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We prove the existence of nonradial solutions under some conditions for a semilinear biharmonic Dirichlet problem involving
critical Sobolev exponents.

1. Introduction

In this paper we consider the following Hénon type bihar-
monic problem:

Δ
2
𝑢 = |𝑥|

𝛼
|𝑢|
2
∗

−2
𝑢 inΩ,

𝑢 =
𝜕𝑢

𝜕n
= 0 on 𝜕Ω,

(1)

where𝛼 ≥ 0, 2∗ = 2𝑁/(𝑁−4),Ω is the unit ball ofR𝑁, 𝑁 ≥ 5,
and n denotes the unit outward normal at the boundary 𝜕Ω.

We consider first the case where 𝛼 = 0, namely, the
equation

Δ
2
𝑢 = |𝑢|

2
∗

−2
𝑢 inΩ,

𝑢 =
𝜕𝑢

𝜕n
= 0 on 𝜕Ω.

(2)

It is well known that (2) admits no nontrivial radial solution
(see [1], Theorem 3.11, or [2], Theorem 4). The nonexistence
of any nontrivial solution to (2) seems to be still unknown;
only more restricted results are available. In order to obtain
existence results for (2), one should either add subcritical
perturbations or modify the topology or the geometry of
the domain. For subcritical perturbations, we refer to [2, 3]
and references therein. Domains with nontrivial topology
are studied in [2, 4]. They demonstrated how domains
with topology often carry solutions that cannot be present

otherwise. The corresponding second order elliptic problem
has been investigated by Bahri and Coron in [5].

Berchio et al. [6], among other things, considered the
minimization problem

inf
𝑢∈𝐻
2

0,rad(Ω)\{0}

∫
Ω
|Δ𝑢|

2
𝑑𝑥

(∫
Ω
|𝑥|
𝛼

|𝑢|
2
∗

𝑑𝑥)
2/2
∗
, (3)

where 𝐻2
0,rad(Ω) denotes the subspace of radial functions in

𝐻
2

0
(Ω). Actually, they treated general polyharmonic problem.

They proved the infimum in (3) is attained. The minimizers
of (3), after rescaling, are a solution of (1). It is natural to
ask whether (1) has a nontrivial nonradial solution. We will
answer this problem partially here.

Our main result is as follows.

Theorem 1. Let𝑁 ≥ 8 and letΩ be the unit ball inR𝑁. Then,
for every 𝛼 > 0 large enough, problem (1) admits at least one
nonradial solution.

Thecorresponding second order elliptic problem, namely,
the Hénon equation,

−Δ𝑢 = |𝑥|
𝛼
|𝑢|
𝑝−1
, 𝑢 > 0 inΩ,

𝑢 = 0 on 𝜕Ω,
(4)

has been studied by many authors, where 𝑝 > 1. Ni [7],
among other things, proved the existence of radial positive
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solutions of (4) for all 𝑝 ∈ (1, (𝑁 + 2 + 2𝛼)/(𝑁 − 2)). For the
case𝑝 ∈ (1, (𝑁+2)/(𝑁−2)), there aremanyworks concerning
the limiting behavior of the ground state solutions of (4); see,
for example, [8–11] and the references therein. In particular,
Smets et al. [11] proved that, for every𝑝 ∈ (1, (𝑁+2)/(𝑁−2)),
no minimizer of

∫
Ω
|∇𝑢|

2
𝑑𝑥

(∫
Ω
|𝑥|
𝛼
|𝑢|
𝑝
𝑑𝑥)

2/𝑝
(5)

is radial provided 𝛼 is large enough. Serra [12] studied the
case 𝑝 = (𝑁 + 2)/(𝑁 − 2) and proved the existence of
nonradial positive solutions of (4) for 𝛼 large. Theorem 1 can
be regarded as an extension of Serra’s result to biharmonic
problem.

In order to outline the proof of Theorem 1, we introduce
some notations. We write R𝑁 = R2 × R𝑁−2 ≃ C × R𝑁−2 and
𝑥 = (𝑧, 𝑦). For a given integer 𝑘, let 𝐺

𝑘
be the group Z

𝑘
×

O(𝑁 − 2). We consider the action of 𝐺
𝑘
on𝐻2

0
(Ω) given by

𝑔 (𝑢) (𝑥) = 𝑔 (𝑢) (𝑧, 𝑦) = 𝑢 (𝑒
𝑗(2𝜋𝑖/𝑘)

𝑧, 𝑅𝑦) , (6)

where 𝑗 ∈ {0, 1, . . . , 𝑘 − 1} and 𝑅 ∈ O(𝑁 − 2).
Define

𝐻
𝑘
= {𝑢 ∈ 𝐻

2

0
(Ω) : 𝑢 (𝑒

2𝜋𝑖/𝑘
𝑧, 𝑅𝑦)

= 𝑢 (𝑧, 𝑦) , ∀𝑅 ∈ O (𝑁 − 2) } .
(7)

It is easy to see that functions in 𝐻
𝑘
are radial in 𝑦. Since

both the numerator and the denominator of the functional
𝑄
𝛼
are invariant under the action of 𝐺

𝑘
, the functional 𝑄

𝛼

is invariant. So the critical points of 𝑄
𝛼
restricted to 𝐻

𝑘

are critical points of 𝑄
𝛼
. After scaling, these correspond to

weak solution of (1), which are in fact classical solutions by
standard elliptic theory (see [13, 14]).

Set

𝑄
𝛼
(𝑢) =

∫
Ω
|Δ𝑢|

2
𝑑𝑥

(∫
Ω
|𝑥|
𝛼
|𝑢|
2
∗

𝑑𝑥)
2/2
∗
, (8)

Σ
𝑘
= inf
𝑢∈𝐻
𝑘
\{0}

𝑄
𝛼
(𝑢) . (9)

Notice that since |𝑥| ≤ 1 in Ω, we have Σ
𝑘
≥ 𝑆, the best

Sobolev constant for the embedding𝐻2
0
→ 𝐿

2
∗

; that is,

𝑆 = inf
𝑢∈𝐻
2

0
(Ω)\{0}

∫
Ω
|Δ𝑢|

2
𝑑𝑥

(∫
Ω
|𝑢|
2
∗

𝑑𝑥)
2/2
∗
. (10)

We now briefly outline the proof ofTheorem 1. Firstly, we
show that, for every 𝛼 > 0, there exists 𝑘

𝛼
> 0 such that Σ

𝑘
<

𝑘
4/𝑁
𝑆 for every integer 𝑘 ≥ 𝑘

𝛼
. Next we prove that if Σ

𝑘
<

𝑘
4/𝑁
𝑆, then Σ

𝑘
is achieved. Finally, we obtain a bound from

below for inf
𝑢∈𝐻
2

0,rad(Ω)\{0}
𝑄
𝛼
(𝑢) and then prove

Σ
𝑘
< inf
𝑢∈𝐻
2

0,rad(Ω)\{0}
𝑄
𝛼
(𝑢) (11)

for all 𝛼 large enough, where 𝐻2
0,rad(Ω) denotes the space of

radial functions in𝐻2
0
(Ω). Therefore, our solution cannot be

radial.
The paper is organized as follows. In Section 2, we

establish some estimates we will need and investigate the
compactness properties of Palais-Smale sequences for 𝑄

𝛼
. In

Section 3, we prove Theorem 1. Throughout this paper, the
constant 𝐶 will denote various generic constants.

2. Asymptotic Estimates and Analysis of
Palais-Smale Sequences

In this section, we first establish the estimate to prove that
Σ < 𝑘

4/𝑁
𝑆 for suitable values of 𝑘 and 𝛼.

In what follows, when we need to, we may define the
trivial extension of functions 𝑢 in 𝐻2

0
(Ω) by zero; namely,

𝑢(𝑥) = 0 for 𝑥 ∈ R𝑁 \ Ω. For any fixed 𝜆 > 0, 𝑞 ∈ R𝑁, the
rescalingT = T(𝜆, 𝑞) : 𝐷2,2(R𝑁) → 𝐷

2,2
(R𝑁) is defined by

TV (𝑥) = 𝜆−(𝑁−4)/2V (
𝑥

𝜆
+ 𝑞) . (12)

Notice thatT−1
= T(1/𝜆, −𝜆𝑞); that is,

T
−1V (𝑥) = 𝜆(𝑁−4)/2V (𝜆 (𝑥 − 𝑞)) . (13)

We choose 𝑟 ∈ (0, 1) and for every 𝑘 ∈ N we define 𝑘
points 𝑥(𝑗) in R𝑁 ≅ C ×R𝑁−2 as

𝑥
(𝑗)
= ((1 − 𝑟) 𝑒

𝑗(2𝜋𝑖/𝑘)
, 0) , 𝑗 = 0, 1, . . . , 𝑘 − 1. (14)

Notice that the points 𝑥(𝑗) are all in Ω. Define

𝑈
𝜆,𝑥
(𝑗) (𝑥) = T(𝜆, 𝑥

(𝑗)
)
−1

𝑈 (𝑥)

=
𝐶
𝑁
𝜆
(𝑁−4)/2

(1 + 𝜆2
𝑥 − 𝑥

(𝑗)

2

)
(𝑁−4)/2

,

(15)

where 𝐶
𝑁

= [(𝑁 − 4)(𝑁 − 2)𝑁(𝑁 + 2)]
(𝑁−4)/8. We

recall that 𝑈
𝜆,𝑥
(𝑗) are the unique positive solutions, radial

about 𝑥(𝑗), of the equation Δ2𝑈 = 𝑈
2
∗

−1 in 𝐷2,2(R𝑁), and
∫
R𝑁
|Δ𝑈

𝜆,𝑥
(𝑗) |
2
𝑑𝑥 = ∫

R𝑁
𝑈
2
∗

𝜆,𝑥
(𝑗)
𝑑𝑥 = 𝑆

𝑁/4 for all 𝜆 and 𝑥(𝑗). To
fix ideas, we anticipate that we will let 𝑟 → 0, 𝑛 → ∞, and
𝜆 → ∞, with appropriate relations between 𝑟, 𝑛, and 𝜆. The
functions𝑈

𝜆,𝑥
(𝑗) are not in𝐻2

0
(Ω), so we will use instead their

projections 𝑃𝑈
𝜆,𝑥
(𝑗) on𝐻2

0
(Ω) defined by

Δ
2
𝑃𝑈

𝜆,𝑥
(𝑗) = Δ

2
𝑈
𝜆,𝑥
(𝑗) inΩ,

𝑃𝑈
𝜆,𝑥
(𝑗) =

𝜕𝑃𝑈
𝜆,𝑥
(𝑗)

𝜕n
= 0 on 𝜕Ω.

(16)

By Lemma 2.27 in [15], we have 𝑃𝑈
𝜆,𝑥
(𝑗)(𝑥) > 0 inΩ. If we set

𝜑
𝜆,𝑥
(𝑗) = 𝑈

𝜆,𝑥
(𝑗) − 𝑃𝑈

𝜆,𝑥
(𝑗) , then

Δ
2
𝜑
𝜆,𝑥
(𝑗) = 0 inΩ,

𝜑
𝜆,𝑥
(𝑗) = 𝑈

𝜆,𝑥
(𝑗) on 𝜕Ω,

𝜕𝜑
𝜆,𝑥
(𝑗)

𝜕n
=
𝜕𝑈

𝜆,𝑥
(𝑗)

𝜕n
on 𝜕Ω.

(17)
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To avoid heavy notation from now on, we will write simply
𝑈
𝑗
for 𝑈

𝜆,𝑥
(𝑗) , 𝑃𝑈

𝑗
for 𝑃𝑈

𝜆,𝑥
(𝑗) , and 𝜑

𝑗
for 𝜑

𝜆,𝑥
(𝑗) .

We set
𝑑
𝑗𝑙
= 𝑥

(𝑙)
− 𝑥

(𝑗)
,

𝑑 =
1

2
min
𝑗 ̸=𝑙


𝑑
𝑗𝑙


=
1

2


𝑥
(1)
− 𝑥

(0)
,

(18)

and we assume that 2𝑑 ≤ 𝑟 and 𝜆𝑑 ≥ 1 for all 𝜆 under
consideration. Note also that due to the definition of 𝑥(𝑗), we
have

𝑑 = 2 (1 − 𝑟) sin 𝜋
𝑘
∼
𝐶

𝑘
(19)

for all 𝑟 small.

Lemma 2.

∫
Ω

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥

=

{{{{{{{{{{

{{{{{{{{{{

{

𝑆
𝑁/4

+ 𝑂 ((𝜆𝑟)
−𝑁
) , 𝑗 = 𝑙,

𝐶
𝑁
𝑎
0

(𝜆

𝑑
𝑗𝑙


)
𝑁−4

+ 𝑂(
1

(𝜆

𝑑
𝑗𝑙


)
𝑁−2

)

+ 𝑂(
1

(𝜆𝑟)
𝑁
) , 𝑗 ̸= 𝑙,

(20)

where 𝑎
0
= ∫

R𝑁
𝑈
2
∗

−1
𝑑𝑥.

Proof.

Case 1. Consider 𝑗 = 𝑙.
Direct computations yield that

𝑆
𝑁/4

≥ ∫
Ω

𝑈
2
∗

𝑗
𝑑𝑥

≥ ∫
𝐵
𝑟
(𝑥
(𝑗)
)

𝑈
2
∗

𝑗
𝑑𝑥

= 𝑆
𝑁/4

− ∫
R𝑁\𝐵

𝑟
(𝑥
(𝑗)
)

𝑈
2
∗

𝑗
,

∫
R𝑁\𝐵

𝑟
(𝑥
(𝑗)
)

= 𝐶
2
∗

𝑁
∫
R𝑁\𝐵

𝜆𝑟
(0)

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁−4)/2

≥ 𝐶
2
∗

𝑁
𝜔
𝑁
∫

+∞

𝜆𝑟

𝜌
𝑁−1
𝑑𝜌

(1 + 𝜌2)
𝑁

≤ 𝐶(𝜆𝑟)
−𝑁
,

(21)

where 𝜔 denotes surface area of unit sphere in R𝑁. Combin-
ing (21), we prove the first case of Lemma 2.

Case 2. Consider 𝑗 ̸= 𝑙.
Writing

∫
Ω

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 = ∫

R𝑁
𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 − ∫

R𝑁\Ω

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥,

(22)

with the same type of calculation as in the proof of the first
case, we see that

∫
R𝑁\Ω

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥

≤ (∫
R𝑁\Ω

𝑈
2
∗

𝑗
)

(2
∗

−1)/2
∗

(∫
R𝑁\Ω

𝑈
2
∗

𝑙
𝑑𝑥)

1/2
∗

≤
𝐶

(𝜆𝑟)
𝑁
.

(23)

To estimate the integral overR𝑁 in (22), we follow exactly the
calculation in [5] (see page 279-280). It is easy to see that

∫
R𝑁
𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥

= 𝐶
2
∗

𝑁
∫
R𝑁

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙


)
(𝑁−4)/2

.

(24)

We have also

1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

= (1 + 𝜆
2
𝑑
𝑗𝑙



2

)(1 +

|𝑥|
2
− 2𝜆𝑥 ⋅ 𝑑

𝑗𝑙

1 + 𝜆2

𝑑
𝑗𝑙



2
) .

(25)

Hence

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(4−𝑁)/2

= (1 + 𝜆
2
𝑑
𝑗𝑙



2

)

(4−𝑁)/2

× [

[

1 +

(𝑁 − 4) 𝜆𝑥 ⋅ 𝑑
𝑗𝑙

1 + 𝜆2

𝑑
𝑗𝑙



2
+ 𝑂(

|𝑥|
2

1 + 𝜆2

𝑑
𝑗𝑙



2
)]

]

(26)

for |𝑥| ≤ (1/4)𝜆|𝑑
𝑗𝑙
|.

Direct calculations yield

∫
|𝑥|≤(1/4)𝜆|𝑑

𝑗𝑙
|

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(𝑁−4)/2

=
1

(1 + 𝜆2

𝑑
𝑗𝑙



2

)

(𝑁−4)/2
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× [

[

∫
|𝑥|≤(1/4)𝜆|𝑑

𝑗𝑙
|

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

+
1

1 + 𝜆2

𝑑
𝑗𝑙



2
𝑂

× (∫
|𝑥|≤(1/4)𝜆|𝑑

𝑗𝑙
|

|𝑥|
2
𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

)]

]

,

(27)

∫
|𝑥|≤(1/4)𝜆|𝑑

𝑗𝑙
|

|𝑥|
2
𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

= 𝑏
0
+ 𝑂(

1

𝜆2

𝑑
𝑗𝑙



2
) ,

(28)

where 𝑏
0
= ∫

R𝑁
|𝑥|
2
𝑑𝑥/(1 + |𝑥|

2
)
(𝑁+4)/2, and

∫
|𝑥|≤(1/4)𝜆|𝑑

𝑗𝑙
|

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

=
𝑎
0

𝐶
2
∗
−1

𝑁

+ 𝑂(
1

𝜆4

𝑑
𝑗𝑙



4
) .

(29)

From (27)–(29), we obtain

∫
|𝑥|≤(1/4)𝜆|𝑑

𝑗𝑙
|

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(𝑁−4)/2

=
𝑎
0

𝐶
2
∗
−1

𝑁

1

𝜆𝑁−4

𝑑
𝑗𝑙



𝑁−4
+ 𝑂(

1

𝜆𝑁−2

𝑑
𝑗𝑙



𝑁−2
) .

(30)

Let

Γ
1
= {𝑥 ∈ R

𝑁
:

𝑥 − 𝜆𝑑

𝑗𝑙


≤

𝜆

𝑑
𝑗𝑙



4
} ,

Γ
2
= {𝑥 ∈ R

𝑁
: |𝑥| ≤

𝜆

𝑑
𝑗𝑙



4
} .

(31)

We have

∫
R𝑁\(Γ

1
∪Γ
2
)

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(𝑁−4)/2

≤
𝐶

𝜆𝑁−4

𝑑
𝑗𝑙



𝑁−4
∫

+∞

(1/4)𝜆|𝑑𝑗𝑙|

𝜌
𝑁−1

(1 + 𝜌2)
(𝑁+4)/2

𝑑𝜌

= 𝑂(
1

𝜆𝑁

𝑑
𝑗𝑙



𝑁
) ,

(32)

∫
Γ
1

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(𝑁−4)/2

= ∫

(1/4)𝜆|𝑑
𝑗𝑙
|

0

𝑑𝜌

× ∫
|𝑥−𝜆𝑑

𝑗𝑙
|=𝜌

𝑑𝑆

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 + 𝜌2)
(𝑁−4)/2

≤
𝐶

𝜆𝑁+4

𝑑
𝑗𝑙



𝑁+4
∫

(1/4)𝜆|𝑑
𝑗𝑙
|

0

𝜌
𝑁−1

(1 + 𝜌2)
(𝑁−4)/2

𝑑𝜌

= 𝑂(
1

𝜆𝑁

𝑑
𝑗𝑙



𝑁
) .

(33)

From (30)–(33), it follows that

∫
R𝑁

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(𝑁−4)/2

=
𝑎
0

𝐶
2
∗
−1

𝑁
𝜆𝑁−4


𝑑
𝑗𝑙



𝑁−4
+ 𝑂(

1

𝜆𝑁−2

𝑑
𝑗𝑙



𝑁−2
) .

(34)

Hence

∫
R𝑁
𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 =

𝐶
𝑁
𝑎
0

𝜆𝑁−4

𝑑
𝑗𝑙



𝑁−4
+ 𝑂(

1

𝜆𝑁−2

𝑑
𝑗𝑙



𝑁−2
) .

(35)

Combining (23) and (35), we prove

∫
Ω

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 =

𝐶
𝑁
𝑎
0

(𝜆

𝑑
𝑗𝑙


)
𝑁−4

+ 𝑂(
1

(𝜆

𝑑
𝑗𝑙


)
𝑁−2

) + 𝑂(
1

(𝜆𝑟)
𝑁
) .

(36)

We denote by 𝐺 Green’s function of Δ2; that is,

Δ
2
𝐺 (𝑥, ⋅) = 2 (𝑁 − 4) (𝑁 − 2) 𝜔

𝑁
𝛿
𝑥

inΩ,

𝐺 (𝑥, ⋅) =
𝜕𝐺 (𝑥, ⋅)

𝜕n
𝑦

= 0 on 𝜕Ω,
(37)

where 𝛿
𝑥
denotes the Dirac mass at 𝑥, and n

𝑦
is the outer unit

normal at 𝑦 ∈ 𝜕Ω. We also denote by𝐻 the regular part of𝐺;
that is,

𝐻(𝑥, 𝑦) =
𝑥 − 𝑦



4−𝑁

− 𝐺 (𝑥, 𝑦)

for (𝑥, 𝑦) ∈ Ω × Ω.
(38)
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By Remark 1 in [16], we have

𝐻(𝑥, 𝑦) =



|𝑥| 𝑦 −
𝑥

|𝑥|



4−𝑁

+
𝑁 − 4

2
(1 − |𝑥|

2
) (1 −

𝑦


2

)



|𝑥| 𝑦 −
𝑥

|𝑥|



2−𝑁

.

(39)

Lemma 3. Consider

∫
Ω

𝑈
2
∗

−1

𝑗
𝜑
𝑙
𝑑𝑥

=

{{{

{{{

{

𝐶
𝑁
𝑎
0

𝜆𝑁−4
𝐻(𝑥

(𝑗)
, 𝑥
(𝑗)
) + 𝑂 (𝜆

2−𝑁
𝑟
1−𝑁
) , 𝑗 = 𝑙

𝐶
𝑁
𝑎
0

𝜆𝑁−4
𝐻(𝑥

(𝑗)
, 𝑥
(𝑙)
) + 𝑂 ((𝜆𝑟)

−𝑁
) , 𝑗 ̸= 𝑙,

(40)

where 𝑎
0
= ∫

R𝑁
𝑈
2
∗

−1
𝑑𝑥.

Proof.

Case 1. Consider 𝑗 = 𝑙.
Set

Γ (𝑥) = 𝜑
𝑗
(𝑥) − 𝐶

𝑁
𝜆
(4−𝑁)/2

𝐻(𝑥
(𝑗)
, 𝑥) . (41)

By the definition of 𝜑
𝑗
and𝐻(𝑥(𝑗), 𝑥), we get

Δ
2
Γ (𝑥) = 0 inΩ,

Γ (𝑥) = 𝑈
𝑗
− 𝐶

𝑁
𝜆
(4−𝑁)/2

𝑥 − 𝑥
(𝑗)

4−𝑁

on 𝜕Ω,

𝜕Γ (𝑥)

𝜕n
=

𝜕𝑈
𝑗

𝜕n
− 𝐶

𝑁
𝜆
(4−𝑁)/2

𝜕

𝑥 − 𝑥

(𝑗)

4−𝑁

𝜕n
on 𝜕Ω.

(42)

For each 𝑥 ∈ 𝜕Ω, we have

Γ (𝑥) = 𝐶
𝑁
𝜆
(4−𝑁)/2

𝑥 − 𝑥
(𝑗)

4−𝑁

× [

[

(1 −
1

1 + 𝜆2
𝑥 − 𝑥

(𝑗)

2
)

(𝑁−4)/2

− 1]

]

.

(43)

Thus,

|Γ (𝑥)| ≤ 𝐶𝑁𝜆
(4−𝑁)/2

𝑟
4−𝑁

[1 − (1 −
1

1 + 𝜆2𝑟2
)

(𝑁−4)/2

]

≤ 𝐶𝜆
−𝑁/2

𝑟
2−𝑁
;

(44)

consequently,

Γ (𝑥) = 𝑂 (𝜆
−𝑁/2

𝑟
2−𝑁
) , for𝑥 ∈ 𝜕Ω. (45)

For each 𝑥 ∈ 𝜕Ω, we have

𝜕Γ

𝜕n
(𝑥)

= 𝐶
𝑁
(4 − 𝑁) (1 − 𝑥 ⋅ 𝑥

(𝑗)
) 𝜆

(4−𝑁)/2

×

𝑥 − 𝑥

(𝑗)

2−𝑁
[

[

(1 −
1

1 + 𝜆2
𝑥 − 𝑥

(𝑗)

2
)

(𝑁−2)/2

− 1]

]

.

(46)

Since 1 − 𝑥 ⋅ 𝑥(𝑗) ≤ 1 − |𝑥| ⋅ |𝑥(𝑗)| = 𝑟, we have

𝜕Γ

𝜕n
(𝑥) = 𝑂 (𝜆

−𝑁/2
𝑟
1−𝑁
) , for𝑥 ∈ 𝜕Ω. (47)

By [15] (page 155), we have the following explicit formula:

Γ (𝑥)

= ∫
𝜕Ω

𝐾(𝑥, 𝑦) (𝑈
𝑗
(𝑦) − 𝐶

𝑁
𝜆
(4−𝑁)/2

𝑦 − 𝑥
(𝑗)

4−𝑁

) 𝑑𝑆 (𝑦)

+ 𝐶
𝑁
(𝑁 − 4) ∫

𝜕Ω

𝐿 (𝑥, 𝑦) (
𝑦


2

− 𝑦 ⋅ 𝑥
(𝑗)
)

× [𝜆
𝑁/2
(1 + 𝜆

2
𝑦 − 𝑥

(𝑗)

2

)

(2−𝑁)/2

−𝜆
(4−𝑁)/2

𝑦 − 𝑥
(𝑗)

2−𝑁

] 𝑑𝑆 (𝑦) ,

(48)

where

𝐾(𝑥, 𝑦)

=
1

2𝜔
𝑁

(1 − |𝑥|
2
)
2

𝑥 − 𝑦


𝑁+2
[2 + (𝑁 − 4) 𝑥 ⋅ 𝑦 − (𝑁 − 2) |𝑥|

2
] ,

𝐿 (𝑥, 𝑦) =
1

2𝜔
𝑁

(1 − |𝑥|
2
)
2

𝑥 − 𝑦


𝑁
,

(49)

with 𝑥 ∈ Ω, 𝑦 ∈ 𝜕Ω. Using (45) and (47), we have, for all
𝑥 ∈ Ω,

|Γ (𝑥)| ≤ 𝐶 [𝜆
−𝑁/2

𝑟
2−𝑁

∫
𝜕Ω

𝐾 (𝑥, 𝑦)
 𝑑𝑆 (𝑦)

+ 𝜆
−𝑁/2

𝑟
1−𝑁

∫
𝜕Ω

𝐿 (𝑥, 𝑦) 𝑑𝑆 (𝑦)]

≤ 𝐶𝜆
−𝑁/2

𝑟
1−𝑁

∫
𝜕Ω

𝐿 (𝑥, 𝑦) 𝑑𝑆 (𝑦)

≤ 𝐶𝜆
−𝑁/2

𝑟
1−𝑁
.

(50)

Thus,

Γ (𝑥) = 𝑂 (𝜆
−𝑁/2

𝑟
1−𝑁
) , for𝑥 ∈ Ω. (51)
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We split the term to be estimated as

∫
Ω

𝑈
2
∗

−1

𝑗
𝜑
𝑗
𝑑𝑥

= 𝐶
𝑁
𝜆
(4−𝑁)/2

(∫
𝐵
𝑟/2
(𝑥
(𝑗)
)

+∫
Ω\𝐵
𝑟/2
(𝑥
(𝑗)
)

)

× 𝑈
2
∗

−1

𝑗
(𝑥)𝐻 (𝑥

(𝑗)
, 𝑥) 𝑑𝑥

+ ∫
Ω

𝑈
2
∗

−1

𝑗
(𝑥) Γ (𝑥) 𝑑𝑥,

(52)

and then for the last integral we have

∫
Ω

𝑈
2
∗

−1

𝑗
(𝑥) Γ (𝑥) 𝑑𝑥



≤ 𝑂 (𝜆
−𝑁/2

𝑟
1−𝑁
)∫

R𝑁
𝑈
2
∗

−1

𝑗
𝑑𝑥

≤ 𝑂 (𝜆
−𝑁/2

𝑟
1−𝑁
) 𝐶𝜆

(4−𝑁)/2
= 𝑂 (𝜆

2−𝑁
𝑟
1−𝑁
) .

(53)

Concerning the integral overΩ\𝐵
𝑟/2
(𝑥
(𝑗)
), we first notice that,

by (39),

𝐻(𝑥
(𝑗)
, 𝑥) ≤ 𝑟

4−𝑁
+
𝑁 − 4

2
𝑟
3−𝑁

(2 − 𝑟) (1 − |𝑥|
2
)

≤ 2 (𝑁 − 4) 𝑟
3−𝑁
.

(54)

Therefore,

𝐶
𝑁
𝜆
(4−𝑁)/2

∫
Ω\𝐵
𝑟/2
(𝑥
(𝑗)
)

𝑈
2
∗

−1

𝑗
(𝑥)𝐻 (𝑥

(𝑗)
, 𝑥) 𝑑𝑥

≤ 𝐶
𝑁
𝜆
(4−𝑁)/2

2 (𝑁 − 4) 𝑟
3−𝑁

∫
Ω\𝐵
𝑟/2
(𝑥
(𝑗)
)

𝑈
2
∗

−1

𝑗
(𝑥) 𝑑𝑥

= 𝑂 (𝜆
−𝑁
𝑟
−1−𝑁

) .

(55)

As in [5, 12] we expand 𝐻(𝑥(𝑗), ⋅) up to the fifth order near
𝑥
(𝑗), writing

𝐻(𝑥
(𝑗)
, 𝑥) = 𝐻(𝑥

(𝑗)
, 𝑥
(𝑗)
) +

5

∑

𝑘=1

𝐻
𝑘
+ 𝑅, (56)

where 𝐻
𝑘

denotes the 𝑘th order term (e.g., 𝐻
1

=

∇𝐻(𝑥
(𝑗)
, 𝑥
(𝑗)
)(𝑥−𝑥

(𝑗)
)). Since |𝑅| ≤ sup

𝐵
𝑟/2
(𝑥
(𝑗)
)
‖∇
6
𝐻(𝑥

(𝑗)
, ⋅)‖ ⋅

|𝑥 − 𝑥
(𝑗)
|
6, using the explicit form of 𝐻, it is not difficult to

check that

|𝑅| ≤ sup
𝐵
𝑟/2
(𝑥
(𝑗)
)


∇
6
𝐻(𝑥

(𝑗)
, ⋅)

≤

𝐶

𝑟𝑁+2
(57)

so that


∫
𝐵
𝑟/2
(𝑥
(𝑗)
)

𝑈
2
∗

−1

𝑗
𝑅



≤
𝐶

𝑟𝑁+2
∫
𝐵
𝑟/2
(𝑥
(𝑗)
)

𝑈
2
∗

−1

𝑗


𝑥 − 𝑥

(𝑗)

6

𝑑𝑥

≤
𝐶

𝜆(𝑁+4)/2𝑟𝑁
.

(58)

Note thatΔ2𝐻(𝑥(𝑗), 𝑥) = 0. Using the symmetry of𝑈
𝑗
and the

usual scaling arguments, we have

𝐶
𝑁
𝜆
(4−𝑁)/2

∫
𝐵
𝑟/2
(𝑥
(𝑗)
)

𝑈
2
∗

−1

𝑗
𝐻(𝑥

(𝑗)
, 𝑥) 𝑑𝑥

≤ 𝐶
𝑁
𝑎
0
𝜆
4−𝑁
𝐻(𝑥

(𝑗)
, 𝑥
(𝑗)
) + 𝑂 (𝑟

−𝑁
𝜆
−𝑁
) .

(59)

By (53)–(59), we obtain

∫
Ω

𝑈
2
∗

−1

𝑗
𝜑
𝑗
𝑑𝑥 =

𝐶
𝑁
𝑎
0

𝜆𝑁−4
𝐻(𝑥

(𝑗)
, 𝑥
(𝑗)
) + 𝑂 (𝜆

2−𝑁
𝑟
1−𝑁
) . (60)

The proof of Lemma 3 is completed.

Case 2. Consider 𝑗 ̸= 𝑙.
Using the same argument similar to the ones in the proof

of the first case, we get the desired result.

Lemma 4. (i) Consider ∫
𝐵
𝑗

𝑈
2
∗

𝑗
𝑑𝑥 = 𝑆

𝑁/4
+ 𝑂(1/(𝜆𝑑)

𝑁
).

(ii) Consider ∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 ≥ 𝐶

𝑁
𝑎
0
/(𝜆|𝑑

𝑗𝑙
|)
𝑁−4

+

𝑂(1/(𝜆|𝑑
𝑗𝑙
|)
𝑁−2
) + 𝑂(1/𝜆

𝑁
𝑑
4
|𝑑
𝑗𝑙
|
𝑁−4
).

Proof. (i)The proofmakes use of the same estimate as the one
in the proof of Lemma 2, with 𝑟 replaced by 𝑑 this time.

(ii) We first write

∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 = ∫

R𝑁
𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 − ∫

R𝑁\𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 (61)

and notice that the first integral in the right hand side in
(61) has been estimated in (35). Next, we treat the second
integral. We will make use of notation and formulas already
established in the proof of Lemma 2 to get estimate (35).

Since 𝑑/2 ≤ |𝑑
𝑗𝑙
|/4 by definition, we have the decompo-

sition

R
𝑁
\ 𝐵

𝜆𝑑/2
(0) = Γ

1
∪ (Γ

2
\ 𝐵

𝜆𝑑/2
(0))

∪ (R
𝑁
\ (Γ

1
∪ Γ

2
)) .

(62)

Consequently,

∫
R𝑁\𝐵

𝑗

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥

≤ ∫
RN
\𝐵
𝑑/2
(𝑥
(𝑗)
)

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥

= 𝐶
2
∗

𝑁
(∫

Γ
1

+∫
Γ
2
\𝐵
𝜆𝑑/2
(0)

+∫
R𝑁(Γ
1
∪Γ
2
)

)

×
𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(𝑁−4)/2
.

(63)

Now we have to evaluate three integrals in the right hand
side in (63).The first integral and the third integral have been
estimated in (33) and (32), respectively. Finally, we deal with
the second integral over Γ

2
\ 𝐵

𝜆𝑑/2
(0).
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Similar to (27), we have

∫
Γ
2
\𝐵
𝜆𝑑/2
(0)

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(𝑁−4)/2

≤
1

(𝜆

𝑑
𝑗𝑙


)
𝑁−4

∫
Γ
2
\𝐵
𝜆𝑑/2
(0)

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

+
1

(𝜆

𝑑
𝑗𝑙


)
𝑁−2

∫
Γ
2
\𝐵
𝜆𝑑/2
(0)

|𝑥|
2
𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

.

(64)

Now with elementary computations we have

∫
Γ
2
\𝐵
𝜆𝑑/2
(0)

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

≤ ∫
R𝑁\𝐵

𝜆𝑑/2
(0)

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

= 𝑂 ((𝜆𝑑)
−4
) ,

∫
Γ
2
\𝐵
𝜆𝑑/2
(0)

|𝑥|
2
𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

≤ ∫
Γ
2

|𝑥|
2
𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

= ∫
R𝑁

|𝑥|
2
𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

+ 𝑂((𝜆

𝑑
𝑗𝑙


)
−2

) .

(65)

Inserting these in (64), we obtain

∫
Γ
2
\𝐵
𝜆𝑑/2
(0)

𝑑𝑥

(1 + |𝑥|
2
)
(𝑁+4)/2

(1 +

𝑥 − 𝜆𝑑

𝑗𝑙



2

)

(𝑁−4)/2

≤ 𝑂(
1

𝜆𝑁𝑑4

𝑑
𝑗𝑙



𝑁−4
) + 𝑂(

1

(𝜆

𝑑
𝑗𝑙


)
𝑁−2

) .

(66)

Substituting (33), (32), and (66) into (63), we obtain

∫
R𝑁\𝐵

𝑗

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥

≤ 𝑂(
1

𝜆𝑁𝑑4

𝑑
𝑗𝑙



𝑁−4
) + 𝑂(

1

(𝜆

𝑑
𝑗𝑙


)
𝑁−2

) .

(67)

By (61), (35), and the inequality above, we get the desired
estimate.

Lemma 5. Consider

∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝜑
𝑙
𝑑𝑥

≤

{{{

{{{

{

𝐶
𝑁
𝑎
0

𝜆𝑁−4
𝐻(𝑥

(𝑗)
, 𝑥
(𝑗)
) + 𝑂(

1

𝜆𝑁−1𝑟𝑁
) , 𝑗 = 𝑙,

𝐶
𝑁
𝑎
0

𝜆𝑁−4
𝐻(𝑥

(𝑗)
, 𝑥
(𝑙)
) + 𝑂(

1

𝜆𝑁−1𝑑𝑁
) 𝑗 ̸= 𝑙,

(68)

Proof.

Case 1. Consider 𝑗 = 𝑙.
Set

Γ (𝑥) = 𝜑
𝑗
(𝑥) − 𝐶

𝑁
𝜆
(𝑁−4)/2

𝐻(𝑥
(𝑗)
, 𝑥) . (69)

For 𝑥 ∈ Ω, 𝑦 ∈ 𝜕Ω, we have

2 + (𝑁 − 4) 𝑥 ⋅ 𝑦 − (𝑁 − 2) |𝑥|
2

≤ 2 + (𝑁 − 4) |𝑥| − (𝑁 − 2) |𝑥|
2
< 0.

(70)

By definition of𝐾(𝑥, 𝑦), we get

𝐾(𝑥, 𝑦) < 0 for𝑥 ∈ Ω, 𝑦 ∈ 𝜕Ω. (71)

By (48), we obtain

Γ (𝑥) < 0 for𝑥 ∈ Ω. (72)

Therefore, we can write

∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝜑
𝑗
𝑑𝑥

=
𝐶
𝑁

𝜆𝑁−4
∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝐻(𝑥

(𝑗)
, 𝑥) 𝑑𝑥 + ∫

𝐵
𝑗

𝑈
2
∗

−1

𝑗
Γ𝑑𝑥

≤
𝐶
𝑁

𝜆𝑁−4
∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝐻(𝑥

(𝑗)
, 𝑥) 𝑑𝑥.

(73)

Since 𝑑 ≤ (1/2)𝑟, the last term can be estimated as in (59);
namely,

𝐶
𝑁

𝜆(𝑁−4)/2
∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝐻(𝑥

(𝑗)
, 𝑥) 𝑑𝑥

≤
𝐶
𝑁

𝜆(𝑁−4)/2
∫
𝐵
𝑟/2
(𝑥
(𝑗)
)

𝑈
2
∗

−1

𝑗
𝐻(𝑥

(𝑗)
, 𝑥) 𝑑𝑥

≤
𝐶
𝑁
𝑎
0

𝜆𝑁−4
𝐻(𝑥

(𝑗)
, 𝑥
(𝑗)
) + 𝑂 (𝑟

−𝑁
𝜆
1−𝑁
) ,

(74)

which gives the required estimate.

Case 2. Consider 𝑗 ̸= 𝑙.
The computation can be adapted from the ones in the

proof of Case 1.
Define

�̃� (𝑥) =

𝑘−1

∑

𝑗=0

𝑃𝑈
𝑗
=

𝑘−1

∑

𝑗=0

(𝑈
𝑗
− 𝜑

𝑗
) . (75)

Due to the definition of the points 𝑥(𝑗), we have �̃� ∈ 𝐻
𝑘
.

Notice that �̃� depends on 𝜆, 𝑘, and 𝑟 through the choice of
the points 𝑥(𝑗).
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Lemma 6. As 𝜆𝑑 → ∞ (i.e., 𝜆 → 0), one has

∫
Ω

|Δ�̃�|
2
𝑑𝑥

= 𝑘𝑆
𝑁/4

−
𝐶
𝑁
𝑎
0

𝜆𝑁−4

×

{{{

{{{

{

𝑘−1

∑

𝑗=0

𝐻(𝑥
(𝑗)
, 𝑥
(𝑗)
) −

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

𝐺(𝑥
(𝑗)
, 𝑥
(𝑗)
)

}}}

}}}

}

+ 𝑘
𝑁−1
𝑂(𝜆

2−𝑁
) + 𝑘

2
𝑂((𝜆𝑟)

−𝑁
) ,

(76)

∫
Ω

|𝑥|
𝛼
�̃�
2
∗

𝑑𝑥

≥ (1 − 2𝑟)
𝛼

× [

[

𝑘𝑆
𝑁/4

−
2
∗
𝐶
𝑁
𝑎
0

𝜆𝑁−4

×

{{{

{{{

{

𝑘−1

∑

𝑗=0

𝐻(𝑥
(𝑗)
, 𝑥
(𝑗)
) −

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

𝐺(𝑥
(𝑗)
, 𝑥
(𝑗)
)

}}}

}}}

}

+ 𝑘
𝑁−1
𝑂(

1

𝜆𝑁−2
) + 𝑘

2
𝑂(

1

𝜆𝑁−1𝑟𝑁
)]

]

.

(77)

Proof. By definition of 𝑢 (see (75)) and 𝑃𝑈
𝑗
,

∫
Ω

|Δ�̃�|
2
𝑑𝑥

=

𝑘−1

∑

𝑗,𝑙=0

(∫
Ω

𝑈
2
∗

𝑗
𝑑𝑥 − ∫

Ω

𝑈
2
∗

−1

𝑗
𝜑
𝑗
𝑑𝑥)

+

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

(∫
Ω

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 − ∫

Ω

𝑈
2
∗

−1

𝑗
𝜑
𝑙
𝑑𝑥) .

(78)

By Lemmas 2 and 3, we have
𝑘−1

∑

𝑗=0

(∫
Ω

𝑈
2
∗

𝑗
𝑑𝑥 − ∫

Ω

𝑈
2
∗

−1

𝑗
𝜑
𝑗
𝑑𝑥)

= 𝑘𝑆
𝑁/4

−
𝐶
𝑁
𝑎
0

𝜆𝑁−4

𝑘−1

∑

𝑗=0

𝐻(𝑥
(𝑗)
, 𝑥
(𝑗)
)

+ 𝑘𝑂 ((𝜆𝑟)
−𝑁
) ,

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

∫
Ω

𝑈
2
∗

−1

𝑗
𝜑
𝑙
𝑑𝑥

=
𝐶
𝑁
𝑎
0

𝜆𝑁−4

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

𝐻(𝑥
(𝑗)
, 𝑥
(𝑙)
)

+ (𝑘
2
− 𝑘)𝑂 ((𝜆𝑟)

−𝑁
) .

(79)

By the symmetry of the points 𝑥(𝑗), we have

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

1


𝑑
𝑗𝑙



𝑁−2
= 𝑘

𝑘−1

∑

𝑗=1

1

(2 − 2𝑟)
𝑁−2sin𝑁−2 (𝜋𝑗/𝑘)

∼
2𝑘

(2 − 2𝑟)
𝑁−2

[(𝑘−1)/2]

∑

𝑗=1

𝐶

(𝑗/𝑘)
𝑁−2

∼ 𝐶𝑘
𝑁−1
,

(80)

since the series of 𝑗1−𝑁 is convergent. Recall that 𝑟 will be
taken small so that we can always assume 𝑟 ≤ 1/2. By (80),
we obtain from Lemma 2

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

∫
Ω

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥

=
𝐶
𝑁
𝑎
0

𝜆𝑁−4

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

1

𝑥
(𝑗) − 𝑥(𝑙)



𝑁−4

+ 𝑘
𝑁−1
𝑂(𝜆

2−𝑁
) + (𝑘

2
− 𝑘)𝑂 ((𝜆𝑟)

−𝑁
) .

(81)

Substituting (79) and (81) into (78) and recalling the defini-
tion of 𝐺, we prove (76).

Having completed the estimate of the numerator of
𝑄
𝛼
, we now go on to estimate the denominator, namely,

∫
Ω
|𝑥|
𝛼
�̃�
2
∗

𝑑𝑥. Recall that we denote 𝑑 = (1/2)min
𝑗 ̸=𝑙
|𝑥
(𝑗)
−

𝑥
(𝑙)
| and that we assume 2𝑑 ≤ 𝑟. We now set 𝐵

𝑗
= 𝐵

𝑑
(𝑥
(𝑗)
) for

𝑗 = 0, 1, . . . , 𝑘 − 1. Then the 𝐵
𝑗
’s are positive disjoint and they

are all contained inΩ \ 𝐵
1−2𝑟

(0). Hence

∫
Ω

|𝑥|
𝛼
�̃�
2
∗

𝑑𝑥 ≥ (1 − 2𝑟)
𝛼
∫
Ω\𝐵
1−2𝑟
(0)

�̃�
2
∗

𝑑𝑥

≥ (1 − 2𝑟)
𝛼

𝑘−1

∑

𝑗=0

∫
𝐵
𝑗

�̃�
2
∗

𝑑𝑥.

(82)

It is easy to see that

�̃�
2
∗

= (

𝑘−1

∑

𝑙=0

𝑃𝑈
𝑙
)

2
∗

=
[
[
[

[

𝑈
𝑗
+

𝑘−1

∑

𝑙=0

𝑙 ̸=𝑗

(𝑈
𝑙
− 𝜑

𝑙
) − 𝜑

𝑗

]
]
]

]

2
∗

≥ 𝑈
2
∗

𝑗
+ 2

∗
𝑈
2
∗

−1

𝑗

[
[
[

[

𝑘−1

∑

𝑙=0

𝑙 ̸=𝑗

(𝑈
𝑙
− 𝜑

𝑙
) − 𝜑

𝑗

]
]
]

]

2
∗

,

(83)

where we have used the inequality

(𝑎 + 𝑏)
𝑝
≥ 𝑎

𝑝
+ 𝑝𝑎

𝑝−1
𝑏, (84)
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for 𝑝 ≥ 1, 𝑎 ≥ 0, 𝑎 + 𝑏 ≥ 0. We obtain therefore
𝑘−1

∑

𝑗=0

∫
𝐵
𝑗

�̃�
2
∗

𝑑𝑥

≥

𝑘−1

∑

𝑗=0

(∫
𝐵
𝑗

𝑈
2
∗

𝑗
𝑑𝑥 − 2

∗
∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝜑
𝑗
𝑑𝑥)

+ 2
∗

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

(∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 − ∫

𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝜑
𝑙
𝑑𝑥) ,

(85)

and we estimate the four integrals separately as above.
By the first part of Lemmas 4 and 5, and recalling that

𝑟 > 𝑑 ∼ 𝐶/𝑘 and
𝑘−1

∑

𝑗=0

(∫
𝐵
𝑗

𝑈
2
∗

𝑗
𝑑𝑥 − 2

∗
∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝜑
𝑗
𝑑𝑥)

≥ 𝑘𝑆
𝑁/4

−
2
∗
𝐶
𝑁
𝑎
0

𝜆𝑁−4

𝑘−1

∑

𝑗=0

𝐻(𝑥
(𝑗)
, 𝑥
(𝑗)
)

+ 𝑘
𝑁
𝑂(

1

𝜆𝑁−1
) .

(86)

The remainders generated by the second part of Lemma 4 can
be dealt with as in (80). We obtain

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

1


𝑑
𝑗𝑙



𝑁−2
∼ 𝐶𝑘

𝑁−1
,

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

1


𝑑
𝑗𝑙



𝑁−4
∼ 𝐶𝑘

𝑁−3
.

(87)

Therefore,

2
∗

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝑈
𝑙
𝑑𝑥 ≥

2
∗
𝐶
𝑁
𝑎
0

𝜆𝑁−4

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

1

𝑥
(𝑗) − 𝑥(𝑙)



𝑁−4

+ 𝑘
𝑁−1
𝑂(

1

𝜆𝑁−2
) + 𝑘

𝑁+1
𝑂(

1

𝜆𝑁
)

=
2
∗
𝐶
𝑁
𝑎
0

𝜆𝑁−4

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

1

𝑥
(𝑗) − 𝑥(𝑙)



𝑁−4

+ 𝑘
𝑁−1
𝑂(

1

𝜆𝑁−2
) ,

(88)

since 𝑘/𝜆 → 0.
Finally, from Lemma 5,

2
∗

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

∫
𝐵
𝑗

𝑈
2
∗

−1

𝑗
𝜑
𝑙
𝑑𝑥 ≤

2
∗
𝐶
𝑁
𝑎
0

𝜆𝑁−4

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

𝐻(𝑥
(𝑗)
, 𝑥
(𝑙)
)

+ (𝑘
2
− 𝑘)𝑂(

1

𝜆𝑁−1𝑟𝑁
) .

(89)

Substituting (86), (88), and (89) into (85) and recalling the
definition of 𝐺, we obtain the required estimate.

Proposition 7. Let𝑁 ≥ 6. For every 𝛼 > 0, there exists 𝑘
𝛼
> 0

such that, for every integer 𝑘 ≥ 𝑘
𝛼
,

Σ
𝑘
< 𝑘

4/𝑁
𝑆. (90)

Proof. The function �̃� constructed in (75) depends on 𝑘, 𝑟,
and 𝜆, and for each 𝑘 it belongs to 𝐻

𝑘
. We show that, for

appropriate choice of these parameters, there results𝑄
𝛼
(�̃�) <

𝑘
4/𝑁
𝑆. For simplicity, we set

𝐴 :=

𝑘−1

∑

𝑗=0

𝐻(𝑥
(𝑗)
, 𝑥
(𝑗)
) −

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

𝐺(𝑥
(𝑗)
, 𝑥
(𝑙)
) (91)

andwe beginwith an estimate of𝐴, noticing that we canwrite
it as

𝐴 =

𝑘−1

∑

𝑗,𝑙=0

𝐻(𝑥
(𝑗)
, 𝑥
(𝑙)
) −

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

1

𝑥
(𝑗) − 𝑥(𝑙)



𝑁−4
. (92)

By definition of𝐻 and since |𝑥(𝑗) − 𝑥(𝑙)/|𝑥(𝑙)|2| ≥ 𝑟 for all 𝑗, 𝑙,
we have

𝑘−1

∑

𝑗,𝑙=0

𝐻(𝑥
(𝑗)
, 𝑥
(𝑙)
)

≤

𝑘−1

∑

𝑗,𝑙−0

(
1

𝑥
(𝑗)

𝑁−4

𝑟𝑁−4
+

1

𝑥
(𝑗)

𝑁−2

𝑟𝑁−2
)

≤
𝐶
1
𝑘
2

𝑟𝑁−2
.

(93)

Moreover, as in (87),

𝑘−1

∑

𝑗,𝑙=0

𝑗 ̸=𝑙

1

𝑥
(𝑗) − 𝑥(𝑙)



𝑁−4
∼ 𝐶

2
𝑘
𝑁−3
, (94)

so we obtain

𝐴 ≤
𝐶
1
𝑘
2

𝑟𝑁−2
− 𝐶

2
𝑘
𝑁−3
. (95)

Note that (1 − 2𝑟)2𝛼/2
∗

≥ 1 − 3𝛼𝑟, for all𝑁 ≥ 6, 𝛼 > 0 and 𝑟
small enough; we see that, from Lemma 6,

(∫
Ω

|𝑥|
𝛼
�̃�
2
∗

𝑑𝑥)

2/2
∗

≥ (1 − 3𝛼𝑟) 𝑘
2/2
∗

× [𝑆
𝑁/4

−
2
∗
𝐶
𝑁
𝑎
0

𝑘𝜆𝑁−4
𝐴

+ 𝑘
𝑁−2
𝑂(

1

𝜆𝑁−2
) + 𝑘𝑂(

1

𝜆𝑁−1𝑟𝑁
) ]

2/2
∗

.

(96)
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Choose 𝑟 = 𝑘
−3(𝑁−5)/4(𝑁−2) and 𝜆 = 𝑘

1+𝜀 with 𝜀 > 0 and
small. It is easy to see that all the quantities depending on 𝑘
in the square brackets tend to zero as 𝜆/𝑘 → ∞; therefore,
we obtain
𝑄
𝛼
(�̃�)

≤ (𝑘𝑆
𝑁/4

−
𝐶
𝑁
𝑎
0

𝜆𝑁−4
𝐴 + 𝑘

𝑁−1
𝑂(

1

𝜆𝑁−2
) + 𝑘

2
𝑂(

1

(𝜆𝑟)
𝑁
))

× ( (1 − 3𝛼𝑟) 𝑘
2/2
∗

× [𝑆
(𝑁−4)/4

−
2𝐶

𝑁
𝑎
0

𝑘𝑆𝜆𝑁−4
𝐴

+ 𝑘
𝑁−2
𝑂(

1

𝜆𝑁−2
) + 𝑘𝑂(

1

𝜆𝑁−1𝑟𝑁
)] )

−1

.

(97)

Wemust check that, for suitable values of the parameters, the
right hand side is strictly less than 𝑘4/𝑁𝑆. Direct computations
show that it is enough to prove

𝑅 := 3𝛼𝑟𝑆
𝑁/4

+ (1 − 6𝛼𝑟)
𝐶
𝑁
𝑎
0

𝑘𝜆𝑁−4
𝐴 + 𝑘

𝑁−2
𝑂(

1

𝜆𝑁−2
)

− (1 − 3𝛼𝑟) 𝑆𝑘
𝑁−2
𝑂(

1

𝜆𝑁−2
)

+ 𝑘
2
(

1

(𝜆𝑟)
𝑁
) − (1 − 3𝛼𝑟) 𝑆𝑘𝑂(

1

𝜆𝑁−1𝑟𝑁
) < 0.

(98)

We take 𝑘 so large that

𝐴 ≤ −
𝐶
2

2
𝑘
𝑁−3
, (99)

and this is possible because

𝐴 ≤
𝐶
1
𝑘
2

𝑟𝑁−2
− 𝐶

2
𝑘
𝑁−3

= 𝐶
1
𝑘
2+(3/4)(𝑁−5)

− 𝐶
2
𝑘
𝑁−3 (100)

and 2+(3/4)(𝑁−5) < 𝑁−3 for all𝑁 ≥ 6, as one immediately
checks. Furthermore, noticing that 3𝑁(𝑁 − 5)/4(𝑁 − 2) <

𝑁 − 2, we see that

𝑘
2

(𝜆𝑟)
𝑁
=
𝑘
2+3𝑁(𝑁−5)/4(𝑁−2)

𝜆𝑁
≤
𝑘
𝑁

𝜆𝑁
≤
𝑘
𝑁−2

𝜆𝑁−2
,

𝑘

𝜆𝑁−1𝑟𝑁
=
𝑘
1+3𝑁(𝑁−5)/4(𝑁−2)

𝜆𝑁−1
≤
𝑘
𝑁−1

𝜆𝑁−1
≤
𝑘
𝑁−2

𝜆𝑁−2
,

(101)

since 𝑘/𝜆 → 0. Therefore, the third and the last big 𝑂 is
unnecessary in the expression of 𝑅. We are thus led to

𝑅 ≤
3𝛼𝑆

𝑁/4

𝑘3(𝑁−5)/4(𝑁−2)
− (1 −

6𝛼

𝑘3(𝑁−5)/4(𝑁−2)
)

⋅
𝐶
𝑁
𝑎
0
𝐶
2

2
⋅
𝑘
𝑁−4

𝜆𝑁−4
+ 𝑘

𝑁−2
𝑂(

1

𝜆𝑁−2
)

=
3𝛼𝑆

𝑁/4

𝑘3(𝑁−5)/4(𝑁−2)
− (1 −

6𝛼

𝑘3(𝑁−5)/4(𝑁−2)
)

⋅
𝐶
𝑁
𝑎
0
𝐶
2

2
⋅

1

𝑘𝜀(𝑁−4)
+ 𝑂(

1

𝑘𝜀(𝑁−2)
) .

(102)

Since 𝛼 is fixed, we have 𝑅 < 0 for 𝑘 large (depending on 𝛼) if
we take 𝜀 small enough (essentially 𝜀 < 3(𝑁−5)/4(𝑁−2)(𝑁−
4)).

Next we show that if Σ
𝑘
< 𝑘

4/𝑁
𝑆 then Σ

𝑘
is achieved. So

we are led to analyze what happens if a minimizing sequence
in 𝐻

𝑘
tends weakly to zero in 𝐻2

0
(Ω). Let 𝑢

𝑛
∈ 𝐻

𝑘
be a

minimizing sequence for problem (9) such that 𝑢
𝑛
⇀ 0

weakly in 𝐻2
0
(Ω). Without loss of generality, we can assume

that 𝑄
𝛼
(𝑢
𝑛
) → 0 in𝐻

𝑘
by Ekeland’s variational principle.

Since 𝑄
𝛼
is invariant under the action of 𝐺

𝑘
, we also

have 𝑄
𝛼
(𝑢
𝑛
) → 0 in 𝐻2

0
(Ω). By homogeneity of 𝑄

𝛼
(𝑢), we

normalize 𝑢
𝑛
to obtain a sequence (still denoted by 𝑢

𝑛
) such

that as 𝑛 → ∞,

𝑄
𝛼
(𝑢
𝑛
) → Σ

𝑘
, 𝑄



𝛼
(𝑢
𝑛
) → 0 in𝐻2

0
(Ω) ,

𝑢
𝑛
⇀ 0 in𝐻2

0
(Ω) ,

∫
Ω

|𝑥|
𝛼𝑢𝑛



2
∗

𝑑𝑥 = Σ
𝑁/4

𝑘
,

∫
Ω

Δ𝑢𝑛


2

𝑑𝑥 = Σ
𝑁/4

𝑘
+ 𝑜 (1) .

(103)

The corresponding energy functional of problem (1) is
defined by

𝐽
𝛼
(𝑢) =

1

2
∫
Ω

|Δ𝑢|
2
𝑑𝑥 −

1

2
∫
Ω

|𝑥|
𝛼
|𝑢|
2
∗

𝑑𝑥,

𝑢 ∈ 𝐻
2

0
(Ω) .

(104)

By (103), direct computation shows that

𝐽
𝛼
(𝑢
𝑛
) →

2

𝑁
Σ
𝑁/4

𝑘
, 𝐽



𝛼
(𝑢
𝑛
) → 0

as 𝑛 → ∞.

(105)

Thus, {𝑢
𝑛
} is a Palais-Smale sequence for the functional 𝐽

𝛼
at

level (2/𝑁)Σ𝑁/4
𝑘

.
Since for all 𝑛

∫
R𝑁

𝑢𝑛


2
∗

𝑑𝑥

= ∫
Ω

𝑢𝑛


2
∗

𝑑𝑥 ≥ ∫
Ω

|𝑥|
𝛼𝑢𝑛



2
∗

𝑑𝑥 = Σ
𝑁/4

𝑘
> 0,

(106)

by Lemma 10.1 in [17], there exists a sequence of rescaling
T
𝑛
= T(𝜆

𝑛
, 𝑞
𝑛
) such that

T
𝑛
𝑢
𝑛
⇀ 𝑢 weakly in𝐷2,2 (R𝑁) , 𝑢 ̸≡ 0. (107)

Since supp𝑢
𝑛
⊂ Ω, we get 𝜆

𝑛
→ ∞ as 𝑛 → ∞ and 𝑞

𝑛
∈ Ω.

We can also assume that 𝑞
𝑛
→ 𝑞 ∈ Ω.

Lemma 8. Let T
𝑛
= T(𝜆

𝑛
, 𝑞
𝑛
) be the above sequence of

rescaling satisfying 𝜆 → ∞, 𝑞
𝑛
→ 𝑞 ∈ Ω, andT

𝑛
𝑢
𝑛
⇀ 𝑢 ̸≡

0 weakly in𝐷2,2(R𝑁). Then 𝜆
𝑛
dist(𝑞

𝑛
, 𝜕Ω) → ∞, 𝑞 ̸= 0, and

𝑢 satisfies

Δ
2
𝑢 =

𝑞


𝛼

|𝑢|
2
∗

−2
𝑢 𝑖𝑛R

𝑁
. (108)
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Proof. We first prove 𝜆
𝑛
dist(𝑞

𝑛
, 𝜕Ω) → ∞ as 𝑛 → ∞.

Assume to the contrary that 𝜆
𝑛
dist(𝑞

𝑛
, 𝜕Ω) ≤ 𝐶 < ∞ for

all 𝑛. Considering Ω
𝑛
= {𝑥 ∈ R𝑁 : 𝑥/𝜆

𝑛
+ 𝑞

𝑛
∈ Ω}, we

may regard T
𝑛
𝑢
𝑛
∈ 𝐻

2

0
(Ω
𝑛
) ⊂ 𝐷

2,2
(R𝑁). After a rotation of

coordinates, we may assume that the sequence {Ω
𝑛
} exhausts

the half space R𝑁
+
. For any 𝜓 ∈ 𝐶

∞

0
(R𝑁
+
), we have 𝜓 ∈

𝐶
∞

0
(Ω
𝑛
) for all large 𝑛.Thus, the support ofT−1

𝑛
𝜓 is contained

inΩ for all large 𝑛.
Set

𝜙 (𝑥) = {
|𝑥|
𝛼

𝑥 ∈ Ω,

0, 𝑥 ∉ Ω,

𝜙
𝑛
(𝑥) = 𝜙(

𝑥

𝜆
𝑛

+ 𝑞
𝑛
) .

(109)

The fact that {𝑢
𝑛
} is a Palais-Smale sequence for 𝐽

𝛼
implies

that

𝑜 (1) = ⟨𝐽


𝛼
(𝑢
𝑛
) ,T

−1

𝑛
𝜓⟩

= ∫
RN
Δ𝑢Δ𝜓𝑑𝑥 − ∫

R𝑁
𝜙 (𝑞) 𝑢

2
∗

−1
𝜓𝑑𝑥 + 𝑜 (1) .

(110)

We have used the fact that T
𝑛
𝑢
𝑛
⇀ 𝑢 in 𝐷2,2(R𝑁) and

𝜙
𝑛
(𝑥) → 𝜙(𝑞). Since this happens for all 𝜓 ∈ 𝐶∞

0
(RN
+
), we

see that 𝑢 satisfies

Δ
2
𝑢 =

𝑞


𝛼

𝑢
2
∗

−1
, 𝑢 ∈ 𝐷

2,2
(R

𝑁
) inΠ,

𝑢 =
𝜕𝑢

𝜕𝑥
𝑁

= 0 on 𝜕Π,
(111)

where Π = {(𝑥, 𝑥
𝑁
) ∈ R𝑁 : 𝑥

𝑁
≥ −𝐿} for some constant 𝐿 ≥

0. By Lemma 4 in [2](also see [4]), (111) has a unique solution
𝑢 ≡ 0, which contradicts 𝑢 ̸≡ 0. Therefore, we must have
𝜆
𝑛
dist(𝑞

𝑛
, 𝜕Ω) → 0. In this case, we can repeat the above

argument and take test function 𝜓 ∈ 𝐶
∞

0
(R𝑁). The above

computations imply that 𝑢 is a nontrivial solution of Δ2𝑢 =
|𝑞|
𝛼
|𝑢|
2
∗

−2
𝑢 in R𝑁, which also shows that 𝑞 ̸= 0 since 𝑢 ∈

𝐷
2,2
(R𝑁).

Remark 9. It is proved in [18] that the radial function

𝑈 (𝑥) = 𝐶
𝑁
(1 + |𝑥|

2
)
−(𝑁−4)/2 (112)

solvesΔ2𝑈 = 𝑈2
∗

−1 inR𝑁, where𝐶
𝑁
= [(𝑁−4)(𝑁−2)𝑁(𝑁+

2)]
(𝑁−4)/8. So the function 𝑢 is nothing else than a multiple of

𝑈. Precisely, 𝑢 = |𝑞|𝛼(4−𝑁)/8𝑈.

Let 𝜒 ∈ 𝐶
∞

0
(R𝑁) be a cut-off function satisfying 0 ≤

𝜒(𝑥) ≤ 1 for all 𝑥 ∈ R𝑁, 𝜒(𝑥) = 1 for |𝑥| ≤ 1, 𝜒(𝑥) = 0

for |𝑥| ≥ 2, |∇𝜒| ≤ 𝐶, and |Δ𝜒| ≤ 𝐶.
Since 𝜆

𝑛
dist(𝑞

𝑛
, 𝜕Ω) → ∞, we may take a sequence

{𝜆
𝑛
} such that 𝜆

𝑛
> 0, 𝜆

𝑛
→ ∞,𝜆

𝑛
/𝜆
𝑛
→ ∞ and

𝜆
𝑛
dist(𝑞

𝑛
, 𝜕Ω) → ∞ as 𝑛 → ∞. Set 𝜒

𝑛
(𝑥) = 𝜒((𝜆

𝑛
/𝜆
𝑛
)𝑥).

In this way, suppT−1

𝑛
𝜒
𝑛
⊂ Ω for all 𝑛 large and 𝑢

𝑛
−

T−1

𝑛
(𝜒
𝑛
𝑢) ∈ 𝐻

2

0
(Ω).

Note that

∫
R𝑁

Δ (𝜒𝑛𝑢 − 𝑢)


2

𝑑𝑥

≤ 𝐶(∫
R𝑁\𝐵

𝜆
𝑛
/𝜆
𝑛

(0)

|Δ𝑢|
2
𝑑𝑥

+ (
𝜆
𝑛

𝜆
𝑛

)

2

∫
𝐵
2𝜆
𝑛
/𝜆
𝑛

(0)\𝐵
𝜆
𝑛
/𝜆
𝑛

(0)

|∇𝑢|
2
𝑑𝑥

+ (
𝜆
𝑛

𝜆
𝑛

)

4

∫
𝐵
2𝜆
𝑛
/𝜆
𝑛

(0)\𝐵
𝜆
𝑛
/𝜆
𝑛

(0)

|𝑢|
2
𝑑𝑥) .

(113)

Since Δ𝑢 ∈ 𝐿2(R𝑁), the first term tends to 0 as 𝑛 → ∞.
By Hölder inequality, the second term and the third term in
inequality above,

(
𝜆
𝑛

𝜆
𝑛

)

2

∫
𝐵
2𝜆
𝑛
/𝜆
𝑛

(0)\𝐵
𝜆
𝑛
/𝜆
𝑛

(0)

|∇𝑢|
2
𝑑𝑥

≤ 𝐶(
𝜆
𝑛

𝜆
𝑛

)

2

× (∫
𝐵
2𝜆
𝑛
/𝜆
𝑛

(0)\𝐵
𝜆
𝑛
/𝜆
𝑛

(0)

|∇𝑢|
2𝑁/(𝑁−2)

𝑑𝑥)

(𝑁−2)/𝑁

→ 0,

(
𝜆
𝑛

𝜆
𝑛

)

4

∫
𝐵
2𝜆
𝑛
/𝜆
𝑛

(0)\𝐵
𝜆
𝑛
/𝜆
𝑛

(0)

|𝑢|
2
𝑑𝑥

≤ 𝐶(
𝜆
𝑛

𝜆
𝑛

)

4

(∫
𝐵
2𝜆
𝑛
/𝜆
𝑛

(0)\𝐵
𝜆
𝑛
/𝜆
𝑛

(0)

|𝑢|
2
∗

𝑑𝑥)

2/2
∗

→ 0

(114)

as 𝑛 → ∞. Thus, 𝜒
𝑛
𝑢 → 𝑢 strongly in𝐷2,2(R𝑁).

Lemma 10. Let T
𝑛
𝑢
𝑛
be the sequence constructed above.

Then, as 𝑛 → ∞, one has

(i) 𝐽
𝛼
(𝑢
𝑛
−T−1

𝑛
(𝜒
𝑛
𝑢)) = 𝐽

𝛼
(𝑢
𝑛
) − 𝐽

𝛼,𝑞
(𝑢) + 𝑜(1),

(ii) 𝐽
𝛼
(𝑢
𝑛
−T−1

𝑛
(𝜒
𝑛
𝑢)) = 𝐽



𝛼
(𝑢
𝑛
) + 𝑜(1) in𝐻2

0
(Ω),

where

𝐽
𝛼,𝑞
(𝑢) =

1

2
∫
R𝑁
|Δ𝑢|

2
𝑑𝑥 −

1

2∗

𝑞


𝛼

∫
R𝑁
|𝑢|
2
∗

𝑑𝑥. (115)

Moreover, the sequence {𝑢
𝑛
− T−1

𝑛
(𝜒
𝑛
𝑢)} is a Palais-Smale

sequence for 𝐽
𝛼
at level (2/𝑁)Σ𝑁/4

𝑘
− 𝐽

𝛼,𝑞
(𝑢); namely, it satisfies

(i) 𝐽
𝛼
(𝑢
𝑛
−T−1

𝑛
(𝜒
𝑛
𝑢)) = (2/𝑁)Σ

𝑁/4
− 𝐽

𝛼,𝑞
(𝑢) + 𝑜(1);

(ii) 𝐽
𝛼
(𝑢
𝑛
−T−1

𝑛
(𝜒
𝑛
𝑢)) = 𝑜(1) in𝐻2

0
(Ω).

Proof. (i) Set 𝑤
𝑛
= 𝑢

𝑛
−T−1

𝑛
(𝜒
𝑛
𝑢); then 𝑤

𝑛
∈ 𝐻

2

0
(Ω). Since

T
𝑛
𝑢
𝑛
⇀ 𝑢 and 𝜒

𝑛
𝑢 → 𝑢 in𝐷2,2(R𝑁), we have

∫
Ω

Δ𝑤𝑛


2

𝑑𝑥 = ∫
R𝑁

Δ𝑢𝑛


2

𝑑𝑥 − ∫
R𝑁
|Δ𝑢|

2
𝑑𝑥 + 𝑜 (1) . (116)
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Set 𝜙
𝑛
(𝑥) = 𝜙(𝑥/𝜆

𝑛
+ 𝑞

𝑛
). Changing variables as in the first

part, we have

∫
Ω

|𝑥|
𝛼𝑤𝑛



2
∗

𝑑𝑥 = ∫
R𝑁
𝜙 (𝑥)

𝑤𝑛


2
∗

𝑑𝑥

= ∫
R𝑁
𝜙
𝑛
(𝑥)
T𝑛

𝑢
𝑛
− 𝜒

𝑛
𝑢


2
∗

𝑑𝑥.

(117)

Since𝜒
𝑛
𝑢 → 𝑢 in𝐷2,2(R𝑁), we get by the Brézis-Lieb lemma

[19]:

∫
R𝑁
𝜙
𝑛
(𝑥)
T𝑛

𝑢
𝑛
− 𝜒

𝑛
𝑢


2
∗

𝑑𝑥

= ∫
R𝑁
𝜙
𝑛
(𝑥)
T𝑛

𝑢
𝑛
− 𝑢


2
∗

𝑑𝑥 + 𝑜 (1)

= ∫
R𝑁
𝜙
𝑛
(𝑥)
T𝑛

𝑢
𝑛



2
∗

𝑑𝑥

− ∫
R𝑁
𝜙
𝑛
(𝑥) |𝑢|

2
∗

𝑑𝑥 + 𝑜 (1) .

(118)

By changing variables, we obtain

∫
R𝑁
𝜙
𝑛
(𝑥)
T𝑛

𝑢
𝑛



2
∗

= ∫
R𝑁
𝜙 (𝑥)

𝑢𝑛


2
∗

𝑑𝑥

= ∫
Ω

|𝑥|
𝛼𝑢𝑛



2
∗

𝑑𝑥,

∫
R𝑁
𝜙
𝑛
(𝑥) |𝑢|

2
∗

𝑑𝑥 = ∫
R𝑁
𝜙 (𝑞) |𝑢|

2
∗

𝑑𝑥 + 𝑜 (1)

=
𝑞


𝛼

∫
R𝑁
|𝑢|
2
∗

𝑑𝑥 + 𝑜 (1) .

(119)

Inserting these into (118), we get

∫
R𝑁
𝜙
𝑛
(𝑥)
T𝑛

𝑢
𝑛
− 𝜒

𝑛
𝑢


2
∗

𝑑𝑥

= ∫
Ω

|𝑥|
𝛼𝑢𝑛



2
∗

𝑑𝑥 −
𝑞


𝛼

∫
Ω

|𝑢|
2
∗

𝑑𝑥 + 𝑜 (1) ,

(120)

which, combined with (116), yields (i).
(ii) Without loss of generality, we assume that 𝑢

𝑛
−

T−1

𝑛
(𝜒
𝑛
𝑢) is nonnegative; otherwise, one replaces its (2∗−1)th

power by |𝑢
𝑛
− T−1

𝑛
(𝜒
𝑛
𝑢)|

2
∗

−2
(𝑢
𝑛
− T−1

𝑛
(𝜒
𝑛
𝑢)). Taking 𝜓 ∈

𝐶
∞

0
(Ω),

⟨𝐽


𝛼
(𝑢
𝑛
−T

−1

𝑛
(𝜒
𝑛
𝑢)) , 𝜓⟩

= ∫
R𝑁
Δ (𝑢

𝑛
−T

−1

𝑛
(𝜒
𝑛
𝑢)) Δ𝜓𝑑𝑥

− ∫
R𝑁
𝜙 (𝑥) (𝑢

𝑛
−T

−1

𝑛
(𝜒
𝑛
𝑢))

2
∗

−1

𝜓𝑑𝑥.

(121)

Since 𝜒
𝑛
𝑢 → 𝑢 in𝐷2,2(R𝑁), we have

∫
R𝑁
Δ (𝑢

𝑛
−T

−1

𝑛
(𝜒
𝑛
𝑢)) Δ𝜓𝑑𝑥

= ∫
R𝑁
Δ𝑢

𝑛
Δ𝜓𝑑𝑥 − ∫

R𝑁
Δ𝑢Δ (T

𝑛
𝜓) 𝑑𝑥

+ 𝑜 (1) ∫
R𝑁

Δ𝜓


2

𝑑𝑥,

(122)

∫
R𝑁
𝜙 (𝑥) (𝑢

𝑛
−T

−1

𝑛
(𝜒
𝑛
𝑢))

2
∗

−1

𝜓𝑑𝑥

= ∫
R𝑁
𝜙
𝑛
(𝑥) (T

𝑛
𝑢
𝑛
− 𝑢)

2
∗

−1

T
𝑛
𝜓𝑑𝑥

+ 𝑜 (1) ∫
R𝑁

Δ𝜓


2

𝑑𝑥.

(123)

By the Brézis-Lieb lemma, we have

∫
R𝑁
𝜙
𝑛
(𝑥) (T

𝑛
𝑢
𝑛
− 𝑢)

2
∗

−1

T
𝑛
𝜓𝑑𝑥

= ∫
R𝑁
𝜙
𝑛
(𝑥) (T

𝑛
𝑢
𝑛
)
2
∗

−1

T
𝑛
𝜓𝑑𝑥

− ∫
R𝑁
𝜙
𝑛|𝑢|

2
∗

−1
T
𝑛
𝜓𝑑𝑥 + 𝑜 (1) ∫

R𝑁

Δ𝜓


2

𝑑𝑥.

(124)

By (123), (124), and 𝜙
𝑛
→ 𝜙(𝑞), we obtain

∫
R𝑁
𝜙 (𝑥) (𝑢

𝑛
−T

−1
(𝜒
𝑛
𝑢))

2
∗

−1

𝜓𝑑𝑥

= ∫
R𝑁
𝜙 (𝑥)

𝑢𝑛


2
∗

−1

𝜓𝑑𝑥

−
𝑞


𝛼

∫
R𝑁
|𝑢|
2
∗

−1
T
𝑛
𝜓𝑑𝑥 + 𝑜 (1) ∫

R𝑁

Δ𝜓


2

𝑑𝑥.

(125)

Combing (122) and (125), we have

⟨𝐽


𝛼
(𝑢
𝑛
−T

−1

𝑛
(𝜒
𝑛
𝑢)) , 𝜓⟩

= ⟨𝐽


𝛼
(𝑢
𝑛
) , 𝜓⟩ − ⟨𝐽



𝛼,𝑞
(𝑢) ,T

𝑛
𝜓⟩

+ 𝑜 (1) ∫
R𝑁

Δ𝜓


2

𝑑𝑥

= ⟨𝐽


𝛼
(𝑢
𝑛
) , 𝜓⟩ + 𝑜 (1) ∫

R𝑁

Δ𝜓


2

𝑑𝑥,

(126)

since 𝑢 is a critical point of 𝐽
𝛼,𝑞

by Lemma 8. Thus, we prove
(ii).

An immediate consequence of (i) and (ii) is the the
sequence {𝑢

𝑛
−T−1

𝑛
(𝜒
𝑛
𝑢)} which is a Palais-Smale sequence

for 𝐽
𝛼
at level (2/𝑁)Σ𝑁/4

𝑘
− 𝐽

𝛼,𝑞
(𝑢).

We are now ready to describe the behavior of Palais-Smale
sequence of 𝐽

𝛼
.

Lemma 11. Let {𝑢
𝑛
} be a Palais-Smale sequence for 𝐽

𝛼
at level

(2/𝑁)Σ
𝑁/4 and 𝑢

𝑛
⇀ 0 in 𝐻2

0
(Ω). Then there is a positive 𝑚
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(depending only on Σ
𝑘
) such that, for every 𝑗 = 1, 2, . . . , 𝑚,

there exist sequences {𝜆
𝑗𝑛
} ⊂ R+ and {𝑞

𝑗𝑛
} ⊂ Ω, with 𝜆

𝑗𝑛
→

∞ and 𝑞
𝑗𝑛
→ 𝑞

𝑗
∈ Ω \ {0} as 𝑛 → ∞, and there exists a

nontrivial critical point V
𝑗
∈ 𝐷

2,2
(R𝑁) of 𝐽

𝛼,𝑞
𝑗

such that (up to
subsequence)

𝑢
𝑛
=

𝑚

∑

𝑗=1

T
−1

𝑗𝑛
(V
𝑗
) + 𝑜 (1) in𝐷2,2 (R𝑁) ,

𝐽
𝛼
(𝑢
𝑛
) =

𝑚

∑

𝑗=1

𝐽
𝛼,𝑞
𝑗

(V
𝑗
) + 𝑜 (1) ,

(127)

whereT
𝑗𝑛
= T(𝜆

𝑗𝑛
, 𝑞
𝑗𝑛
).

Proof. It is clear that there exists a sequence of positive
numbers 𝜆

𝑛
→ ∞, a sequence 𝑞

1𝑛
of points of Ω with

𝑞
1𝑛

→ 𝑞
1
∈ Ω \ {0}, and a nontrivial critical point V

1
of

𝐽
𝛼,𝑞
1

such that, settingT
1𝑛
= T(𝜆

1𝑛
, 𝑞
1𝑛
), the sequence

𝑤
1𝑛
:= 𝑢

𝑛
−T

−1

1𝑛
(𝜒
1𝑛
V
1
) (128)

is a Palais-Smale sequence for 𝐽
𝛼
at level (2/𝑁)Σ𝑁/4 − 𝐽

𝛼
(V
1
).

We now iterate this scheme. If 𝑤
1𝑛

→ 0 strongly in
𝐿
2
∗

(R𝑁), then the fact that it is a Palais-Smale sequence
implies that 𝑤

1𝑛
→ 0 strongly in 𝐷2,2(R𝑁). Since also

𝜒
1𝑛
V
1
→ V

1
strongly in𝐷2,2(R𝑁), we can write

𝑢
𝑛
= T

−1

1𝑛
(V
1
) + 𝑜 (1) in𝐷2,2 (R𝑁) , (129)

and the lemma is proved with 𝑚 = 1. Otherwise, 𝑤
1𝑛
⇀ 0

weakly in 𝐿2
∗

(R𝑁) but not strongly. In this case, starting with
Lemma 10.1 in [17], we can work on 𝑤

1𝑛
as we did for 𝑢

𝑛
. So

we can find sequences 𝜆
2𝑛
→ ∞, 𝑞

2𝑛
→ 𝑞

2
∈ Ω \ {0} and a

nontrivial critical point V
2
of 𝐽

𝛼,𝑞
2

such that the sequence

𝑤
2𝑛
:= 𝑤

1𝑛
−T

−1

2𝑛
(𝜒
2𝑛
V
2
) (130)

is a Palais-Smale sequence for 𝐽
𝛼

at level (2/𝑁)Σ𝑁/4
𝑘

−

𝐽
𝛼,𝑞
1

(V
1
) − 𝐽

𝛼,𝑞
2

(V
2
). Once again, if 𝑤

2𝑛
→ 0 strongly in

𝐿
2
∗

(R𝑁), then we obtain

𝑢
𝑛
= T

−1

1𝑛
(V
1
) + 𝑤

1𝑛
= T

−1

1𝑛
(V
1
) +T

−1

2𝑛
(V
2
) + 𝑜 (1)

in𝐷2,2 (R𝑁) ,
(131)

and the lemma is proved with 𝑚 = 2. Otherwise, 𝑤
2𝑛
⇀ 0

weakly in 𝐿2
∗

(R𝑁) but not strongly, and we iterate the above
argument. This procedure will end after a finite number of
steps. Actually, notice that, by Remark 9, for all 𝑗,

𝐽
𝛼,𝑞
𝑗

= 𝐽
𝛼,𝑞
𝑗

(

𝑞
𝑗



𝛼(4−𝑁)/8

𝑈)

=

𝑞
𝑗



𝛼(4−𝑁)/4 2

𝑁
𝑆
𝑁/4

≥
2

𝑁
𝑆
𝑁/4
,

(132)

by definition of 𝑈, so that, after at most 𝑚 := [(Σ
𝑘
/𝑆)

𝑁/4
]

steps, the remainder will be a Palais-Smale sequence at level
zero; namely, it will be 𝑜(1) in 𝐷

2,2
(R𝑁), obtaining the

requested representation for 𝑢
𝑛
and 𝐽

𝛼
(𝑢
𝑛
).

Remark 12. Checking the process of the proof of Lemma 11,
it is easy to see that if one does not suppress the cut-off
functions 𝜒

𝑗𝑛
, one can obtain the following representation of

𝑢
𝑛
:

𝑢
𝑛
=

𝑚

∑

𝑗=1

T
−1

𝑗𝑛
(𝜒
𝑗𝑛
V
𝑗
) + 𝑜 (1)

=

𝑚

∑

𝑗=1

𝜆
(𝑁−4)/2

𝑗𝑛
(𝜒
𝑗𝑛
V
𝑗
) (𝜆

𝑗𝑛
(⋅ − 𝑞

𝑗𝑛
)) + 𝑜 (1)

in𝐻2
0
(Ω) .

(133)

Lemma 13. Let {𝑢
𝑛
} ⊂ 𝐻

𝑘
be a minimizing sequence for

problem (9) and 𝑢
𝑛
⇀ 𝑢 weakly in 𝐻2

0
(Ω). If 𝑢 ̸≡ 0, then

𝑢 is a minimum point and 𝑢
𝑛
→ 𝑢 strongly in𝐻2

0
(Ω).

Proof. Notice first that 𝑢 ∈ 𝐻
𝑘
since 𝐻

𝑘
is weakly closed in

𝐻
2

0
(Ω). Weak convergence and the Brézis-Lieb Lemma yield

lim
𝑛→∞

(∫
Ω

Δ𝑢𝑛


2

𝑑𝑥 − ∫
Ω

Δ𝑢𝑛 − Δ𝑢


2

𝑑𝑥) = ∫
Ω

|Δ𝑢|
2
𝑑𝑥,

lim
𝑛→∞

(∫
Ω

|𝑥|
𝛼𝑢𝑛



2
∗

𝑑𝑥 − ∫
Ω

|𝑥|
𝛼𝑢𝑛 − 𝑢



2
∗

𝑑𝑥)

= ∫
Ω

|𝑥|
𝛼
|𝑢|
2
∗

𝑑𝑥.

(134)

Therefore,

𝑄
𝛼
(𝑢)

=

∫
Ω

Δ𝑢𝑛


2

𝑑𝑥 − ∫
Ω

Δ𝑢𝑛 − Δ𝑢


2

𝑑𝑥 + 𝑜 (1)

(∫
Ω
|𝑥|
𝛼𝑢𝑛



2
∗

𝑑𝑥 − ∫
Ω
|𝑥|
𝛼𝑢𝑛 − 𝑢



2
∗

𝑑𝑥 + 𝑜(1))

2/2
∗
.

(135)

But {𝑢
𝑛
} is a minimizing sequence so that

∫
Ω

Δ𝑢𝑛


2

𝑑𝑥 = Σ
𝑘
(∫
Ω

|𝑥|
𝛼𝑢𝑛



2
∗

𝑑𝑥)

2/2
∗

+ 𝑜 (1) . (136)

Since 𝑢
𝑛
− 𝑢 ∈ 𝐻

𝑘
, we have

∫
Ω

Δ (𝑢𝑛 − 𝑢)


2

𝑑𝑥 ≥ Σ
𝑘
(∫
Ω

|𝑥|
𝛼𝑢𝑛 − 𝑢



2
∗

𝑑𝑥)

2/2
∗

+ 𝑜 (1) .

(137)
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Inserting (136) and (137) into (135), we obtain

𝑄
𝛼
(𝑢)

≤ Σ
𝑘
(∫
Ω

Δ𝑢𝑛


2

𝑑𝑥 − ∫
Ω

Δ𝑢𝑛 − Δ𝑢


2

𝑑𝑥 + 𝑜 (1))

× ([(∫
Ω

Δ𝑢𝑛


2

𝑑𝑥)

2
∗

/2

−(∫
Ω

Δ (𝑢𝑛 − 𝑢)


2

𝑑𝑥)

2
∗

/2

+ 𝑜 (1)]

2/2
∗

)

−1

.

(138)

Since ∫
Ω
|Δ𝑢

𝑛
− Δ𝑢|

2
𝑑𝑥 < ∫

Ω
|Δ𝑢

𝑛
|
2
𝑑𝑥 for 𝑛 large enough,

it is easy to see that ∫
Ω
|Δ𝑢

𝑛
− Δ𝑢|

2
𝑑𝑥 → 0 as 𝑛 → ∞.

Otherwise, the right hand side of (138) will be strictly less
than Σ

𝑘
, which contradicts the definition of Σ

𝑘
.Thus, we have

𝑢
𝑛
→ 𝑢 strongly in𝐻2

0
(Ω).

The following proposition is the main result of this
section.

Proposition 14. If Σ
𝑘
< 𝑘

4/𝑁
𝑆, then Σ

𝑘
is achieved.

Proof. Let {𝑢
𝑛
} ⊂ 𝐻

𝑘
be a (bounded) minimizing sequence

for𝑄
𝛼
over𝐻

𝑘
.Then there exists a subsequence (still denoted

by 𝑢
𝑛
) such that 𝑢

𝑛
⇀ 𝑢 in 𝐻2

0
(Ω). If 𝑢 ̸≡ 0, by Lemma 13,

𝑢 is a minimum point in 𝐻
𝑘
, and the proof is completed. If,

on the contrary, 𝑢
𝑛
⇀ 0 in 𝐻2

0
(Ω), then, as we did above,

without loss of generality we can assume that {𝑢
𝑛
} is a Palais-

Smale sequence for 𝐽
𝛼
at level (2/𝑁)Σ𝑁/4

𝑘
. The behavior of

such sequence is described in Lemma 11. In particular,

𝐽
𝛼
(𝑢
𝑛
) =

𝑚

∑

𝑗=1

𝐽
𝛼,𝑞
𝑗

(V
𝑗
) + 𝑜 (1)

=

𝑚

∑

𝑗=1


𝑞
𝑗



𝛼(4−𝑁)/4 2

𝑁
𝑆
𝑁/4

+ 𝑜 (1)

≥
2𝑚

𝑁
𝑆
𝑁/4

+ 𝑜 (1) .

(139)

Since V
𝑗
is a multiple of the radial function 𝑈, the cut-off

function 𝜒
𝑗𝑛

is also radial, and O(𝑁 − 2) is a continuous
group,we obtain that, for every 𝑗 = 1, . . . , 𝑚, 𝜆

𝑗𝑛
dist(𝑞

𝑗𝑛
,R2×

{0}) → 0 as 𝑛 → 0. Otherwise, (133) would be incompatible
with the symmetry properties of 𝑢

𝑛
. Thus, we can replace 𝑞

𝑗𝑛

in (133) with its projection onR2 × {0} so that we can assume
that (133) holds in𝐻

𝑘
. This means that 𝑚must be a multiple

of 𝑘; say,𝑚 = 𝑙𝑘, for some integer 𝑙 ≥ 1. But, from (139),

2

𝑁
Σ
𝑁/4

𝑘
= 𝐽

𝛼
(𝑢
𝑛
) + 𝑜 (1)

≥ 𝑙𝑘
2

𝑁
𝑆
𝑁/4

+ 𝑜 (1) ≥
2𝑘

𝑁
𝑆
𝑁/4

+ 𝑜 (1) ;

(140)

namely, Σ
𝑘
≥ 𝑘

4/𝑁
𝑆, which is impossible.

3. Proof of Theorem 1

This last section is devoted to the proof of Theorem 1.

Lemma 15. For any 2 ≤ 𝑝 ≤ 2∗, there exists 𝐶 > 0 depending
on𝑁 and 𝑝 such that

inf
𝑢∈𝐻
2

0,𝑟𝑎𝑑
(Ω)\{0}

𝑄
𝛼,𝑝
(𝑢) ≥ 𝐶(

𝛼 + 𝑁

𝑁
)

1+2/𝑝

𝑎𝑠 𝛼 → +∞,

(141)

where𝐻2
0,𝑟𝑎𝑑

(Ω) denotes the space of radial functions in𝐻2
0
(Ω)

and

𝑄
𝛼,𝑝
(𝑢) =

∫
Ω
|Δ𝑢|

2
𝑑𝑥

(∫
Ω
|𝑥|
𝛼
|𝑢|
𝑝
𝑑𝑥)

2/𝑝
. (142)

Proof. Let 𝑢 ∈ 𝐻2
0,rad(Ω) and define V(|𝑥|) = 𝑢(|𝑥|𝛽), where

𝛽 = 𝑁/(𝛼 + 𝑁). Then

∫
Ω

|𝑥|
𝛼
|𝑢|
𝑝
𝑑𝑥 = 𝛽∫

Ω

|V (𝑥)|𝑝𝑑𝑥. (143)

It is easy to see that

ΔV = 𝛽 [𝛽𝑢 (𝜌𝛽) 𝜌2(𝛽−1) + (𝑁 + 𝛽 − 2) 𝑢 (𝜌𝛽) 𝜌𝛽−2] .
(144)

We obtain

𝛽
−1
∫
Ω

|ΔV|2|𝑥|(𝛽−1)(𝑁−4)𝑑𝑥

= 𝑁𝜔
𝑁
∫

1

0

[𝛽𝑢

(𝜌) + (𝑁 + 𝛽 − 2)

𝑢

(𝜌)

𝜌
]

2

𝜌
𝑁−1
𝑑𝜌.

(145)

Set

𝐹 (𝛽) = 𝑁𝜔
𝑁
∫

1

0

[𝛽𝑢

(𝜌) + (𝑁 + 𝛽 − 2)

𝑢

(𝜌)

𝜌
]

2

𝜌
𝑁−1
𝑑𝜌.

(146)

Direct computations yield 𝐹(𝛽) > 0, which shows 𝐹(𝛽) is
convex. Hence

𝐹 (𝛽) ≤ max {𝐹 (0) , 𝐹 (1)} ; (147)

that is

𝐹 (𝛽) ≤ max{∫
Ω

|∇𝑢|
2

|𝑥|
2
𝑑𝑥, ∫

Ω

|Δ𝑢|
2
𝑑𝑥} . (148)

By Hardy’s inequality, we have

∫
Ω



∇
𝜕𝑢

𝜕𝑥
𝑗



2

𝑑𝑥 ≥
(𝑁 − 2)

2

4
∫
Ω


𝜕𝑢/𝜕𝑥

𝑗



2

|𝑥|
2

𝑑𝑥,

𝑗 = 1, 2, . . . , 𝑁;

(149)
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consequently,
𝑁

∑

𝑗=1

∫
Ω



∇
𝜕𝑢

𝜕𝑥
𝑗



2

𝑑𝑥 ≥
(𝑁 − 2)

2

4
∫
Ω

|∇𝑢|
2

|𝑥|
2
𝑑𝑥. (150)

Therefore, by (148) and (150), there exists 𝐶 > 0 depending
only on𝑁 such that

∫
Ω

|Δ𝑢|
2
𝑑𝑥 ≥ 𝐶𝛽

−1
∫
Ω

|ΔV|2|𝑥|(𝛽−1)(𝑁−4)𝑑𝑥. (151)

By (143), we have

∫
Ω
|Δ𝑢|

2
𝑑𝑥

(∫
Ω
|𝑥|
𝛼
|𝑢|
𝑝
𝑑𝑥)

2/𝑝

≥ 𝐶𝛽
−1
∫
Ω
|ΔV|2|𝑥|(𝛽−1)(𝑁−4)𝑑𝑥

𝛽2/𝑝(∫
Ω
|V (𝑥)|𝑝𝑑𝑥)

2/𝑝

=
𝐶

𝛽1+2/𝑝

∫
Ω
|ΔV|2|𝑥|(𝛽−1)(𝑁−4)𝑑𝑥

(∫
Ω
|V (𝑥)|𝑝𝑑𝑥)

2/𝑝
.

(152)

For every 𝛽 ∈ [0, 1],

𝑐
𝛽
= inf

V∈𝐻2
0,rad(Ω)\{0}

∫
Ω
|ΔV|2|𝑥|(𝛽−1)(𝑁−4)𝑑𝑥

(∫
Ω
|V (𝑥)|𝑝𝑑𝑥)

2/𝑝
(153)

is achieved by standard arguments. Since 𝑐
𝛽
is nondecreasing

on [0, 1], by (152), we obtain (141).

We are now ready for the main result of the paper.

Proof of Theorem 1. For every 𝛼 > 0, problem (1) has a
solution in some𝐻

𝑘
. Indeed, given 𝛼 > 0, there exists 𝑘

𝛼
> 0

such that, for 𝑘 ≥ 𝐾
𝛼
,

Σ
𝑘
< 𝑘

4/𝑁
𝑆. (154)

By Proposition 14, Σ
𝑘
is achieved by a function 𝑢 ∈ 𝐻

𝑘
. By

invariance, 𝑢 is a critical point of 𝑄
𝛼
on 𝐻2

0
(Ω) which, after

scaling, gives rise to a weak solution of (1). By [13], 𝑢 is a
classical solution. We have to show that, at least for 𝛼 large,
𝑢 is not radial.

By Lemma 15,

inf
𝑢∈𝐻
2

0,rad(Ω)\{0}
𝑄
𝛼
(𝑢) ≥ 𝐶𝛼

(2𝑁−4)/𝑁
, (155)

where the constant 𝐶 depends only on 𝑁. We now show
that the level Σ

𝑘
of the solution we find is strictly below this

threshold for 𝛼 large. To this aim, we must evaluate how large
𝑘
𝛼
of Proposition 7 has to be in terms of 𝛼. If we choose 𝑘 of

the order of 𝛼4(𝑁−2)/3(𝑁−5)+1/(𝑁−5), we see that (102) essentially
becomes

𝑅 ≤
3𝑆
𝑁/4

𝛼3/4(𝑁−2)
− (1 −

6

𝛼3/4(𝑁−2)
)

⋅
𝐶
𝑁
𝑎
0
𝐶
2

2
𝛼
−(4(𝑁−2)/3(𝑁−5)+1/(𝑁−5))𝜀(𝑁−4)

+ 𝑂 (𝛼
−(4(𝑁−2)/3(𝑁−5)+1/(𝑁−5))𝜀(𝑁−2)

) .

(156)

Therefore, 𝑅 will be negative for all 𝛼 big enough when
𝜀 is sufficiently small, so we find a solution to (1) in the
corresponding𝐻

𝑘
. Therefore, we find a solution at level

Σ
𝑘
< 𝑘

4/𝑁
𝑆 ≤ 𝐶𝛼

4(4𝑁−3)/3𝑁(𝑁−5)

≤ 𝐶𝛼
(2𝑁−4)/𝑁

≤ inf
𝑢∈𝐻
2

0,rad(Ω)\{0}
𝑄
𝛼
(𝑢)

(157)

for all𝛼 large enough since 4(4𝑁−3)/3𝑁(𝑁−5) ≤ (2𝑁−4)/𝑁
for all𝑁 ≥ 8. Therefore, our solution cannot be radial.
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[3] F. Bernis, J. Garćıa Azorero, and I. Peral, “Existence and mul-
tiplicity of nontrivial solutions in semilinear critical problems
of fourth order,” Advances in Differential Equations, vol. 1, no. 2,
pp. 219–240, 1996.

[4] T. Bartsch, T. Weth, and M. Willem, “A Sobolev inequality
with remainder term and critical equations on domains with
topology for the polyharmonic operator,” Calculus of Variations
and Partial Differential Equations, vol. 18, no. 3, pp. 253–268,
2003.

[5] A. Bahri and J. Coron, “On a nonlinear elliptic equation
involving the critical Sobolev exponent: the effect of the
topology of the domain,” Communications on Pure and Applied
Mathematics, vol. 41, no. 3, pp. 253–294, 1988.

[6] E. Berchio, F. Gazzola, and T. Weth, “Radial symmetry of pos-
itive solutions to nonlinear polyharmonic Dirichlet problems,”
Journal für die Reine und Angewandte Mathematik, vol. 620, pp.
165–183, 2008.

[7] W. M. Ni, “A nonlinear Dirichlet problem on the unit ball and
its applications,” IndianaUniversityMathematics Journal, vol. 31,
no. 6, pp. 801–807, 1982.

[8] J. Byeon and Z. Wang, “On the Hénon equation: asymptotic
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