𝑡∈[0,𝑇]V(𝑡)

0

𝐼1𝑖 (𝑠) 𝑑𝑠 +

𝑙

∑

𝑖=1

∫

min𝑡∈[0,𝑇]|V󸀠(𝑡)|

0

󵄨
󵄨
󵄨
󵄨
𝐼2𝑖 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+ ∫

3𝑇/4

𝑇/4

𝐹 (𝑡, V (𝑡)) 𝑑𝑡 = ∫
3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑛) 𝑑𝑡.

(66)

Taking V ∈ Φ−1
([𝑟1, 𝑟2[) into consideration, by (61), (63), (66),

(C9), and Φ(𝑢) ≥ 0, one has

𝛽 (𝑟1, 𝑟2)

≥ inf
𝑢∈Φ−1(]−∞,𝑟1[)

Ψ (V) − Ψ (𝑢)

Φ (V) − Φ (𝑢)

≥

∫

3𝑇/4

𝑇/4
𝐹 (𝑡, 𝑛) 𝑑𝑡 − (∫

𝑚

0
𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0
𝐹 (𝑡, 𝑚) 𝑑𝑡)

𝑛
2
/2𝑀

2
𝑘

=

2𝑀
2
𝑘

𝑛
2

(−∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑛) 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑𝑡).

(67)

By (65), (67), and (C7)–(C9) of (H6), we have

𝛼 (𝑟1, 𝑟2, 𝑟3) < 𝛽 (𝑟1, 𝑟2) , (68)

which yields the conditions in Theorem 3. By Theorem 3, it
follows that, for each

𝜆 ∈ ]

𝑛
2

2𝑀
2
𝑘

(−∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑛) 𝑑𝑡

−∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑𝑡)

−1

,

min{ 𝑚
2

2𝑀
2
(∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑)

−1

,

𝑝
2

2𝑀
2
(∫

𝑝

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑝) 𝑑𝑡)

−1

,

𝑞
2
− 𝑝

2

2𝑀
2
(∫

𝑞

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑞) 𝑑𝑡)

−1

}[ ,

(69)

the functional 𝐽 = Φ − 𝜆Ψ has three distinct critical points
𝑢𝑖 (𝑖 = 1, 2, 3) in𝑋withΦ(𝑢𝑖) < 𝑟2 +𝑟3. By Lemma 9 and (51)

󵄩
󵄩
󵄩
󵄩
𝑢
+

𝑖

󵄩
󵄩
󵄩
󵄩𝐶1

= max{max
𝑡∈[0,𝑇]

󵄨
󵄨
󵄨
󵄨
𝑢
+

𝑖 (𝑡)
󵄨
󵄨
󵄨
󵄨
, max
𝑡∈[0.𝑇]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑢
+

𝑖 )
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ 𝑀
󵄩
󵄩
󵄩
󵄩
𝑢
+

𝑖

󵄩
󵄩
󵄩
󵄩𝑋

≤ 𝑀
󵄩
󵄩
󵄩
󵄩
𝑢𝑖
󵄩
󵄩
󵄩
󵄩𝑋

≤ √2𝑀
2
Φ(𝑢𝑖) < 𝑞.

(70)

By Remark 16, 𝑢𝑖 (𝑖 = 1, 2, 3) are three positive solutions of
(1). The proof is complete.

Remark 22. If we choose different V, then the constrictions on
𝐹, 𝐼𝑖 are different.

5. Examples

Example 1. Let 𝑇 > 0, 𝑡𝑖 ∈ (0, 𝑇), 𝑎, 𝑏, 𝑐, 𝑑 > 0,
𝑥1, 𝑥2, 𝑥3, 𝑦𝑖, 𝑧𝑖 ∈ 𝐶([0, 𝑇], 𝑅

+
), 𝑖 = 1, 2, . . . , 𝑙. Consider
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the following Sturm-Liouville boundary-value problem with
impulse:

𝑢
(4)
(𝑡) + 𝑢 (𝑡) = 𝜆𝑓1 (𝑡, 𝑢) , 𝑡 ∈ [0, 𝑇] \ {𝑡1, 𝑡2, . . . , 𝑡𝑙} ,

Δ𝑢
󸀠󸀠󸀠
(𝑡𝑖) = 𝜆𝐼𝑖 (𝑢 (𝑡𝑖)) , 𝑖 = 1, 2, . . . , 𝑙,

−Δ𝑢
󸀠󸀠
(𝑡𝑖) = −𝜆𝑧𝑖 (𝑡) sin 𝑢

󸀠3
(𝑡𝑖) , 𝑖 = 1, 2, . . . , 𝑙,

𝑎𝑢 (0) + 𝑏𝑢
󸀠󸀠󸀠
(0) = 0, 𝑎𝑢 (𝑇) − 𝑏𝑢

󸀠󸀠󸀠
(𝑇) = 0,

𝑐𝑢
󸀠
(0) − 𝑑𝑢

󸀠󸀠
(0) = 0, 𝑐𝑢

󸀠
(𝑇) + 𝑑𝑢

󸀠󸀠
(𝑇) = 0,

(71)

where

𝑓1 (𝑡, 𝑢) = 𝑥1 (𝑡) 𝑢
3
+ 𝑥2 (𝑡) sin 𝑢 + 𝑥3 (𝑡) exp |𝑢| ,

𝐼𝑖 (𝑢) = {
𝑦𝑖 (𝑡) 𝑢

3
, |𝑢| ≤ 1,

𝑦𝑖 (𝑡) 𝑢
1/3
, |𝑢| > 1.

(72)

By computing, 𝐹(𝑡, 𝑢) = (1/4)𝑥1(𝑡)𝑢
4
− 𝑥2(𝑡) cos 𝑢 +

𝑥3(𝑡) sgn 𝑢 exp |𝑢|. Let 𝜇 = 6; there exists 𝑟 ≥ 0 such that,
for |𝜉| ≥ 𝑟, 0 < 𝜇𝐹(𝑡, 𝜉) ≤ 𝜉𝑓(𝑡, 𝜉). The conditions (H1)–(H4)
are satisfied. Applying Theorem 1, problem (71) has at least
one nontrivial solution.

Furthermore, the functions 𝑓(𝑡, 𝑢), 𝐼1𝑖, 𝐼2𝑖 are all odd in
𝑢. Applying Theorem 2, problem (71) has infinitely many
classical solutions.

Example 2. Let 𝑇 = 1, 𝑡𝑖 ∈ (0, 1), 𝑖 = 1, 2, . . . , 𝑙, 𝑎, 𝑏, 𝑐, 𝑑 >

0. Consider the following Sturm-Liouville boundary-value
problem:

𝑢
(4)
(𝑡) + 𝑢 (𝑡) = 𝜆𝑓2 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] \ {𝑡1, 𝑡2, . . . , 𝑡𝑙} ,

Δ𝑢
󸀠󸀠󸀠
(𝑡𝑖) = 𝜆𝐼1𝑖 (𝑢 (𝑡𝑖)) , 𝑖 = 1, 2, . . . , 𝑙,

−Δ𝑢
󸀠󸀠
(𝑡𝑖) = 𝜆𝐼2𝑖 (𝑢

󸀠
(𝑡𝑖)) , 𝑖 = 1, 2, . . . , 𝑙,

𝑎𝑢 (0) + 𝑏𝑢
󸀠󸀠󸀠
(0) = 0, 𝑎𝑢 (1) − 𝑏𝑢

󸀠󸀠󸀠
(1) = 0,

𝑐𝑢
󸀠
(0) − 𝑑𝑢

󸀠󸀠
(0) = 0, 𝑐𝑢

󸀠
(1) + 𝑑𝑢

󸀠󸀠
(1) = 0,

(73)

where

𝑓2 (𝑡, 𝑠) = 𝐼1𝑖 (𝑠) = 𝐼2𝑖 (𝑠) =

{
{
{
{

{
{
{
{

{

0, 0 < 𝑠 ≤ 1,

𝑡 (𝑠 − 1) , 1 < 𝑠 ≤ 2,

−𝑡 (𝑠 − 3) , 2 < 𝑠 ≤ 3,

0, 𝑠 > 3,

for every 𝜆 ∈ [ 7680

245843

, +∞) ,

(74)

problem (73) has at least two distinct positive classical
solutions.

In fact, (H5) is fulfilled. By computing, 𝑀 =

max{3, 2𝑑/𝑐}, so 𝑘 = min{40/737529, 30𝑐2/245843𝑑2}.

Considering √𝑘𝑚 < 𝑛 < √𝑘𝑝 < √𝑘𝑞, without loss of
generality, we choose𝑚 = 1/2, 𝑛 = 2 and sufficiently large 𝑝,
𝑞. Then we have

𝑛
2

2𝑀
2
𝑘

(−∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑛) 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑𝑡)

−1

=

161280

245843

,

𝑚
2

2𝑀
2
(∫

𝑚

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑚) 𝑑𝑡)

−1

= ∞,

𝑝
2

2𝑀
2
(∫

𝑝

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑝) 𝑑𝑡)

−1

is sufficiently large,

𝑞
2
− 𝑝

2

2𝑀
2
(∫

𝑞

0

𝐼 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝐹 (𝑡, 𝑞) 𝑑𝑡)

−1

is sufficiently large,

(75)

and that (H6) is satisfied. ApplyingTheorem 21, problem (73)
has at least two distinct positive classical solutions for every
𝜆 ∈ [161280/245843, +∞).
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