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In practical utilization of stratified random sampling scheme, the investigator meets a problem to select a sample that maximizes
the precision of a finite population mean under cost constraint. An allocation of sample size becomes complicated whenmore than
one characteristic is observed from each selected unit in a sample. In many real life situations, a linear cost function of a sample size
𝑛ℎ is not a good approximation to actual cost of sample survey when traveling cost between selected units in a stratum is significant.
In this paper, sample allocation problem in multivariate stratified random sampling with proposed cost function is formulated in
integer nonlinear multiobjective mathematical programming. A solution procedure is proposed using extended lexicographic goal
programming approach. A numerical example is presented to illustrate the computational details and to compare the efficiency of
proposed compromise allocation.

1. Introduction

It is common practice in sample survey related to agriculture,
market, industries, and social research, and so forth that
usually more than one characteristic is observed from each
sampled unit of population. Stratified random sampling is
more suitable than other survey designs used for obtaining
information from heterogeneous population for reasons of
economy and efficiency. The theory of stratified random
sampling deals with the properties of estimator constructed
from stratified random sample and with the best (optimum)
choice of sample size to be selected from various strata
either to maximize the precision of constructed estimator
for a fixed cost or to minimize the cost of survey for fixed
precision of estimator.The sample sizes selected according to
above criteria are known as “optimum allocation.” In general,
variance of study variate varies from stratum to stratum that
provides basis for selecting optimum sample size.

Tschuprow [1] and Neyman [2] independently proposed
an allocation procedure that minimizes variance of sample

mean under a linear cost function of sample size 𝑛ℎ in strat-
ified random sampling scheme. Neyman [2] used Lagrange
multiplier optimization technique to get optimum sample
size for single variable under study. In stratified sampling,
sample allocation problem becomes complicated when more
than one characteristic is observed from each selected unit
of a finite population. An allocation which is optimum for
single characteristic may not be optimum for others unless
the characteristics are highly correlated. There is need to
use some compromise allocation criteria which produce an
optimum allocation for all characteristics in some sense, for
example, an allocation that minimizes the trace of variance-
covariance matrix of the estimator of population mean or an
allocation that minimizes the weighted average of variances
or an allocation that maximizes the total relative efficiency
of the estimators as compared to corresponding individual
optimum allocation (Varshney et al. [3]). Many authors such
as Dalenius [4, 5], Ghosh [6], Folks and Antle [7], Chromy
[8], Bethel [9], Jahan et al. [10, 11], Khan et al. [12], Khan et al.
[13, 14], Ansari et al. [15], Khan et al. [16], and Varshney et al.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 686579, 7 pages
http://dx.doi.org/10.1155/2014/686579

http://dx.doi.org/10.1155/2014/686579


2 Journal of Applied Mathematics

[17] used different compromise criterion to solve allocation
problem in stratified random sampling scheme.

The cost of survey is an important factor of sample
allocation to various strata. The linear cost function used in
stratified sampling is given as

𝐶 = 𝑐0 +

𝐿

∑

ℎ=1

𝑐ℎ𝑛ℎ, (1)

where 𝐶 denotes total budget available for survey, 𝑐ℎ for ℎ =
1, 2, . . . , 𝐿 represents measurement per unit cost in the ℎth
stratum, 𝑐0 represents fixed cost of survey, and 𝑛ℎ is number
of sample units selected in the ℎth stratum. In many practical
situations, measurement unit cost and travel cost within
strata are important factors of survey cost. The nonlinear
cost function including measurement unit cost and traveling
cost within strata is good approximation to actual cost of
survey. Beardwood et al. [18] suggested that the shortest rout
among 𝑘 randomly disperse destination within a region is
asymptotically proportional to√𝑘 for large 𝑘. Varshney et al.
[17] used nonlinear cost function for large sample size given
in (2). Consider

𝐶 = 𝑐0 +

𝐿

∑

ℎ=1

𝑐ℎ𝑛ℎ +

𝐿

∑

ℎ=1

𝑡ℎ√𝑛ℎ, (2)

where 𝑡ℎ is travel cost within ℎth stratum. The problem of
finding the shortest rout among 𝑛ℎ selected units in ℎth
stratum is often called the “shortest rout problem” in the
operation research literature. If rout map and its length is
given for each strata, we find shortest rout among 𝑛ℎ units
within strata that 𝑛ℎ is either small or large.This shortest rout
is used for practical purpose with confidence (Beardwood
et al. [18]).

Consider following proposed nonlinear cost function:

𝐶́ =

𝐿

∑

ℎ=1

𝑐ℎ𝑛ℎ +

𝐿

∑

ℎ=1

𝑡ℎ𝑛
𝛿

ℎ
, (3)

where 𝐶́ = 𝐶 − 𝑐0 and 𝛿 represents the effect of travel within
strata to cost function.The value of 𝛿 is determined by solving
shortest rout problem using methods discussed by Hiller and
Lieberman [19]. The cost function in (2) becomes particular
case of our proposed cost function given in (3) if 𝛿 = 0.5.

Generally, Lagrange multiplier technique (LMT) is used
to determine sample size. However, the constraint 2 ≤ 𝑛ℎ ≤

𝑁ℎ, where 𝑛ℎ (ℎ = 1, 2, 3, . . . , 𝐿) is an integer neglected in
using LMT. For integer value of sample size 𝑛ℎ, rounding rule
is used which may lead to violating the optimality or feasi-
bility conditions (or both). We need integer value of sample
size 𝑛ℎ for practical implementation. Therefore, the authors
did not try to use LMT and used integer programming for
integer value of strata sample sizes 𝑛ℎ.

In this paper, we discuss compromise allocation based on
minimization of coefficients of variation of regression esti-
mators of population mean in multivariate stratified random
sampling design under proposed nonlinear cost function
(3). The problem is formulated in multiobjective integer

nonlinear programming. The extended lexicographic goal
programming technique is applied to solve formulated allo-
cation problem. The GAMS—AlphaECP Rosenthal [20] op-
timization software is used to solve numerical example which
illustrates the computational detail of allocation procedure.

2. Formulation of the Problem

Consider a population of 𝑁 units divided in to 𝐿 mutually
exclusive strata of size 𝑁ℎ (ℎ = 1, 2, . . . , 𝐿) such that ∑𝐿

ℎ=1

𝑁ℎ = 𝑁. The simple random sample of size 𝑛ℎ is drawn from
each stratum independently. Suppose we observe 𝑌𝑗𝑖 (𝑖 =

1, 2, . . . , 𝑁ℎ, 𝑗 = 1, 2, . . . , 𝑝), 𝑝 ≥ 2, characteristics from
each unit in ℎth stratum and estimate population mean of
𝑝 ≥ 2 characteristics. Let 𝑦

𝑗ℎ
and 𝑥𝑗ℎ be the sample means

and 𝑌𝑗ℎ and 𝑋𝑗ℎ the population means of study variable 𝑌𝑗ℎ
and auxiliary variable𝑋𝑗ℎ, respectively, of 𝑗th characteristics
in the ℎth stratum. 𝑆2

𝑦𝑗ℎ
and 𝑆

2

𝑥𝑗ℎ
are population variance

and 𝑆𝑦𝑥𝑗ℎ is population covariance between the 𝑗th study
and auxiliary variable in the ℎth stratum. 𝑏𝑗ℎ = 𝑠𝑦𝑥𝑗ℎ/𝑠

2

𝑥𝑖ℎ

and 𝛽𝑗ℎ = 𝑆𝑦𝑥𝑗ℎ/𝑆
2

𝑥𝑗ℎ
are sample and population regression

coefficients and𝑊ℎ = 𝑁ℎ/𝑁 is stratum weight.
Consider an estimator,

𝑦
𝑗,𝑙𝑟𝑠

=

𝐿

∑

ℎ=1

𝑊ℎ𝑦𝑗,𝑙𝑟ℎ
, (4)

where 𝑦
𝑗,𝑙𝑟ℎ

= 𝑦
𝑗ℎ
+ 𝑏𝑗ℎ(𝑋𝑗ℎ − 𝑥𝑗ℎ).

The mean square error (MSE) of 𝑦
𝑗,𝑙𝑟𝑠

is given as

MSE (𝑦
𝑗,𝑙𝑟𝑠

)=

𝐿

∑

ℎ=1

𝑊
2

ℎ
(

1

𝑛ℎ

−

1

𝑁ℎ

) [𝑆
2

𝑦𝑗ℎ
−2𝛽𝑗ℎ𝑆𝑦𝑥𝑗ℎ+𝛽

2

𝑗ℎ
𝑆
2

𝑥𝑗ℎ
] ,

(5)

MSE (𝑦
𝑗,𝑙𝑟𝑠

) =

𝐿

∑

ℎ=1

𝑊
2

ℎ
𝑈́𝑗ℎ

𝑛ℎ

−

𝐿

∑

ℎ=1

𝑊
2

ℎ
𝑈́𝑗ℎ

𝑁ℎ

, (6)

where

𝑈́𝑗ℎ = 𝑆
2

𝑦𝑗ℎ
− 2𝛽𝑗ℎ𝑆𝑦𝑥𝑗ℎ + 𝛽

2

𝑗ℎ
𝑆
2

𝑥𝑗ℎ
. (7)

If we ignore the second term in RHS of (6) because it is
independent of sample size 𝑛ℎ, then

MSE (𝑦
𝑗,𝑙𝑟𝑠

) =

𝐿

∑

ℎ=1

𝑊
2

ℎ
𝑈́𝑗ℎ

𝑛ℎ

. (8)

Since different characteristics are measured with different
units, we need to use an estimate which should be indepen-
dent of measurement unit. Therefore, coefficient of variation
is used instead of mean square error; that is,

C.V (𝑦
𝑗,𝑙𝑟𝑠

) = √

MSE (𝑦
𝑗,𝑙𝑟𝑠

)

𝑌

2

𝑗

(9)
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or

C.V (𝑦
𝑗,𝑙𝑟𝑠

) = 𝑍𝑗 =
√

𝐿

∑

ℎ=1

𝑢́𝑗ℎ

𝑛ℎ

, (10)

where

𝑢́𝑗ℎ =

𝑊
2

ℎ
𝑈́𝑗ℎ

𝑌

2

𝑗

. (11)

A sample size 𝑛ℎ is determined under proposed nonlinear
cost function in (3) that minimizes coefficients of variation
of the estimator of population mean for each characteristics
𝑌𝑗 (𝑗 = 1, 2, . . . , 𝑝). This problem may be formulated in
multiobjective integer nonlinear programming as in (12).
Consider

Minimize (𝑍1, 𝑍2, . . . , 𝑍𝑝)

Subject to
𝐿

∑

ℎ=1

𝑐ℎ𝑛ℎ +

𝐿

∑

ℎ=1

𝑡ℎ𝑛
𝛿

ℎ
≤ 𝐶́

2 ≤ 𝑛ℎ ≤ 𝑁ℎ

𝑛ℎ are integers

𝑛ℎ ∈ 𝐹; ℎ = 1, 2, . . . , 𝐿,

(12)

where 𝐹 represents the feasible region that fulfills all con-
straints and sign restrictions. Any solution that exists within
feasible region is implementable in practice.

3. Extended Lexicographic Goal Programming

Romero [21] proposed extended lexicographic goal program-
ming method that provides a general framework which
covers and allows the mixture of most common method of
solving multiobjective decision making problems. It is also
encompasses distance based multicriteria decision making
technique. Romero [22] extended this work to make more
general form of objective function. It is a technique used
by decision makers for optimizing more than one objective
under some constraints. In goal programming, all specified
objectives are included in the model. The decision maker
tries to minimize the potential deviations from specified
objectives.

Consider the following individual optimum problem:

Minimize 𝑍𝑗

Subject to
𝐿

∑

ℎ=1

𝑐ℎ𝑛ℎ +

𝐿

∑

ℎ=1

𝑡ℎ𝑛
𝛿

𝑗ℎ
≤ 𝐶́

2 ≤ 𝑛𝑗ℎ ≤ 𝑁ℎ

𝑛𝑗ℎ are integers, 𝑛𝑗ℎ ∈ 𝐹.

ℎ = 1, 2, . . . , 𝐿, 𝑗 = 1, 2, . . . , 𝑝.

(13)

Let 𝑍∗
𝑗
be the individual optimum values of 𝑍𝑗 obtained

by solving above problem. These optimum values 𝑍∗
𝑗
specify

objectives and try to achieve these objectives using multi-
objective mathematical programming. Let ̂𝑍𝑗 be values of
objectives obtained by applying multiobjective optimization
method. It is obvious that ̂𝑍𝑗 ≥ 𝑍

∗

𝑗
or ̂𝑍𝑗 − 𝑍

∗

𝑗
≥ 0 is the

increase in 𝑍𝑗 due to compromise among objectives using
compromise criterion. Suppose this increase is 𝑑+

𝑗
≥ 0. To

achieve these specified objectives, we must have

̂
𝑍𝑗 − 𝑍

∗

𝑗
≤ 𝑑
+

𝑗
(14)

or

̂
𝑍𝑗 − 𝑑

+

𝑗
≤ 𝑍
∗

𝑗
. (15)

In goal programming method, we minimize the deviations
𝑑
+

𝑗
using additional constraint equation (15). To solve multi-

objective allocation problem (12), the extended lexicographic
goal programming has following mathematical model:

Minimize 𝛼 (𝜆) + (1 − 𝛼)(

𝑝

∑

𝑗=1

𝑑
+

𝑗
)

Subject to 𝑑
+

𝑗
≤ 𝜆

𝑍𝑗 − 𝑑
+

𝑗
≤ 𝑍
∗

𝑗

𝐿

∑

ℎ=1

𝑐ℎ𝑛ℎ𝑐 +

𝐿

∑

ℎ=1

𝑡ℎ𝑛
𝛿

ℎ𝑐
≤ 𝐶́

2 ≤ 𝑛ℎ𝑐 ≤ 𝑁ℎ

𝑛ℎ𝑐 are integers

𝑛ℎ𝑐 ∈ 𝐹, 𝑛ℎ𝑐 ≥ 0, 𝑑
+

𝑗
≥ 0

ℎ = 1, 2, . . . , 𝐿, 𝑗 = 1, 2, . . . , 𝑝,

(16)

where 𝛼 is a constant that can assume minimum value zero
and maximum value one. 𝑑+

𝑗
is positive deviational variable.

4. Some Other Compromise Allocations

In this section, some other compromise allocations are
discussed for the sake of comparison with the proposed
allocation.

4.1. Cochran Compromise Allocation. Cochran [23] proposed
a compromise allocation criteria by averaging the individual
optimum allocation 𝑛

∗

𝑗ℎ
(𝑗 = 1, 2, 3) that is solution to

integer nonlinear programming problem (INLPP) (13) over
the characteristics.

Cochran’s compromise allocation is given by

𝑛ℎ =

1

𝑝

𝑝

∑

𝑗=1

𝑛
∗

𝑗ℎ
. (17)

4.2. Khan et al. Compromise Allocation. Khan et al. [13] com-
promise allocation is obtained by minimizing the weighted
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sum of variances.Themathematical model of Khan et al. [13]
compromise allocation is given by

Minimize
𝑝

∑

𝑗=1

𝛼́𝑗𝑍𝑗

Subject to
𝐿

∑

ℎ=1

𝑐ℎ𝑛ℎ +

𝐿

∑

ℎ=1

𝑡ℎ𝑛
𝛿

𝑗ℎ
≤ 𝐶́

2 ≤ 𝑛𝑗ℎ ≤ 𝑁ℎ

𝑛𝑗ℎ are integers, 𝑛𝑗ℎ ∈ 𝐹.

ℎ = 1, 2, . . . , 𝐿, 𝑗 = 1, 2, . . . , 𝑝,

(18)

where 𝛼́𝑗 = ∑
𝐿

ℎ=1
𝑆
2

𝑗ℎ
/∑
𝑝

𝑗=1
∑
𝐿

ℎ=1
𝑆
2

𝑗ℎ
is the relative weights

proposed by Khan et al.

5. Numerical Example

The data are taken from agricultural census in Iowa state
conducted by National Agricultural Statistics Service, USDA,
Washington DC as reported by Khan et al. [16]. We assume
that 𝑐1 = 12, 𝑐2 = 8, 𝑐3 = 6, 𝑐4 = 10, 𝑡1 = 6, 𝑡2 = 4, 𝑡3 = 3, and
𝑡4 = 5.

Let

𝑌1 denote the quantity of corn harvested in 2002;
𝑌2 denote the quantity of oats harvested in 2002;
𝑋1 denote the quantity of corn harvested in 1997;
𝑋2 denote the quantity of oats harvested in 1997.

The data summary is given as 𝑌1 = 474973.90, 𝑋1 =
405654.19, 𝑌2 = 1576.25, and 𝑋2 = 2116.70. The detailed
summary of data is given in Tables 1 and 2.

The allocation problem formulated in multiobjective
integer nonlinear programming is

Minimize(
𝑍1 = √

0.000066

𝑛1

+

0.000809

𝑛2

+

0.001212

𝑛3

+

0.000332

𝑛4

𝑍2 = √

0.000181

𝑛1

+

0.009411

𝑛2

+

0.023390

𝑛3

+

0.000610

𝑛4

) (19)

Subject to

12𝑛1 + 8𝑛2 + 6𝑛3 + 10𝑛4 + 6𝑛
𝛿

1

+ 4𝑛
𝛿

2
+ 3𝑛
𝛿

3
+ 5𝑛
𝛿

4
≤ 𝐶́

2 ≤ 𝑛1 ≤ 8

2 ≤ 𝑛2 ≤ 34

2 ≤ 𝑛3 ≤ 45

2 ≤ 𝑛4 ≤ 12

𝑛1, 𝑛2, 𝑛3, and 𝑛4 are integers.

(20)

5.1. (a) Individual Optimum Allocation Method

5.1.1. Individual Optimum Allocation for Characteristic 𝑌1.
Consider

Minimize 𝑍1 =

√

0.000066

𝑛11

+

0.000809

𝑛12

+

0.001212

𝑛13

+

0.000332

𝑛14

(21)

subject to

12𝑛11 + 8𝑛12 + 6𝑛13 + 10𝑛14 + 6𝑛
𝛿

11

+ 4𝑛
𝛿

12
+ 3𝑛
𝛿

13
+ 5𝑛
𝛿

14
≤ 𝐶́

2 ≤ 𝑛11 ≤ 8

2 ≤ 𝑛12 ≤ 34

2 ≤ 𝑛13 ≤ 45

2 ≤ 𝑛14 ≤ 12

𝑛11, 𝑛12, 𝑛13, and 𝑛14 are integers.
(22)

5.1.2. Individual Optimum Allocation for Characteristic 𝑌2.
Consider
Minimize 𝑍2 =

√

0.000181

𝑛21

+

0.009411

𝑛22

+

0.023390

𝑛23

+

0.000610

𝑛24

(23)

subject to

12𝑛21 + 8𝑛22 + 6𝑛23 + 10𝑛24 + 6𝑛
𝛿

21

+ 4𝑛
𝛿

22
+ 3𝑛
𝛿

23
+ 5𝑛
𝛿

24
≤ 𝐶́

2 ≤ 𝑛21 ≤ 8

2 ≤ 𝑛22 ≤ 34

2 ≤ 𝑛23 ≤ 45

2 ≤ 𝑛24 ≤ 12

𝑛21, 𝑛22, 𝑛23, and 𝑛24 are integers.

(24)
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Table 1: Data summary.

ℎ 𝑁ℎ 𝑊ℎ 𝑆
2

𝑦1ℎ
𝑆
2

𝑥1ℎ
𝑆
2

𝑦2ℎ
𝑆
2

𝑥2ℎ

1 8 0.0808 29267524195.5 21601503189.8 777174.1 1154134.2

2 34 0.3434 26079256582.8 19734615816.7 4987812.9 7056074.8

3 45 0.4545 42362842460.8 27129658750.0 1074510.6 2082871.3

4 12 0.1212 30728265336.9 17258237358.5 388378.5 732004.9

Table 2: Data summary.

ℎ 𝑆𝑥1𝑦1ℎ 𝑆𝑥2𝑦2ℎ 𝛽1ℎ 𝛽2ℎ
́𝑢1ℎ

́𝑢2ℎ

1 24360422802.3 902170.6 1.1249 0.7834 0.000066 0.000181

2 22003466630.3 5813439.5 1.1150 0.8239 0.000809 0.009411

3 33367597192.0 1285355.6 1.2300 0.6171 0.001212 0.023390

4 21033769867.3 456991.5 1.2188 0.4243 0.000332 0.000610

𝑍
∗

1
and 𝑍

∗

2
are coefficients of variation under individual

allocation at different values of 𝛿 and 𝐶́ given in Table 3.

5.2. Proposed Compromise Allocation. We used extended lex-
icographic goal programming model (16) for sample alloca-
tion to different strata taking into account two characteristics
𝑌1 and 𝑌2. Consider

Minimize 0.2 (𝜆) + (1 − 0.2) (𝑑+
1
+ 𝑑
+

2
) (25)

subject to

𝑑
+

1
≤ 𝜆

𝑑
+

2
≤ 𝜆

√

0.000066

𝑛1𝑐

+

0.000809

𝑛2𝑐

+

0.001212

𝑛3𝑐

+

0.000332

𝑛4𝑐

− 𝑑
+

1
≤ 𝑍
∗

1

√

0.000181

𝑛1𝑐

+

0.009411

𝑛2𝑐

+

0.023390

𝑛3𝑐

+

0.000610

𝑛4𝑐

− 𝑑
+

2
≤ 𝑍
∗

2

12𝑛1𝑐 + 8𝑛2𝑐 + 6𝑛3𝑐 + 10𝑛4𝑐 + 6𝑛
𝛿

1𝑐

+ 4𝑛
𝛿

2𝑐
+ 3𝑛
𝛿

3𝑐
+ 5𝑛
𝛿

4𝑐
≤ 𝐶́

2 ≤ 𝑛1𝑐 ≤ 8

2 ≤ 𝑛2𝑐 ≤ 34

2 ≤ 𝑛3𝑐 ≤ 45

2 ≤ 𝑛4𝑐 ≤ 12

𝑛ℎ𝑐 (ℎ = 1, 2, 3, 4) 𝜖𝐹 are integer

𝑑
+

1
, 𝑑
+

2
≥ 0.

(26)

Let ̂𝑍1 and ̂
𝑍2 be the coefficients of variation at various

values of constants 𝛿 and 𝐶́ under proposed allocation given
in Table 6.

5.3. Khan et al. Compromise Allocation. We have applied
model (18) to find compromise allocation proposed by Khan
et al. Consider

Minimize(
0.999944√

0.000066

𝑛1

+

0.000809

𝑛2

+

0.001212

𝑛3

+

0.000332

𝑛4

+0.000056√

0.000181

𝑛1

+

0.009411

𝑛2

+

0.023390

𝑛3

+

0.000610

𝑛4

) (27)

subject to

12𝑛1 + 8𝑛2 + 6𝑛3 + 10𝑛4 + 6𝑛
𝛿

1

+ 4𝑛
𝛿

2
+ 3𝑛
𝛿

3
+ 5𝑛
𝛿

4
≤ 𝐶́

2 ≤ 𝑛1 ≤ 8

2 ≤ 𝑛2 ≤ 34

2 ≤ 𝑛3 ≤ 45

2 ≤ 𝑛4 ≤ 12

𝑛1, 𝑛2, 𝑛3, and 𝑛4 are integers.
(28)

The values ̂𝑍1 and ̂𝑍2 are the coefficients of variation under
Khan et al. compromise allocation obtained by solving above
model at different values of constants 𝛿 and 𝐶́ given inTable 5.
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Table 3: Individual optimum allocation.

𝛿 𝐶́ Allocation 𝑛
1

𝑛
2

𝑛
3

𝑛
4

Used 𝐶́ 𝑍
∗

1
𝑍
∗

2
Trace = 𝑍∗

1
+ 𝑍∗
2

0.5 300

𝑌
1

2 9 18 5 298.00 0.01602 0.05057 0.06659

𝑌2 2 10 22 2 298.27 0.01830 0.04899 0.06729

1 500

𝑌1 4 11 21 7 498.00 0.01398 0.04584 0.05982

𝑌2 2 13 29 3 498.00 0.01601 0.04271 0.05872

1.5 850

𝑌1 4 12 15 9 847.56 0.01420 0.04950 0.06376

𝑌2 2 14 21 3 833.18 0.01610 0.04560 0.06170

2 1500

𝑌
1

3 10 13 7 1470.00 0.01560 0.05374 0.06934

𝑌2 2 10 16 3 1467.00 0.01733 0.05193 0.06926

Table 4: Cochran’s compromise allocation.

𝛿 𝐶́ 𝑛1𝑐 𝑛2𝑐 𝑛3𝑐 𝑛4𝑐 Used 𝐶́ ̂
𝑍1

̂
𝑍2 Trace = ̂𝑍1 + ̂𝑍2

0.5 300 2 10 20 4 308.55 0.01605 0.04851 0.06456

1.0 500 3 12 25 5 498.00 0.01429 0.04361 0.05790

1.5 850 3 13 18 6 829.25 0.01438 0.04675 0.06113

2.0 1500 3 10 15 5 1510.00 0.01581 0.05180 0.06761

Table 5: Khan et al. compromise allocation.

𝛿 𝐶́ 𝑛1𝑐 𝑛2𝑐 𝑛3𝑐 𝑛4𝑐 Used 𝐶́ ̂
𝑍1

̂
𝑍2 Trace = ̂𝑍1 + ̂𝑍2

0.5 300 2 9 18 5 298.00 0.01602 0.05057 0.06659

1 500 4 11 21 7 498.00 0.01398 0.04584 0.05982

1.5 850 4 13 15 8 844.91 0.01418 0.04903 0.06321

2.0 1500 4 12 12 5 1495.00 0.01585 0.05386 0.06971

Table 6: Proposed compromise allocation.

𝛿 𝐶́ 𝑛
1𝑐

𝑛
2𝑐

𝑛
3𝑐

𝑛
4𝑐

Used 𝐶́ ̂
𝑍
1

̂
𝑍
2

Trace = ̂𝑍
1
+
̂
𝑍
2

0.5 300 2 11 19 3 299.49 0.01676 0.04879 0.06557

1.0 500 2 16 23 4 495.00 0.01480 0.04299 0.05779

1.5 850 2 11 22 5 848.58 0.01473 0.04583 0.06056

2.0 1500 3 9 15 6 1491.00 0.01575 0.05260 0.06835

6. Discussion

In this section, a comparative study of proposed compromise
allocation with Cochran compromise allocation, Khan et al.
compromise allocation, and individual optimum allocation
has beenmade.The comparison is based on trace of variance-
covariance matrix of the estimates of finite population means
under compromise allocations. We assume that characteris-
tics are independent; therefore, covariances are zero. Table 3
gives a individual optimum allocation. Tables 4 and 5 give
Cochran compromise allocation and Khan compromise allo-
cation as discussed in Section 5. The proposed compromise
allocation is given in Table 6.

Table 4 shows that Cochran compromise allocation gives
high trace values for 𝛿 = 1, 1.5 as compared to proposed
compromise allocation given in Table 6. For 𝛿 = 0.5, 2.0,
Cochran compromise allocation gives slightly low value of
trace but is infeasible because corresponding cost exceeds the
available cost. Table 5 shows thatKhan et al. compromise allo-
cation gives higher trace values than proposed compromise

Table 7: PRE of proposed compromise allocation to individual
optimum allocation.

𝛿 𝐶́ 𝑌1 𝑌2 𝛿 𝐶́ 𝑌1 𝑌2

0.5 300 101.59 102.65 1.5 850 105.28 101.88

1.0 500 103.51 101.61 2.0 1500 101.45 101.33

allocation. The performance comparison of proposed com-
promise allocation relative to individual optimum allocation
of one characteristic is used for both characteristics given
in Table 7 based on percentage relative efficiency (PRE)
expression given as

PRE = 𝑇𝐼

𝑇𝐶

× 100, (29)

where 𝑇𝐼 is the value of trace using individual optimum
allocation and 𝑇𝐶 is the value of trace using proposed com-
promise allocation. Table 7 shows that proposed compromise
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allocation provides more efficient estimates of population
means as compared to individual optimum allocation.

7. Conclusion

On the basis of the comparison made in Section 6, we can
conclude that the extended lexicographic goal programming
approach always secures a feasible solution which is not
granted Cochran’s compromisemethod and it provides better
results comparative to Khan et al. compromise approach and
individual optimum allocation approach from the point of
view of efficiency.
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