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Numerical analysis and optimization tools are used to suggest improved therapies to try and cure HIV infection. An HIVmodel of
ordinary differential equation, which includes immune response, neutralizing antibodies, and multidrug effects, is improved. For a
fixed time, single-drug and two-drug treatment strategies are explored based on Pontryagin’s maximum principle. Using different
combinations of weight factor pairs combining with special upper-bound pairs for controls, nine types of treatment policies are
determined and different therapy effects are numerically simulated with a gradient projectionmethod. Some strategies are effective,
but some strategies are not particularly helpful for the therapy of HIV/AIDS. Comparing the effective treatment strategies, we find
a more appropriate strategy with maximizing the number of uninfected CD4+T-cells and minimizing the number of active virus.

1. Introduction

Up to date, drug treatments are still available controlmethods
of HIV/AIDS. Reverse transcriptase inhibitors (RTIs) can
inhibit HIV RNA from being converted into DNA, thus
blocking integration of the viral code into the target cell.
Protease inhibitors (PIs) function by preventing the assem-
bly of key viral proteins after they have been produced
by the infected host cell. Therefore, PIs effectively reduce
the number of infectious virus particles released by an
infected cell. HAART consists of combined drug regimens
that include two, or three, nucleoside agents alone or two
nucleoside agents combined with a protease inhibitor, or a
nonnucleoside reverse transcriptase inhibitor [1]. This paper
explores the effects of a combination of a protease inhibitor
and a nucleoside reverse transcriptase inhibitor.

Mathematical models are often used to study HIV/AIDS
spread and host-drug-virus interactions to make assump-
tions and to suggest new methods for its optimal control.
Zurakowski and Teel [2] developed a model to determine
optimal treatment interruption schedules, simulate thera-
peutic vaccine, and induce Cytotoxic T Lymphocyte (CTL)
mediated control of HIV infection. Karrakchou et al. [3] pro-
posed an infectious model which described the interaction
of HIV virus and the immune system of the human body to

investigate the fundamental role of chemotherapy treatment
in controlling the virus reproduction and to determine the
optimal methodology for administering antiviral medication
therapies to fight HIV infection. Garira et al. [4] studied
an optimal control problem including immune response
and multidrug effects for HIV multitherapy enhancement.
However, although most of the previous researches took the
Cytotoxic T Lymphocytes (CTL) into account, they ignored
the neutralizing antibodies, and very few studies have been
carried out on comparing the outcomes before and after using
antiviral drugs.

In this paper, we use numerical analysis and optimization
tools to suggest improved therapies to try and cure HIV
infection for an improved HIVmodel of ordinary differential
equation, which includes immune response, neutralizing
antibodies, and multidrug effects. We use two controls, one
simulating effect of RTIs, and the other control simulating
effect of PIs. We determine nine types of treatment strate-
gies, which including single-drug controls and two-drug
controls, based on different combinations of weight factor
pairs combining with special upper-bound pairs for controls.
The rest of this paper is organized as follows. In Section 2,
an HIV model with antibody response is extended and an
optimal control problem for HIV/AIDS is established. In
Section 3, the existence of optimal control pair is investigated.
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In Section 4, the optimal control pair (the optimality system)
is derived by using Pontryagin’s maximum principle [5–7]. In
Section 5, some numerical results of optimal treatment poli-
cies are illustrated. In Section 6, we conclude by discussing
the results of the numerical simulations based on different
weight coefficients and upper-bounds for controls.

2. The Model

In 2005, an optimal control problem including immune
response and multidrug effects for HIV multitherapy
enhancement,
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was studied by Garira et al. [4]. For a fixed time, a two-
drug treatment strategy was obtained based on Pontryagin’s
minimum principle. The quadratic objective function con-
sidered takes into account two contributions: the viral load
and the quantities of drug used. Simulations were carried
out using an indirect optimization method. At each step the
differential system was solved using Runge-Kutta five order
scheme. Results highlighted that a progressive reduction of
reverse transcriptase inhibitor (RTIs) drug dose on the one
hand along with on the other hand a progressive increase of
protease inhibitor (PIs) one was needed for optimality.

Garira et al. [4] take the cytotoxic T lymphocytes (CTL)
into account, however, they ignore the neutralizing antibod-
ies and latent period. The antibodies can combine with the
virus such that the virus cannot get into target cells and
protect a host against the infection by HIV-1. They can be
induced several weeks after infection [8–11].These factsmean
that the neutralizing antibodies are important in the early
stage of the infection. Because the antibodies are secreted
by effector B cells, we add a term 𝐵(𝑡), which represents the
concentration of effector B cells, to the control system. Since
the differentiation and proliferation of B-cells to effector B-
cells need the help of CD4+T-cells, we assume the generation
rate is 𝑘

5
𝑉𝑇. A simple mass-action type of term will be used

with rate constant 𝑘
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. As HIV-1 mutates rapidly, the average

term of validity of effector B-cells is shorter than normal, we
multiply the death rate, 𝜇

𝐵
, by a positive constant 𝛽 ≥ 1.Thus,

the term 𝐵(𝑡) should satisfy the following equation:
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Because of the assumption that the antibodies’ concen-
tration is proportional to effector B cells’ concentration, the
neutralizing rate should be expressed by 𝑞𝐵𝑉 and (4) should
be modified to the following equation:
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Since viral DNA once integrated in cell nucleus, may
remain dormant, in the latent stage, we also take the latent
period into account as in [11, 12]. Furthermore, we assume
that latently infected cells, which have not yet produced virus,
switch to productively infected cell with rate 𝑘

2
. Let 𝐿 be the

concentration of latently infected CD4+T cells, then we have
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which implies that (3) should be modified to the following
equation:
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Thus, a new HIV treatment system is established as the
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where 𝑇, 𝐿, 𝐼, 𝑉, 𝐸, 𝐵 denote the concentration of uninfected
CD4+T cells, latently infected CD4+T cells, actively infected
cells, CD4+T cells, infectious viruses, cytotoxic lympho-
cytes effector, and B cells, respectively. Drugs efficiency
is represented by the controls 𝑢

1
and 𝑢

2
which account

for reverse transcriptase inhibitors and protease inhibitors
actions, respectively.

This is a modification of model for HIV infection con-
sidered in Garira et al. [4]. In view of the importance of
neutralizing antibody especially in the early stage of the
infection, we add a term 𝐵(𝑡) as in Zhou et al. [11], which
describes effector B cells, to the control system. We chose
effector B cells as antibody response because the antibodies
are secreted by effector B cells.
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Table 1: Definitions and values for parameters.

Parameter Constants Values with unit
𝑟
1

Rate growth of uninfected CD4+T 0.01 d−1

𝑟
2

Rate apoptosis of uninfected CD4+T 2𝑒 − 3 d−1

𝐵
𝑉

Parameter involving amount of antigen 400
𝐵
𝑇

Parameter involving apoptosis of CD4+T 350
𝜇
𝑇

Death rate of uninfected CD4+T 0.02 d−1

𝜇
𝐼

Death rate of infected CD4+T 0.25 d−1

𝜇
𝑉

Death rate of virus 0.95 d−1

𝜇
𝐸

Death rate of CTL 1.5 d−1

𝜇
𝐵

Death rate of antibodies 0.005 d−1

𝑞 Rate virus deleted by CTL 5𝑒 − 2mm3 d−1

𝑘
1

Rate CD4+T becomes infected by virus 2𝑒 − 4mm3 d−1

𝑘
2

Rate latently infected convert to actively infected 3𝑒 − 3mm3 d−1

𝑘
3

Rate actively infected cells deleted by CTL 2𝑒 − 3mm3 d−1

𝑘
4

Rate growth of CTL 1𝑒 − 5mm3 d−1

𝑘
5

Rate growth of antibody 2𝑒 − 4mm3 d−1

𝑎
0

Efficiency of each CTL 0.01 d−1

𝑎
1

Rate CTL suppresses virus 0.075 d−1

𝑁 Average of viral particles 1000
𝑠
1

Source term for uninfected CD4+T 20mm3 d−1

𝑠
1

Source term for CTL 10mm3 d−1

𝜔 Fraction of latently/infected CD4+T 0.5
𝛽 Multiple of death rate of antibodies 10
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efficiency of PIs in reducing infection.
Using the method in [13] combined with the least square

estimation, we fit the parameters 𝑞, 𝑘
5
, 𝛽, 𝜇
𝐵
keeping the rest

of parameters in [4] unchanged; the fitting data comes from
the literature [14]. We employ the data of patient 7 and
patient 9 in [14] to estimate the parameters and get the range
of the parameters 𝑞: 0.0089 − 0.0549, 𝑘

4
: 0.0038 − 0.000382,

𝛽𝜇
𝐵
= 0.4104 − 0.0506.

Thus, definitions and values of the parameters used in this
model are given in Table 1 (see also [4] with references for old
parameters).

Our objective functional is also defined as
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The first term represents the benefit of T cells and other
terms are systemic costs of drug treatments. The positive
constants 𝛼
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3. Existence of an Optimal Control Pair

Theorem 1. For the control problem (11), there exists an
optimal control pair (𝑢

∗

1
, 𝑢
∗

2
) that maximizes the objective

functional 𝐽(𝑢
1
, 𝑢
2
).

Proof. To use an existence result, Theorem III.4.1 from [15],
we must check the following properties.

(1) The set of controls and corresponding state variables
is nonempty.

(2) The control 𝑈 set is convex and closed.
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Figure 1: Optimal solutions only using PIs with sufficiently small weight coefficient 𝛼
2
for a 50-day treatment.

(3) The right hand side of the state system is bounded by
a linear function in the state and control variables.

(4) The integrand of the objective functional is concave
on 𝑈.

(5) There exist constants 𝑐
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the integrand of the objective functional is bounded
above by
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First, an existence result in Lukes ([16],Theorem 9.2.1) for
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the solutions obtained by the analytical method in [17]. Note
that the integrand of the objective functional is concave on
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𝑇
+ 𝑘
2
) 𝜆
2
− 𝑘
2
𝜆
3
,

�̇�
3
= −

𝜕𝐻

𝜕𝐼

= 𝜆
3
(𝜇
𝐼
+ 𝑘
3
𝐸) − 𝜆

4
(1 − 𝑢

2
)𝑁𝜇
𝐼
𝑒
−𝑎1𝐸,

�̇�
4
= −

𝜕𝐻

𝜕𝑉

= 𝜆
1
[(1 − 𝑢

1
) 𝑘
1
𝑇𝑒
−𝑎0𝐸 +

𝑟
2
𝑇

𝐵
𝑇
+ 𝑇

−
𝑟
1
𝐵
𝑉
𝑇

(𝐵
𝑉
+ 𝑉)
2
]

− (𝜔𝜆
2
+ (1 − 𝜔) 𝜆

3
) (1 − 𝑢

1
) 𝑘
1
𝑇𝑒
−𝑎0𝐸

+ 𝜆
4
(𝜇
𝑉
+ 𝑞𝐵) − 𝜆

5
𝑘
4
𝑇𝐸 − 𝜆

6
𝑘
5
𝑇,

�̇�
5
= −

𝜕𝐻

𝜕𝐸
= (𝜔𝜆

2
− 𝜆
1
) 𝑎
0
(1 − 𝑢

1
) 𝑘
1
𝑇𝑉𝑒
−𝑎0𝐸

+ 𝜆
3
(𝑎
0
(1 − 𝜔) (1 − 𝑢

1
) 𝑘
1
𝑇𝑉𝑒
−𝑎0𝐸 + 𝑘

3
𝐼)

+ 𝜆
4
𝑎
1
(1 − 𝑢

2
)𝑁𝜇
𝐼
𝐼𝑒
−𝑎1𝐸 + 𝜆

5
(𝜇
𝐸
− 𝑘
4
𝑇𝑉) ,

�̇�
6
= −

𝜕𝐻

𝜕𝐵
= 𝜆
4
𝑞𝑉 + 𝜆

6
𝛽𝜇
𝐵
;

(17)

(ii) optimality conditions:

𝐻(𝑇
∗

, 𝐿
∗

, 𝐼
∗

, 𝑉
∗

, 𝐸
∗

, 𝐵
∗

; 𝑢
∗

1
, 𝑢
∗

2
; 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
)

= max
0≤𝑢𝑖≤𝑏𝑖 ,𝑖=1,2

𝐻(𝑇
∗

, 𝐿
∗

, 𝐼
∗

, 𝑉
∗

, 𝐸
∗

, 𝐵
∗

; 𝑢
1
, 𝑢
2
;

𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
) ,

(18)
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Figure 4: Optimal solutions only using RTIs with sufficiently small weight coefficient 𝛼
1
for a 50-day treatment.

which imply that

𝑢
∗

1

= min{𝑏
1
,

max{
(𝜆
1
− 𝜔𝜆
2
− (1 − 𝜔) 𝜆

3
) 𝑘
1
𝑇
∗
𝑉
∗
𝑒
−𝑎0𝐸
∗

2𝛼
1

,

0}} ,

𝑢
∗

2
= min{𝑏

2
,max{−

𝜆
4
𝑁𝜇
𝐼
𝐼
∗
𝑒
−𝑎1𝐸
∗

2𝛼
2

, 0}} ;

(19)

(iii) transversality conditions:

𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, . . . , 6. (20)

The optimality system consists of control system (11)
coupled with the costate equation (17) with the initial
conditions and transversality conditions together with the
characterization of the optimal control pair (19).

Remark 3. Using similar method in [11], we can obtain the
uniqueness of solution to the above optimality system when
𝑡
𝑓
is sufficiently small. We omit it

5. Numerical Illustration

Analytical solutions for optimal control are difficult to obtain
since the system is nonlinear. In this section, we use gradient
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Figure 5: Optimal solutions using RTIs and PIs with 𝛼
1
≫ 𝛼
2
for a 50-day treatment.

projection method to solve the optimal control problem
numerically for an intuitive solution. The ODE is discrete
with Euler discrete format and the costate equations of the
recurrence equations produced by discretion are employed
to calculate the gradient. The dynamic systems response is
exactly computedwith adjusted control history fromone iter-
ation to the next to increase objective function at each step.
The iterations continue until convergence is achieved. The
convergence criterion is the norm of the gradient projection
on feasible control field. The convergence rate of this method
is slow, but it is convergent in the problem of this paper.

Linked to the work in [4], we set the initial conditions
𝑇(0) = 250, 𝐿(0) = 100, 𝐼(0) = 200, 𝑉(0) = 4000, 𝐸(0) =

100, 𝐵(0) = 50mm−3, weight factors (𝛼
1
, 𝛼
2
) are the combi-

nations of 125000 and 125, and the drug doses are up bounded
by 𝑏
1
= 0.002 and 𝑏

2
= 0.9, respectively, a limitation is for

the purpose of exploring optimal chemotherapy treatment to
avoid an excessive use of drugs as indeedwhen these drugs are

administered in high dose they are toxic to the human body
and cause damage. We choose a 50-day treatment period in
keeping with what is in [4] on treatment of HIV/AIDS. In the
following sections, we will only draw the paths of uninfected
CD4+T-cells 𝑇 and virus particles 𝑉, because people may be
more interested in the number of uninfectedCD4+T-cells and
virus particles rather than other cells in clinical practice. Also,
we will plot the path relative to 𝑇 or 𝑉 without any control
at each drawing for comparing the treatment effect before
and after the chemotherapy is introduced. This paper will
illustrate nine cases for different combinations of the weight
factors pairs (𝛼

1
, 𝛼
2
) combining with two kinds of upper-

bounds 𝑏
1
for a 50-day treatment schedule. These strategies

include:

(i) Strategy I: only use of PIs with sufficiently small 𝛼
2
;

(ii) Strategy II: only use of PIs with sufficiently large 𝛼
2
;
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Figure 6: Optimal solutions using RTIs and PIs with sufficiently small 𝛼
1
≈ 𝛼
2
for a 50-day treatment.

(iii) Strategy III: only use of RTIs with sufficiently large 𝛼
1

and smaller 𝑏
1
;

(iv) Strategy IV: only use of RTIs with sufficiently small 𝛼
1

and smaller 𝑏
1
;

(v) Strategy V: use both RTIs and PIs with 𝛼
1
≫ 𝛼
2
and

smaller 𝑏
1
;

(vi) Strategy VI: use both RTIs and PIs with sufficiently
small 𝛼

1
≈ 𝛼
2
and smaller 𝑏

1
;

(vii) Strategy VII: use both RTIs and PIs with 𝛼
1
≪ 𝛼
2
and

smaller 𝑏
1
;

(viii) Strategy VIII: use both RTIs and PIs with sufficiently
large 𝛼

1
≈ 𝛼
2
and smaller 𝑏

1
;

(ix) Strategy IX: use both RTIs and PIs with sufficiently
small 𝛼

1
≈ 𝛼
2
and larger 𝑏

1
.

Remark 4. Theextra Strategy IX is considered to compare the
different treatment effects for the two-drug strategies with
similar weight factors, but with different upper-bounds for
the control 𝑢

1
.

Let 𝑢
1
≡ 0 and let 𝛼

2
= 125, then we can get the optimal

treatment policy with single PIs, that is, Strategy I. Figure 1 is
plotted by using 𝛼

1
= 0, 𝛼

2
= 125, 𝑏

1
= 0, and 𝑏

2
= 0.9 and

keeping the rest of the parameters unchanged. The number
of uninfected CD4+T-cells 𝑇 in Figure 1 is obviously higher
than one without any control, while the number of virus
particles 𝑉 is evidently lower than one without any control
about 4 days after beginning therapy, which implies that
the treatment only using PIs with sufficiently small weight
coefficient can effectively improve the patients’ condition
although the treatment effect begins to reduce from the 41th
day. The optimal drug administration schedule of PIs is with



10 Journal of Applied Mathematics

0 10 20 30 40 50

250

260

270

280

290

300

310

320

U
ni

nf
ec

te
d 

ce
lls

 T

Days

With two controls and 𝛼1 ≪ 𝛼2

Without any control

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

Days

Ac
tiv

e v
iru

s V

With two controls and 𝛼1 ≪ 𝛼2

Without any control

0 10 20 30 40 50
Days

RI
Ts

 co
nt

ro
l

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

×10
−3

0 10 20 30 40 50

Days

PI
s c

on
tro

l
3.5

3

2.5

2

1.5

1

0.5

0

×10
−4

Figure 7: Optimal solutions using RTIs and PIs with 𝛼
1
≪ 𝛼
2
for a 50-day treatment.

maximal effort for a longer period of about 38 days (4th–41th
day), but with almost no treatment in the other times
including initial stages and final stages.

Figure 2 is plotted using 𝛼
1
= 0, 𝛼

2
= 125000, 𝑏

1
= 0, and

𝑏
2
= 0.9, and keeping the rest of parameters unchanged under

the assumption of 𝑢
1
≡ 0. Figure 2 represents the treatment

policy only using PIs with sufficiently large weight coefficient,
that is, Strategy II. The optimal schedule recommends that
the dose of PIs is extremely low (less than 0.00035). But, the
dynamics of uninfected CD4+T-cells 𝑇 and active virus 𝑉 in
Figure 2 hints no improvement for treatment. In other words,
Strategy II is not useful for the therapy of HIV/AIDS.

Figure 3 is plotted by using 𝛼
1

= 125000, 𝛼
2

= 0,
𝑏
1
= 0.002, and 𝑏

2
= 0, and keeping the rest of parameters

unchanged under the assumption of 𝑢
2
≡ 0. Figure 3 repre-

sents the treatment policy only using RTIs with sufficiently
large weight coefficient, that is, Strategy III. The optimal
schedule recommends that the dose of RTIs is decreasing.

But, the dynamics of uninfected CD4+T-cells 𝑇 and active
virus 𝑉 in Figure 3 means no improvement for treatment.

Figure 4 is plotted by using 𝛼
1
= 125, 𝛼

2
= 0, 𝑏
1
= 0.002,

and 𝑏
2
= 0, and keeping the rest of parameters unchanged

under the assumption of 𝑢
2

≡ 0. Figure 4 represents the
treatment policy only using RTIs with sufficiently small
weight coefficient, that is, Strategy IV. The dynamics of
uninfected CD4+T-cells 𝑇 and active virus 𝑉 in Figure 4
implies no improvement for treatment, though the maximal
effort for control is needed.

Figure 5 is plotted by using 𝛼
1
≫ 𝛼
2
(for instance, 𝛼

1
=

125000 and 𝛼
2
= 125), 𝑏

1
= 0.002, and 𝑏

2
= 0.9, and keeping

the rest of the parameters unchanged. Figure 5 represents
Strategy V and shows that the number of uninfected CD4+T-
cells𝑇 is obviously added, while the number of virus particles
𝑉 is evidently reduced about 4 days after beginning therapy.
The optimal schedule recommends that the dose of RTIs is
extremely low (majority less than 0.0005) and in the opposite
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Figure 8: Optimal solutions using RTIs and PIs with sufficiently large 𝛼
1
≈ 𝛼
2
for a 50-day treatment.

PIs is used with maximal effort during its valid term (4th–
41th day).

Figure 6 is plotted using sufficiently small 𝛼
1
≈ 𝛼
2
(for

instance, 𝛼
1
= 125 and 𝛼

2
= 125), 𝑏

1
= 0.002, and 𝑏

2
= 0.9,

and keeping the rest of the parameters unchanged. Figure 6
represents Strategy VI and gives the similar results as Strategy
V. But the optimal schedule recommends that the dose
of RTIs is used with maximal effort during almost whole
treatment period and PIs is used with maximal effort during
its valid treatment term (4th–41th day).

Figure 7 is plotted using 𝛼
1
≪ 𝛼
2
(for instance, 𝛼

1
= 125

and 𝛼
2
= 125000), 𝑏

1
= 0.002, and 𝑏

2
= 0.9, and keeping

the rest of the parameters unchanged. Figure 7 represents
Strategy VII and shows that the number of uninfected
CD4+T-cells 𝑇 is not yet added, while the number of virus
particles 𝑉 is not yet reduced though two-drug treatment
has been implemented during whole therapy period. This
means that the Strategy VII is not at all helping the therapy
of HIV/AIDS.

Figure 8 is plotted using sufficiently large 𝛼
1

≈ 𝛼
2
(for

instance, 𝛼
1

= 125000 and 𝛼
2

= 125000), 𝑏
1

= 0.002,
and 𝑏

2
= 0.9, and keeping the rest of the parameters

unchanged. Figure 8 represents Strategy VIII and gives a
similar ineffective-treatment result as Strategy VII, although
two-drug treatment is implemented.

Remark 5. FromFigures 1–8, we find that no strategies except
Strategy I, Strategy V, and Strategy VI are very helpful for the
therapy ofHIV/AIDS, whichmeans that all of the single-drug
treatment strategies with RTIs are ineffective, or at least are
not very effective. These theoretical evidences also show the
fact that using a single RTIs is not an effective clinical strategy
for therapy of HIV/AIDS.

Remark 6. We also find that the treatment policies with suf-
ficient large weight coefficients are all useless, or at least
are not particularly helpful, which implies that high costs
may have critical implications for the treatment of HIV.
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Figure 9: Optimal solutions using RTIs and PIs with sufficiently small 𝛼
1
≈ 𝛼
2
and bigger upper-bound 𝑏

1
for a 50-day treatment.

Moreover, among the strategies with effective treatment, the
treatment effect using Strategy V and Strategy VI (with two-
drug control) seems similar as the one using Strategy I
(with single-drug control (PIs)). Is it really true? When the
upper-bound 𝑏

1
for control 𝑢

1
in the strategies with two-

drug treatment is added (a hundredfold, for instance), the
Strategy VI can get better treatment effect than the Strategy
I, which implies that two-drug control strategy with small
weight factors, when RTIs are improved but PIs unchanged,
is more effective than single-drug control strategy with PIs.
Figure 9 (Strategy IX) illustrates this case. But, whatever
the upper-bound 𝑏

1
is, the treatment effect using Strategy

V (with large weight factor for RTIs) is almost consistent
with the one using Strategy I, which shows, again, that
large weight factor (i.e., high cost) may counteract treatment
effect.

Remark 7. Comparing, respectively, the maximal value of 𝑇
(608) and the minimal value of 𝑉 (40) in Figure 6 with the
maximal value of 𝑇 (620) and the minimal value of 𝑉 (21)
in Figure 9, we find that the treatment effect for the strategy
using both RTIs and PIs with sufficiently small weight factors
has not gotten remarkably improved even after the upper-
bound 𝑏

1
for the control 𝑢

1
is increased a hundredfold. This

implies that only increasing dosage of RTIs for the effective
two-drug control strategies cannot markedly improve the
patient’s health condition.

Remark 8. Overall, Strategy V, Strategy VI, and Strategy
IX show that combined treatment such as above two-drug
therapy is more effective than single-drug cure.This fact may
help to explain why the HAARP is still the most effective
method for therapy of HIV/AIDS till now.
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6. Conclusion and Discussion

In this research, a deterministic HIV model including
immune response, neutralizing antibodies, and multidrug
effects is improved. Optimization theories are used to derive
optimal control solution and to design improved clinical
treatments. The existence for the optimal control problem is
proved, the optimality system is derived, and a gradient pro-
jection method is applied to numerically simulate different
therapy effects. On the basis of combinations of weight factors
and upper-bounds for controls, we establish some of much
interesting or even strange treatment strategies including
four types of single-drug controls and five types of two-
drug controls, where a large weight coefficient means a high
cost of the corresponding drug. Among the nine strategies,
no strategy except the Strategy I, Strategy V, Strategy VI,
and Strategy IX is helpful for the therapy of HIV/AIDS,
which means that the single-drug treatment with RTIs is
ineffective for treating HIV/AIDS, or at least is not very
effective. These theoretical evidences also show the fact that
using a single RTIs is not an effective clinical strategy for
therapy ofHIV/AIDS.We also find that the treatment policies
with higher cost are not useful, or at least are not particularly
helpful. Among those strategies with effective treatment, the
policy using two-drug control with lower cost should be the
best clinical one because it can more efficiently increase the
number of uninfected CD4+T-cells and decrease the number
of virus particles. And, overall, combined treatment is more
effective than single-drug cure. This fact may help to explain
why the HAARP is always regarded as the most effective
method for therapy of HIV/AIDS.

But, why can the larger weight factor counteract the use of
drug? Is it possible that, as indicated by Figure 2 and Figure 8,
the higher cost results in the lower dosage of drug? For the
effective two-drug treatment policies, why has the treatment
effect not gotten markedly improved even after the dosage of
RTIs is increased manyfold? Further researches need to be
done in the future.
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