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We establish the existence of traveling wave solutions and small amplitude traveling wave train solutions for a reaction-diffusion
system based on a predator-prey model incorporating a prey refuge. By using the shooting argument, invariant manifold theory,
and theHopf bifurcation theorem, we analyze the dynamic behavior of this model in the three-dimensional phase space. Numerical
results are also presented to illustrate the theoretical results.

1. Introduction

In mathematical biology, one interesting and dominant
theme is the dynamic relationship between predators and
their prey [1–3]. Predator-prey models have been studied
mathematically since the pioneering work of Lotka and
Volterra. In recent years, Leslie-Gower model [4, 5], an
important predator-prey model, has been extensively mod-
ified and studied by many authors [6–11]. A modified Leslie-
Gower predator-prey model is read as

d𝐻
d𝑡

= 𝐻 (𝑟 − 𝑎𝐻) −
𝛽
1
𝐻𝑃

𝑏 + 𝐻
,

d𝑃
d𝑡

= 𝑃(𝑑 −
𝛽
2
𝑃

𝑏 + 𝐻
) ,

(1)

where function values 𝐻 and 𝑃 represent prey and predator
population densities, respectively, at any time 𝑡. The model
parameters 𝑟, 𝑎, 𝑏, 𝛽

1
, 𝛽
2
, and 𝑑 are positive constants. 𝑟

describes the growth rate of prey𝐻. 𝑎measures the strength
of competition among individuals of species 𝐻. 𝑏 measures
the extent to which environment provides protection to prey
𝐻. 𝑑 is the growth rate of predators 𝑃. 𝛽

1
is the maximum

value of per capita reduction of 𝐻 due to 𝑃. 𝛽
2
has a similar

meaning to 𝛽
1
.

As the authors of [6] said, we live in a spatial world,
and spatial component of ecological interaction has been
identified as an important factor in how ecological com-
munities are shaped. Mite predator-prey interactions often
exhibit spatial refugia, which means the prey received some
degree of protection from predation and reduces the chance
of extinction due to predation [6, 9–15]. A great deal of
researches on the effects of prey refuges on the population
dynamic has been studied. Kar [12] indicated that the increas-
ing refuge can increase prey densities and lead to population
outbreaks. Chen et al. [9] showed that the prey refuge could
greatly influence the densities of both prey and predator
species, while it has no influence on the species’ persistence
property. In [13–15] it was obtained that the refuges protecting
a constant number of prey have a stronger stabilizing effect on
population dynamic than the refuges protecting a constant
proportion of prey.

On the other hand, the existence of traveling solutions has
been wildly studied by many researchers [16–24]. A traveling
wave solution is a spatial translation invariant solution of
differential equations with spatial-diffusion. Dunbar [16]
proved the existence of traveling wave solutions of diffusive
Lotka-Volterra and used the methods of a shooting argument
and a Lyapunov function. Zhang [19] showed the existence of
traveling wave solutions in a modified vector-disease model
by using the geometric singular perturbation theory. Hou
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and Leung [20] used the method of upper-lower solutions
to prove the existence of traveling solutions of a competitive
reaction-diffusive system. Ahmad et al. [21, 22] used only
functional analysis, without constructing a Lyapunov func-
tion, to prove the existence of such solutions for a class of
reaction-diffusion equations. Huang et al. [23] and Li and
Wu [24] used Dunbar’ method to study the existence of
traveling solutions of diffusive predator-prey models with
Holling type-II and Holling type-III, respectively.

In this paper, based on the above discussion, we are
interested in the existence of traveling wave solutions of a
reaction-diffusion Leslie-Gower-type model incorporating a
prey refuge, which is modified from model (1). Taking 𝑃󸀠 =
𝛽
1
𝑃, 𝛽 = 𝛽

2
/𝛽
1
and dropping the stars on 𝑃, we will extend

model (1) by incorporating a prey refuge into the following
system:

𝜕𝐻

𝜕𝑡
= 𝐷
1
Δ𝐻 +𝐻 (𝑟 − 𝑎𝐻) −

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
,

𝜕𝑃

𝜕𝑡
= 𝐷
2
Δ𝑃 + 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) ,

(2)

where Δ = ∇
2
= (𝜕
2
/𝜕𝑥
2
+ 𝜕
2
/𝜕𝑦
2
) is the usual Laplacian

operator in two-dimensional space. 𝐷
1
and 𝐷

2
are the

diffusion coefficients of prey and predator, respectively. 𝑚 ∈

[0, 1) is constant.𝑚𝐻 is a refuge protecting of the prey, which
means (1 − 𝑚)𝐻 of prey available to the predator. To ensure
system (2) has a positive equilibrium point, we require that
𝑟 > 𝑑(1 − 𝑚). Obviously, system (2) has four equilibrium
points:

𝐸
0
(0, 0) , 𝐸

1
(
𝑟

𝑎
, 0) , 𝐸

2
(0,

𝑎𝑏

𝛽
) , 𝐸 (𝐻

∗
, 𝑃
∗
) , (3)

where

𝐻
∗
=
𝑑𝑚 − 𝑑 + 𝛽𝑟

𝑎𝛽
,

𝑃
∗
=
𝑎𝑏𝑑𝛽 + (𝑑𝑚 − 𝑑 + 𝛽𝑟) (1 − 𝑚) 𝑑

𝑎𝛽2

=
𝑑 (𝑏 + (1 − 𝑚)𝐻

∗
)

𝛽
.

(4)

The equilibrium point 𝐸
0
corresponds to absence of both

species, 𝐸
1
corresponds to the prey at the environment

carrying capacity in the absence of the predator,𝐸
2
means the

extinct of prey, and 𝐸 corresponds to coexistence of the two
species. From [6], we know 𝐸

0
and 𝐸

1
are two saddle points

and 𝐸 is globally asymptotical stable when 𝑑𝐻
∗
(1 − 𝑚)

3
<

𝑎𝑑𝛽(𝑏+(1−𝑚)𝐻
∗
), which indicates that system (2)may have

traveling waves.
For mathematical simplicity, we assume that 𝐷

1
= 0

(considered as the 𝐷
1
is sufficient small which indicates the

prey disperse very slowly relative to the mobile herbivore

predator [16]). Then system (2) can be converted to the
system:

𝜕𝐻

𝜕𝑡
= 𝐻 (𝑟 − 𝑎𝐻) −

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
,

𝜕𝑃

𝜕𝑡
= 𝐷Δ𝑃 + 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) .

(5)

Wewill establish the existence of traveling wave solutions and
small amplitude traveling wave train solutions of this system.
The method used here is a shooting argument inR3 together
with a Lyapunov function, LaSalle’s invariant principle, and
Hopf bifurcation theorem.

Remark that although the methods we use to prove the
existence are similar to these in [16, 23, 24], there are several
differences. For one thing, it is a different model, a modified
Leslie-Gower model incorporating a prey refuge. For the
other thing, we construct a different Wazewski set 𝑊 and a
new Lyapunov function [25–27].

The rest of the paper is organized as follows. In Section 2,
main results on the existence of traveling wave solutions and
small amplitude wave train solutions are stated. In Section 3,
we give the proofs of the main results. In Section 4, some
numerical results are presented.

2. Main Results

A traveling wave solution is a spatial translation invariant
solution. In order to establish the existence of traveling wave
solutions of system (5), we assume the systemhas a solution of
the special form𝐻(𝑥, 𝑡) = 𝐻(𝑥+𝑐𝑡),𝑃(𝑥, 𝑡) = 𝑃(𝑥+𝑐𝑡), where
parameter 𝑐(> 0) is the wave speed. Substituting 𝐻(𝑥, 𝑡) =

𝐻(𝑠), 𝑃(𝑥, 𝑡) = 𝑃(𝑠), 𝑠 = 𝑥 + 𝑐𝑡 into (5), the corresponding
wave equations become

𝑐𝐻
󸀠
= 𝐻 (𝑟 − 𝑎𝐻) −

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
,

𝑐𝑃
󸀠
= 𝐷𝑃
󸀠󸀠
+ 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) .

(6)

Here (󸀠) denotes the differentiation with respect to the travel-
ing wave variable 𝑠. Due to ecological motivation, we require
that the travelingwave solutions𝐻 and𝑃 are nonnegative and
satisfying the following boundary conditions:

𝐻(−∞) =
𝑟

𝑎
, 𝐻 (+∞) = 𝐻

∗
,

𝑃 (−∞) = 0, 𝑃 (+∞) = 𝑃
∗
.

(7)

Rewrite the system (6) as a system of first order equation in
R3:

𝐻
󸀠
=
1

𝑐
𝐻 (𝑟 − 𝑎𝐻) −

1

𝑐

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
,

𝑃
󸀠
= 𝑈,

𝑈
󸀠
=

𝑐

𝐷
𝑈 −

1

𝐷
𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) .

(8)
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Lemma 1. Let 𝑓(𝐻) = (𝑟 − 𝑎𝐻)(𝑏 + (1 − 𝑚)𝐻) − (1 − 𝑚)𝑃
∗,

and then 𝑓(𝐻∗) = 0 and 𝑓(𝐻) = 0 has two real roots when
𝑟 > ((𝑑(1 − 𝑚))/𝛽) (i.e., 𝑏𝑟 − (1 − 𝑚)𝑃

∗
> 0). Furthermore,

the following results hold:

(a) if 0 < 𝐻 < 𝐻
∗, then 𝑓(𝐻) > 0;

(b) if𝐻 > 𝐻
∗, then 𝑓(𝐻) < 0.

Now we state the main results as follows.

Theorem 2. (i) If 0 < 𝑐 < √4𝐷𝑑, then there are no
nonnegative solutions of system (8) satisfying the boundary
conditions (7).

(ii) If 𝑐 > √4𝐷𝑑, 𝑟 > ((𝑑(1 − 𝑚))/𝛽), then there are
nonnegative solutions of system (8) satisfying the boundary
conditions (7), which correspond to traveling wave solutions of
system (5).

Theorem 3. Let 𝑃(𝜆) = 𝜆
3
−(𝑀/𝑐+𝑐/𝐷)𝜆

2
+((𝑀−𝑑)/𝐷)𝜆−

(𝑎𝑑𝐻
∗
/𝑐𝐷) = 0, where𝑀 = −𝑎𝐻

∗
+ ((1 − 𝑚)

2
𝐻
∗
𝑑
2
/𝛽
2
𝑃
∗
).

(a) If 𝑃(𝜆)maximum < 0, then 𝐻, 𝑃 spreads to the posi-
tive equilibrium point (𝐻∗, 𝑃∗) nonmonotonously for
traveling wave variable 𝑠.

(b) If 𝑃(𝜆)maximum ≥ 0, then 𝐻, 𝑃 spreads to the positive
equilibrium point (𝐻∗, 𝑃∗)monotonously for traveling
wave variable 𝑠.

Theorem 4. Let 𝑝 = 𝑀 − 𝑑 and 𝑞 = 𝑎𝑑𝐻
∗. If

max{(1 − 𝑚) , 𝑑 (1 − 𝑚)
𝑟

} < 𝛽 <
𝑎𝑏𝑑(1 − 𝑚)

2

(𝑟 (1 − 𝑚) + (3/2) 𝑎𝑏)
2
,

(9)

then, as the parameter 𝛽 crosses the bifurcation curve 𝑐2 =

𝐷[𝑞/𝑝 − 𝑝 − 𝑑] at 𝛽
0
in the (𝛽, 𝑐)-parameter plane, sys-

tem (8) undergoes a Hopf bifurcation to a small amplitude
periodic solution at the equilibrium point (𝐻∗, 𝑃∗, 0), which
corresponds to a small amplitude traveling wave train solution
of system (5).

3. Proofs of the Main Results

3.1. Proof of Theorem 2. In this section, we subdivide the
proof into several Sections 3.1.1–3.1.4 for convenience. In
Section 3.1.1, we recall some notations used throughout
this section and state the well-known Wazewski Theorem.
Section 3.1.2 contains a Wazewski set 𝑊 and the exit set
𝑊
−. In Section 3.1.3, the behavior of trajectories on the

strongly unstable manifold at ((𝑟/𝑎), 0, 0) is presented by
some technical lemmas. In Section 3.1.4, we finish the proof
of existence of traveling wave solutions by constructing a
Lyapunov function.

3.1.1. Recall the Wazewski Theorem [16, 17]. Consider the
differential equation:

d𝑦
d𝑠

= 𝑓 (𝑦) , 𝑦 ∈ R
N
, (10)

where 𝑓 : RN
→ RN is a continuous function and satisfying

a Lipschitz condition. Let 𝑦(0, 𝑦
0
) be the unique solution of

(10) satisfying 𝑦(0, 𝑦
0
) = 𝑦
0
. For convenience, set 𝑦(𝑠, 𝑦

0
) =

𝑦
0
⋅ 𝑠. Let 𝑈 ⋅ 𝑆 be the set of points 𝑦

0
⋅ 𝑠, where 𝑦

0
∈ 𝑈 and

𝑠 ∈ 𝑆.
Given𝑊 ⊆ RN, define

𝑊
−
= {𝑦
0
∈ 𝑊 : ∀𝑠 > 0, 𝑦

0
⋅ [0, 𝑠) ̸⊆ 𝑊} . (11)

𝑊
− is called the immediate exit set of𝑊. Given Σ ⊆ 𝑊, let

Σ
0
= {𝑦
0
∈ Σ : ∃𝑠

0
= 𝑠
0
(𝑦
0
) such that 𝑦

0
⋅ 𝑠
0
∉ 𝑊} . (12)

For 𝑦
0
∈ Σ
0, define

𝑇 (𝑦
0
) = sup {𝑠 : 𝑦

0
⋅ [0, 𝑠) ⊆ 𝑊} . (13)

𝑇(𝑦
0
) is called an exit time. Note that 𝑦

0
⋅ 𝑇(𝑦
0
) ∈ 𝑊

− and
𝑇(𝑦
0
) = 0 if and only if 𝑦

0
∈ 𝑊
−. The notation cl(𝑊) denotes

the closure of𝑊.

Lemma 5. Suppose that

(i) if 𝑦
0
∈ Σ and 𝑦

0
⋅ [0, 𝑠] ⊆ cl(𝑊), then 𝑦

0
⋅ [0, 𝑠] ⊆ 𝑊;

(ii) if 𝑦
0
∈ Σ, 𝑦

0
⋅ 𝑠 ∈ 𝑊 and 𝑦

0
⋅ 𝑠 ∉ 𝑊

−, then there is an
open set 𝑉

𝑠
about 𝑦

0
⋅ 𝑠 disjoint from𝑊

−;
(iii) Σ = Σ

0, Σ is a compact set and intersects a trajectory of
(10) only once. Then the mapping 𝐹(𝑦

0
) = 𝑦
0
⋅ 𝑇(𝑦
0
) is

a homeomorphism from Σ to its image on𝑊−.

A set 𝑊 ⊆ RN satisfying the conditions (i) and (ii) is
called a Wazewski set.

3.1.2. Construct𝑊 and𝑊−. Evaluating the Jacobin of system
(8) at the equilibrium 𝐸

1
((𝑟/𝑎), 0, 0) gives

𝐽 (𝐸
1
) = (

−
𝑟

𝑐
−

(1 − 𝑚) 𝑟

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)
0

0 0 1

0 −
𝑑

𝐷

𝑐

𝐷

). (14)

The corresponding eigenvalues of (14) are

𝜆
1
= −

𝑟

𝑐
,

𝜆
2
=
𝑐/𝐷 − √𝑐2/𝐷2 − 4𝑑/𝐷

2
,

𝜆
3
=
𝑐/𝐷 + √𝑐2/𝐷2 − 4𝑑/𝐷

2
.

(15)

If 0 < 𝑐 < √4𝐷𝑑, then 𝜆
2
and 𝜆

3
are a pair of complex

conjugate eigenvalues with positive real part. By Theorems
6.1 and 6.2 in [25], there exists a 2-dimensional unstable
manifold based at ((𝑟/𝑎), 0, 0), the point is a spiral point
on this unstable manifold, and the trajectory approaching
((𝑟/𝑎), 0, 0) as 𝑠 → −∞must have 𝑃(𝑠) < 0 for some 𝑠. This
violates the requirement that the travelingwave solutionmust
be nonnegative. So the first part of Theorem 2 is proved.
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We only need to account for the case 𝑐 > √4𝐷𝑑 in
the following. It is obvious that 𝜆

1
< 0 < 𝜆

2
< 𝜆
3
, the

eigenvectors x
1
, x
2
, x
3
associated with 𝜆

1
, 𝜆
2
, 𝜆
3
, respectively,

are

x
𝑖
= (−1, 𝑝 (𝜆

𝑖
) , 𝜆
𝑖
𝑝 (𝜆
𝑖
)) , 𝑖 = 1, 2, 3, (16)

where 𝑝(𝜆
𝑖
) = ((𝑐(𝑎𝑏 + (1 − 𝑚)𝑟))/((1 − 𝑚)𝑟)) ⋅ (𝜆

𝑖
+

𝑟/𝑐). Applying Theorems 6.1 and 6.2 in [25], we get a one-
dimension strongest unstable manifold u

1
tangent to x

3
at

((𝑟/𝑎), 0, 0) and a two-dimension strongly unstable manifold
u
2
tangent to the span of x

2
, x
3
at point ((𝑟/𝑎), 0, 0). In a small

neighborhood of ((𝑟/𝑎), 0, 0), points on u
1
are parametrically

represented by a function 𝑓
1
(𝑚) (R1 → R2):

𝑓
1
(𝑚) = (

𝑟

𝑎
, 0, 0)

𝑇

+ 𝑚x
3
+ 𝑜 (|𝑚|) , (17)

and points on u
2
also could be represented by a function

𝑓
2
(𝑚) (R2 → R3):

𝑓
2
(𝑚) = (

𝑟

𝑎
, 0, 0)

𝑇

+ 𝑚x
3
+ 𝑛x
2
+ 𝑜 (|𝑚| + |𝑛|) . (18)

Obviously, u
1
⊆ u
2
.

The motivation and method of constructing the
Wazewski set𝑊 are similar to that in Dunbar [17]: it will be
the complement of two blocks of R3 and the two blocks are
chosen so that 𝑈󸀠 has the same sign as 𝑈. Thus, solutions
would not have 𝑈 → 0 as 𝑠 → ∞ when entering these
blocks. In this paper, the Wazewski set 𝑊 is defined as
follows:

𝑊 = R
3
\ (𝑇 ∪ 𝑄) , (19)

where
𝑇 = {(𝐻, 𝑃, 𝑈) : 𝑈 > 0, 𝐻 < 𝐻

∗
, 𝑃 > 𝑃

∗
} ,

𝑄 = {(𝐻, 𝑃, 𝑈) : 𝑈 < 0, 𝐻 > 𝐻
∗
, 𝑃 < 𝑃

∗
} .

(20)

Note that 𝑇 ∩ 𝑄 = ⌀ and𝑊 is a closed set. We obtain

𝜕𝑊 = 𝜕𝑇 ∪ 𝜕𝑄,

𝑊
−
= 𝜕𝑊 \ (𝐽 ∪ {(𝐻

∗
, 𝑃
∗
, 𝑈
∗
)}) ,

(21)

where

𝐽 = {(𝐻, 𝑃, 𝑈) : 𝐻 ≥ 𝐻
∗
, 𝑃 ≤ 0, 𝑈 = 0} . (22)

Obviously, 𝑊− is not a connected set. Actually, one compo-
nent of𝑊− is 𝜕𝑃 \ {(𝐻

∗
, 𝑃
∗
, 𝑈
∗
)} and the other is 𝜕𝑄 \ (𝐽 ∪

{(𝐻
∗
, 𝑃
∗
, 𝑈
∗
)}).

As the details of proving that 𝑊− is the set described
above are tedious, we just prove the portion 𝜕𝑄 of 𝜕𝑊 to show
why the set 𝐽must be excluded from 𝜕𝑊 to𝑊−.

(1) 𝐻 = 𝐻
∗, 𝑃 < 𝑃

∗, 𝑈 < 0. Then we have

𝐻
󸀠
=
𝐻

𝑐
(𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝐻=𝐻
∗
, 𝑃<𝑃
∗

>
𝐻
∗

𝑐
(𝑟 − 𝑎𝐻

∗
−

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
∗
) = 0.

(23)

Then the trajectory enters 𝑄.

(2) 𝐻 > 𝐻
∗, 𝑃 = 𝑃

∗, 𝑈 < 0. Then

𝑃
󸀠
= 𝑈 < 0. (24)

Thus, 𝑃 is decreasingly entering 𝑄.

(3) 𝐻 > 𝐻
∗, 𝑃 < 𝑃

∗, 𝑈 = 0. Then

𝑈
󸀠
=
𝑃

𝐷
(

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
− 𝑑) . (25)

(i) 0 < 𝑃 < 𝑃
∗, and thus 𝛽𝑃/(𝑏 + (1 − 𝑚)𝐻) − 𝑑 <

𝛽𝑃
∗
/(𝑏 + (1 −𝑚)𝐻

∗
) − 𝑑 = 0 and the trajectory

enters the 𝑄.
(ii) 𝑃 < 0, then 𝑈󸀠 > 0. This implies 𝐻 > 𝐻

∗, 𝑃 <

𝑃
∗, 𝑈 > 0. The trajectory does not enter 𝑇 and

𝑄.
(iii) 𝑃 = 0, and then 𝑈

󸀠
= 𝑃
󸀠
= 0, 𝑈󸀠󸀠 = 𝑃

󸀠󸀠
= 0;

furthermore, 𝑈(𝑛) = 𝑃
(𝑛)

= 0. This implies the
trajectory does not enter the inner of 𝑄.

(4) 𝐻 = 𝐻
∗, 𝑃 = 𝑃

∗, 𝑈 = 0. This is a singular point not
in the immediate exit set.

(5) 𝐻 = 𝐻
∗, 𝑃 = 𝑃

∗, 𝑈 < 0. Then 𝑃󸀠 = 𝑈 < 0, 𝐻󸀠 = 0

and

𝐻
󸀠󸀠
=
𝐻
∗

𝑐
(−

(1 − 𝑚)𝑈

𝑏 + (1 − 𝑚)𝐻
∗
) < 0, (26)

which implies 𝑃 and𝐻 both decrease. The trajectory
enters 𝑄.

(6) 𝐻 > 𝐻
∗, 𝑃 = 𝑃

∗, 𝑈 = 0. Then

𝑈
󸀠
=

1

𝐷
(𝑐𝑈 − 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
))

𝐻>𝐻
∗
, 𝑃=𝑃
∗
, 𝑈=0

< 0,

𝑃
󸀠
= 𝑈 = 0, 𝑃

󸀠󸀠
= 𝑈
󸀠
< 0.

(27)

Hence, the trajectory enters 𝑄.

(7) 𝐻 = 𝐻
∗, 𝑃 < 𝑃

∗, 𝑈 = 0. Then

𝐻
󸀠
=
𝐻

𝑐
(𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝐻=𝐻
∗
, 𝑃<𝑃
∗

=
𝐻
∗

𝑐
(𝑟 − 𝑎𝐻

∗
−

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
∗
)

>
𝐻
∗

𝑐
(𝑟 − 𝑎𝐻

∗
−

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
∗
) = 0.

(28)

(i) 𝑃 < 0, and then 𝑈󸀠 > 0. This implies 𝐻 > 𝐻
∗,

𝑃 < 𝑃
∗, 𝑈 > 0. The trajectory does not enter 𝑃

and 𝑄.
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(ii) 𝑃 = 0, and then 𝑈(𝑛) = 𝑃
(𝑛)

= 0, (𝑛 = 1, 2, . . .).
This implies the trajectory does not enter the
inner of 𝑄.

(iii) 0 < 𝑃 < 𝑃
∗, and then

𝑈
󸀠
=

1

𝐷
(𝑐𝑈 − 𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
))

𝐻=𝐻
∗
, 𝑈=0

=
1

𝐷
(−𝑃(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
∗
))

<
1

𝐷
(−𝑃
∗
(𝑑 −

𝛽𝑃
∗

𝑏 + (1 − 𝑚)𝐻
∗
)) = 0.

(29)

Hence, it implies𝐻 > 𝐻
∗, 𝑃 < 𝑃

∗, 𝑈 < 0, which ensures the
trajectory enters the 𝑄.

Based on the above analysis, 𝐽 = {(𝐻, 𝑃, 𝑈) : 𝐻 ≥

𝐻
∗
, 𝑃 ≤ 0, 𝑈 = 0} and (𝐻

∗
, 𝑃
∗
, 0) must be excluded from

𝜕𝑊 to𝑊−.

3.1.3. Construct the Set Σ. We need to construct the set Σ
before using Lemma 5. By a series of lemmas (Lemmas
5–9), we obtain set Σ will be an arc of a sufficient small
circle surrounding ((𝑟/𝑎), 0, 0) on the unstable manifold u

2
.

Furthermore, one endpoint of the arc is the intersection of
the circle with the strongly unstable manifold u

1
, and the

other endpoint is the intersection of the circle with the plane
defined by 𝑈 = 0. Lemmas also show that the first endpoint
is carried by the strongly unstable manifold into 𝑇 while the
other is carried into 𝑃.

We take a notation Ω
1
= {(𝐻, 𝑃, 𝑈) : 𝐻 ≤ (𝑟/𝑎), 𝑃 ≥

0, 𝑈 ≥ 0}.

Lemma 6. Let 𝑐 > √4𝐷𝑑. Any solutions of (8) having a point
𝑠
0
such that 0 < 𝐻(𝑠

0
), 𝑃(𝑠
0
) > 0, and 𝑈(𝑠

0
) > (𝑐/2𝐷)𝑃(𝑠

0
)

will have 𝑃(𝑠) > 0 and 𝑈(𝑠) > (𝑐/2𝐷)𝑃(𝑠) for all 𝑠 > 𝑠
0
.

This is particularly true for trajectories on the branch of strongly
unstable manifold u

1
in the octant Ω

1
.

Proof. Take 𝑠
0
= 0 without loss of generality. Suppose, on

the contrary, that there exists an 𝑠 > 0 such that 𝑈(𝑠) <

(𝑐/2𝐷)𝑃(𝑠). Let

𝑠
1
= inf {𝑠 > 0 : 𝑈 (𝑠) ≤

𝑐

2𝐷
𝑃 (𝑠)} . (30)

For 0 ≤ 𝑠 ≤ 𝑠
1
, 𝑃󸀠(𝑠) = 𝑈(𝑠) ≥ (𝑐/2𝐷)𝑃(𝑠) and 𝑃(0) > 0, so

𝑃(𝑠
1
) > 0. Also 𝑈(𝑠

1
) = (𝑐/2𝐷)𝑃(𝑠

1
) and 𝑈(𝑠) > (𝑐/2𝐷)𝑃(𝑠)

for 0 ≤ 𝑠 < 𝑠
1
. Thus (𝑐/2𝐷)𝑃󸀠(𝑠

1
) ≥ 𝑈

󸀠
(𝑠
1
) (i.e., 𝑈󸀠(𝑠

1
) −

(𝑐/2𝐷)𝑃
󸀠
(𝑠
1
) ≤ 0). Then, from (8), we have

(
𝑐

𝐷
𝑈 −

𝑃

𝐷
(𝑑 −

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
) −

𝑐

2𝐷
𝑈)

𝑠
1

≤ 0. (31)

Then
𝑐

2𝐷
𝑈 (𝑠
1
) −

𝑑

𝐷
𝑃 (𝑠
1
)

≤
𝑐

2𝐷
𝑈 (𝑠
1
) −

1

𝐷
𝑃 (𝑠
1
) (𝑑 −

𝛽𝑃 (𝑠
1
)

𝑏 + (1 − 𝑚)𝐻 (𝑠
1
)
) ≤ 0.

(32)

Since 𝑈(𝑠
1
) = (𝑐/2𝐷)𝑃(𝑠

1
), we have 𝑐2 ≤ 4𝐷𝑑.

It must be the case that 0 < 𝐻(𝑠
1
) < (𝑟/𝑎). The plane

defined by 𝑈 = 0 is an invariant manifold, so 𝐻(𝑠
1
) > 0 is

obvious. We just verify that𝐻(𝑠
1
) < (𝑟/𝑎). If this is not true,

then there exists 0 < 𝑠
2
≤ 𝑠
1
such that 𝐻(𝑠

2
) = (𝑟/𝑎) and

𝐻
󸀠
(𝑠
2
) ≥ 0. But then

0 ≤ 𝐻
󸀠
(𝑠
2
) = (

1

𝑐
𝐻(𝑟 − 𝑎𝐻) −

1

𝑐

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝑠=𝑠
2

= −
1

𝑐

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
|
𝑠=𝑠
2

< 0,

(33)

so 0 < 𝐻(𝑠
1
) < (𝑟/𝑎) for 0 ≤ 𝑠 ≤ 𝑠

1
. So 𝑐2 ≤ 4𝐷𝑑, which is

a contradiction. Thus 𝑈(𝑠) > (𝑐/2𝐷)𝑃(𝑠) for all 𝑠 > 0. Then
also 𝑃(𝑠) > 0 for all 𝑠 > 0.

A trajectory on the branch of the strongly unstable
manifold u

1
in the octantΩ

1
approaches ((𝑟/𝑎), 0, 0) tangent

to x
3
. From subset 𝐵, the second and third components of

this tangent vector satisfy 𝑈 = 𝜆
3
𝑃. Thus there exists a point

𝑠
0
on the trajectory whose components satisfy 0 < 𝐻(𝑠

0
) <

(𝑟/𝑎), 𝑃(𝑠
0
) > 0, and 𝑈(𝑠

0
) = 𝜆

3
𝑃(𝑠
0
) > (𝑐/2𝐷)𝑃(𝑠

0
). This

completes the proof.

Lemma 7. Assume that 𝑐 > √4𝐷𝑑; then a trajectory on the
portion of the strongly unstable manifold u

1
in the octant Ω

1

must satisfy

𝑃 (𝑠) ≥ − (𝐻 (𝑠) −
𝑟

𝑎
)(

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟

𝑐
2
+ 2𝐷𝑟

2𝐷𝑐
) ,

(34)

for all 𝑠.

Proof. A trajectory on the portion of the strongly unstable
manifold u

1
in the octant Ω

1
could be written as 𝑃(𝑠) =

−𝑝(𝜆
3
)(𝐻(𝑠) − 𝑟/𝑎), where

𝑝 (𝜆
3
) =

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
(𝜆
3
+
𝑟

𝑐
)

=
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟

× (
𝑐/𝐷 + √𝑐2/𝐷2 − 4𝑑/𝐷

2
+
𝑟

𝑐
)

>
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟

𝑐
2
+ 2𝐷𝑟

2𝐷𝑐
.

(35)

Lemma 8. Let 𝑙 > (𝑐/𝐷) be a fixed number. A solutions of (8)
having a point 𝑠

0
such that 0 < 𝐻(𝑠

0
) < (𝑟/𝑎), 𝑃(𝑠

0
) > 0, and

𝑈(𝑠
0
) < 𝑙𝑃(𝑠

0
) will have 𝑈(𝑠) < 𝑙𝑃(𝑠) for all 𝑠 > 𝑠

0
such that

𝑃(𝑠) > 0. In particular, this is true for trajectories on branch of
the strongly unstable manifold u

1
in the octant Ω

1
.

The proof is similar to that of Lemma 6, so it is omitted.

Lemma 9. If a solution of (8) has a point, taking to 𝑠 = 0

without loss of generality, such that𝐻(0) < (𝑟/𝑎), 0 < 𝑃(0) <

−((𝑐(𝑎𝑏 + (1 − 𝑚)𝑟))/(𝑎𝐻
∗
(1 − 𝑚)))(𝑙 + (𝑟/𝑐))(𝐻(𝑠) − (𝑟/𝑎)),
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and 𝑈(0) < 𝑙𝑃(0), then for all 𝑠 > 0, as long as 𝐻(𝑠) > 𝐻
∗,

𝑃(𝑠) > 0 the trajectory must have that 𝑃(𝑠) < −(𝑐(𝑎𝑏 + (1 −

𝑚)𝑟)/𝑎𝐻
∗
(1 − 𝑚))(𝑙 + (𝑟/𝑐))(𝐻(𝑠) − (𝑟/𝑎)). In particular, this

is true for a trajectory on the branch of the strongly unstable
manifold u

1
in the octant Ω

1
.

Proof. We first prove that𝐻(𝑠) < (𝑟/𝑎) for all 𝑠 > 0 such that
𝑃(𝑠) > 0. If this is not true, then there exists a first time 𝑠

1
> 0

such that𝐻(𝑠) = (𝑟/𝑎),𝐻󸀠(𝑠
1
) ≥ 0 and 𝑃(𝑠

1
) > 0. But then,

0 ≤ 𝐻
󸀠
(𝑠
1
) = (

1

𝑐
𝐻 (𝑟 − 𝑎𝐻) −

1

𝑐

(1 − 𝑚)𝐻𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝑠=𝑠
1

< 0.

(36)

This is a contradiction. Thus 𝐻(𝑠) < (𝑟/𝑎) for all 𝑠 > 0 such
that 𝑃(𝑠) > 0.

Now we show that 𝑃(𝑠) < −𝐴
0
(𝐻(𝑠) − (𝑟/𝑎)) for all 𝑠 > 0

as long as 𝐻(𝑠) > 𝐻
∗ and 𝑃(𝑠) > 0. Let 𝐴

0
= (𝑐(𝑎𝑏 + (1 −

𝑚)𝑟)/𝑎𝐻
∗
(1 − 𝑚))(𝑙 + (𝑟/𝑐)). Suppose on the contrary that

there exists a first time 𝑠
2
such that 𝐻(𝑠

2
) > 𝐻

∗, 𝑃(𝑠
2
) > 0,

but 𝑃(𝑠
2
) = −𝐴

0
(𝐻(𝑠
2
) − (𝑟/𝑎)). Then 𝑃󸀠(𝑠

2
) ≥ −𝐴

0
(𝐻
󸀠
(𝑠
2
)).

By Lemma 8, 𝑈(𝑠) < 𝑙𝑃(𝑠) for all 𝑠 > 𝑠
0
such that 𝑃(𝑠) > 0.

Then

𝑙𝑃 (𝑠
2
) ≥ 𝑈 (𝑠

2
) = 𝑃
󸀠
(𝑠
2
) ≥ −𝐴

0
(𝐻
󸀠
(𝑠
2
))

= −𝐴
0

𝐻

𝑐
(𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
)

𝑠=𝑠
2

.

(37)

For 𝑃(𝑠
2
) = −𝐴

0
(𝐻(𝑠
2
) − (𝑟/𝑎)) and𝐻∗ < 𝐻(𝑠

2
) < (𝑟/𝑎), we

have

𝑙 ≥

−𝐴
0
(𝐻/𝑐) (𝑟 − 𝑎𝐻 − ((1 − 𝑚)𝑃) / (𝑏 + (1 − 𝑚)𝐻))

𝑠=𝑠
2

−𝐴
0
(𝐻 (𝑠
2
) − (𝑟/𝑎))

= −
1

𝑐
(

𝐴
0
𝐻(𝑟 − 𝑎𝐻)

−𝐴
0
(𝐻 − (𝑟/𝑎))

−
(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
⋅
𝐴
0
𝐻

𝑃
)

𝑠=𝑠
2

= −
1

𝑐
(𝑎𝐻 −

𝐴
0
(1 − 𝑚)𝐻

𝑏 + (1 − 𝑚)𝐻
)

𝑠=𝑠
2

>
1

𝑐
(

𝐴
0
(1 − 𝑚)𝐻

∗

𝑏 + (1 − 𝑚) (𝑟/𝑎)
− 𝑟)

=
𝑎𝐴
0
(1 − 𝑚)𝐻

∗

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)
−
𝑟

𝑐

= 𝑙,

(38)

which is a contradiction. This completes the proof.

Now combine all the results of Lemmas 6–9 to follow
the trajectory of a solution of (8) on the strongly unstable
manifold u

1
. Let

R = {(𝐻, 𝑃, 𝑈) : 𝐻
∗
< 𝐻 <

𝑟

𝑎
,

−
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
⋅
𝑐
2
+ 2𝑑𝑟

2𝑑𝑐
(𝐻 −

𝑟

𝑎
) < 𝑃

< −
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

𝑎𝐻∗ (1 − 𝑚)
(𝑙 +

𝑟

𝑐
) (𝐻 −

𝑟

𝑎
) ,

𝑐

2𝐷
𝑃 < 𝑈 < 𝑙𝑃} .

(39)

Then the trajectory of a solution of (8) on the strongly
unstable manifold u

1
is contained in R. Since 0 < 𝑚 < 1,

we obtain

𝑃 ≥ −
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
⋅
𝑐
2
+ 2𝐷𝑟

2𝐷𝑐
(𝐻 −

𝑟

𝑎
)

= (
𝑟

𝑎
− 𝐻) ⋅

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
⋅ (

𝑐

2𝐷
+
𝑟

𝑐
)

≥ (
𝑟

𝑎
− 𝐻) ⋅

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

(1 − 𝑚) 𝑟
⋅
𝑟

𝑐

= (𝑟 − 𝑎𝐻)
𝑏 + (1 − 𝑚) (𝑟/𝑎)

(1 − 𝑚)

> (𝑟 − 𝑎𝐻)
𝑏 + (1 − 𝑚)𝐻

(1 − 𝑚)
.

(40)

This shows the regionR lies in the region defined by𝐻 > 0

and𝑃 > (𝑟−𝑎𝐻)(𝑏+(1−𝑚)𝐻/(1−𝑚)).Then, on the strongly
unstable manifold u

1
,𝐻󸀠 = 𝐻((𝑟 − 𝑎𝐻) − ((1 − 𝑚)𝑃/𝑏 + (1 −

𝑚)𝐻)) < 0. So, for a solution of (8) on u
1
, 𝐻(𝑠) decreases

until 𝐻(𝑠
0
) = 𝐻

∗ for some finite 𝑠
0
. And at the time 𝑠

0
, we

have

𝑃 > (𝑟 − 𝑎𝐻
∗
)
𝑏 + (1 − 𝑚)𝐻

∗

(1 − 𝑚)
=
𝑑 (𝑏 + (1 − 𝑚)𝐻

∗
)

𝛽
= 𝑃
∗
.

(41)

Thus the trajectory of this solution hits 𝜕𝑊 on the face 𝐻 =

𝐻
∗, 𝑃 > 𝑃

∗, and𝑈 > 0. Therefore, the vector field shows that
the solution of (8) on u

1
enters the region 𝑇 at some finite

time.

Lemma 10. In a sufficient small neighborhood of ((𝑟/𝑎), 0, 0)
the two-dimensional unstable manifold u

2
intersects the plane

defined by𝑈 = 0 in a smoothC1 curve Γ, given by 𝑃 = M(𝐻),
𝑈 = 0, where

𝑃 = M (𝐻)

= −
𝜆
3
𝑝 (𝜆
3
)

𝜆
2
𝑝 (𝜆
2
)
(𝐻 −

𝑟

𝑎
)

= −
𝜆
3
(𝑟 + 𝑐𝜆

3
)

𝜆
2
(𝑟 + 𝑐𝜆

2
)
(𝐻 −

𝑟

𝑎
) .

(42)
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Proof. The proof is similar to Lemma 5 in [16] and is omitted.

Remark 11. The portion of the curve Γ is in the region 𝐻 <

(𝑟/𝑎). Obviously, the 𝑃 component of points along the curve
Γ satisfies 𝑃 > 0 from Lemma 10. From the direction of the
vector filed on the quarter plane,𝐻 > 𝐻

∗, 𝑃 > 0, and 𝑈 = 0,
any trajectory passing through a point of Γ near ((𝑟/𝑎), 0, 0)
will immediately enter the region 𝑄.

Now, we place a sufficiently small circle about ((𝑟/𝑎), 0, 0)
on the two-dimensional unstable manifold u

2
. The circle

is contained in the neighborhood of ((𝑟/𝑎), 0, 0) given in
Lemma 10 and satisfies the conditions of Lemmas 6–9. Then
the circle intersects the curve Γ. Define Σ to be arc of this
circle contained in the octant Ω

1
whose endpoints are the

intersections of the circle with u
1
and the curve Γ.

3.1.4. Proof of (ii) of Theorem 2. In this section, we firstly use
Lemma 5 to produce a trajectory which remains in the region
W. Second, we construct a Lyapunov function to demonstrate
that the trajectory approaches (𝐻∗, 𝑃∗, 0). For simplicity, we
denote𝑁 = {(𝐻, 𝑃, 𝑈) : 𝑃 = 𝑈 = 0}, 𝐿 = {(𝐻, 𝑃, 𝑈) : 𝐻 = 0}.

Lemma 12. There exists a point 𝑦∗ ∈ Σ such that the solution
𝑦(𝑠, 𝑦

∗
) = (𝐻

1
(𝑠), 𝑃
1
(𝑠), 𝑈
1
(𝑠)) of (8) remains in the region𝑊

for all 𝑠.

Proof. It is obvious that the set𝑊 is closed satisfying the (i) of
Lemma 5. Before using Lemma 5 to prove this conclusion, we
also need to check the conditions (ii) and (iii) of it. Suppose
𝑦
0
∈ Σ, 𝑠 < 𝑇(𝑦

0
), 𝑦(𝑠, 𝑦

0
) ∈ 𝑊\𝑊

−.Then 𝑦(𝑠, 𝑦
0
) ∈ int 𝑊∪

𝐽. As 𝑠 < 𝑇(𝑦
0
), we easily verify that

𝑦 (𝑠, 𝑦
0
) ∉ {(𝐻, 𝑃, 𝑈) : 𝐻 ≥ 𝐻

∗
, 𝑃 < 0, 𝑈 = 0} . (43)

Moreover, as𝑁 is an invariant manifold,

𝑦 (𝑠, 𝑦
0
) ∉ {(𝐻, 𝑃, 𝑈) : 𝐻 ≥ 𝐻

∗
, 𝑃 = 0, 𝑈 = 0} . (44)

Thus 𝑦(𝑠, 𝑦
0
) ∈ int 𝑊 and there exists an open set 𝑉 around

𝑦(𝑠, 𝑦
0
) disjoint from 𝜕𝑊. So (ii) of Lemma 5 is satisfied.

From the previous 5 lemmas, we know that the image of
one endpoint of Σ lies in the portion 𝜕𝑇\{(𝐻∗, 𝑃∗, 0)} of𝑊−;
and the image of the other endpoint is in the component 𝜕𝑄\

(𝐽 ∪ {(𝐻
∗
, 𝑃
∗
, 0)}) of 𝑊−. Thus Σ is compact, intersects any

trajectory of (8) only once, and is simple connected. IfΣ = Σ
0,

then 𝐹would be a homeomorphism of the connected set Σ to
its image in the disconnected set 𝑊−. This is impossible. So
Σ ̸= Σ
0. Thus there exists some point 𝑦∗ such that 𝑦(𝑠, 𝑦∗) ∈

𝑊 for all 𝑠.

Lemma 13. The solution 𝑦(𝑠, 𝑦∗) remains in the region

Ω = { (𝐻, 𝑃, 𝑈) : 0 < 𝐻 <
𝑟

𝑎
, 0 < 𝑃 < 𝑘 (𝐻) ,

−
𝛽𝑃
2

𝑐𝑏
< 𝑈 < 𝑙𝑃} ,

(45)

for all 𝑠, where

𝑘 (𝐻) =

{{{{{{{{{

{{{{{{{{{

{

−
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

𝑎𝐻∗ (1 − 𝑚)
(𝑙 +

𝑟

𝑐
) (𝐻 −

𝑟

𝑎
) ,

𝐻
∗
< 𝐻 <

𝑟

𝑎
,

−
𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

𝑎𝐻∗ (1 − 𝑚)
(𝑙 +

𝑟

𝑐
) (𝐻
∗
−
𝑟

𝑎
) ,

0 < 𝐻
∗
≤ 𝐻
∗
.

(46)

Proof. Firstly, 𝑦(𝑠, 𝑦∗)must have𝐻
1
(𝑠) > 0 for all 𝑠, as 𝐿 is an

invariant manifold.
Secondly, we prove𝑃

1
(𝑠) > 0. If it is not true, then𝑦(𝑠, 𝑦∗)

enters region 𝑁
1
= {(𝐻, 𝑃, 𝑈) : 𝑃 < 0}. Let 𝑠

1
= inf{𝑠 :

𝑦(𝑠, 𝑦
∗
) ∈ 𝑁
1
}. Then 𝑃

1
(𝑠
1
) = 0 and 𝑃󸀠

1
(𝑠
1
) ≤ 0, so𝑈

1
(𝑠
1
) ≤ 0.

As𝑁 is an invariant manifold, 𝑈
1
(𝑠
1
) < 0. And𝐻

1
(𝑠
1
) < 𝐻

∗

for 𝑦(𝑠, 𝑦∗) ∉ 𝑄. From (8),𝐻󸀠
1
(𝑠
1
) > 0, which means𝐻

1
(𝑠) is

increasing for 𝑠 > 𝑠
1
. Then the solution enters

𝑁
2
= {(𝐻, 𝑃, 𝑈) : 𝐻

1
(𝑠
1
) < 𝐻 < 𝐻

∗
, 𝑃 < 0, 𝑈 < 0} . (47)

Obviously, in𝑁
2
, 𝑃󸀠 = 𝑈 < 0, so 𝑃

1
(𝑠) is decreasing.Thus, we

have

𝐻
󸀠

1
(𝑠) ≥

1

𝑐
min {𝐻

1
(𝑠
1
) (𝑟 − 𝑎𝐻

1
(𝑠
1
)) ,𝐻
∗
(𝑟 − 𝑎𝐻

∗
)} .

(48)

So𝐻
1
(𝑠) increases to𝐻∗ in the finite time 𝑠

2
; that is,𝐻

2
(𝑠) =

𝐻
∗.Then also𝑃

1
(𝑠
2
) < 0,𝑈

1
(𝑠
2
) < 0. So 𝑦(𝑠, 𝑦∗) enter𝑄.This

is a contradiction. Therefore, 𝑃
1
(𝑠) > 0 for all time.

By Lemma 9, we know

𝑃
1
< −

𝑐 (𝑎𝑏 + (1 − 𝑚) 𝑟)

𝑎𝐻∗ (1 − 𝑚)
(𝑙 +

𝑟

𝑐
) (𝐻
1
−
𝑟

𝑎
) ,

for 𝐻∗ < 𝐻
1
≤
𝑟

𝑎
.

(49)

As 𝑃
1
(𝑠) > 0, so𝐻

1
(𝑠) < (𝑟/𝑎) for all 𝑠.

Suppose, on the contrary, there exists 𝑠 such that 𝑃
1
(𝑠) ≥

−𝐴
0
(𝐻
∗
− (𝑟/𝑎)) for 0 < 𝐻

1
≤ 𝐻
∗, where 𝐴

0
= (𝑐(𝑎𝑏 + (1 −

𝑚)𝑟)/𝑎𝐻
∗
(1 − 𝑚))(𝑙 + 𝑟/𝑐). Take

𝑠
2
= inf {𝑠 : 𝑃

1
(𝑠) ≥ −𝐴

0
(𝐻
∗
−
𝑟

𝑎
)} . (50)

Then 𝐻
1
(𝑠
2
) ≤ 𝐻

∗, 𝑃
1
(𝑠
2
) > 𝑃

∗, and 𝑈
1
(𝑠
2
) = 𝑃

󸀠

1
(𝑠
2
) ≥ 0.

Then either 𝑦(𝑠, 𝑦∗) ∈ 𝑇 or 𝑦(𝑠, 𝑦∗) immediately enter 𝑇,
which is impossible. So 𝑃

1
(𝑠) ≤ −𝐴

0
(𝐻
∗
− (𝑟/𝑎)) for 0 <

𝐻
1
≤ 𝐻
∗.

At last, we prove −(𝛽𝑃
2

1
/𝑐𝑏) < 𝑈

1
< 𝑙𝑃
1
. 𝑈
1
< 𝑙𝑃
1

is obvious. Because a trajectory starting on Σ approaches
((𝑟/𝑎), 0, 0) tangent to x

2
or x
3
has𝑈 = 𝜆

2
𝑃 or𝑈 = 𝜆

3
𝑃. Since

𝜆
2
, 𝜆
3
< 𝑙, fromLemma8,we know𝑈

1
(𝑠) < 𝑙𝑃

1
(𝑠) for all s.We

only need to prove−(𝛽𝑃2
1
/𝑐𝑏) < 𝑈

1
. Suppose, on the contrary,
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that there exists a 𝑠
3
such that 𝑈

1
(𝑠
3
) < −(𝛽𝑃

2

1
(𝑠
3
)/𝑐𝑏) < 0;

then 𝑈
1
(𝑠
3
) < −(𝛽𝑃

2

1
(𝑠
3
)/𝑐𝑏) for all 𝑠 > 𝑠

3
. If this is not true,

there exists a 𝑠
4
> 𝑠
3
such that 𝑈

1
(𝑠
4
) = −(𝛽𝑃

2

1
(𝑠
4
)/𝑐𝑏), and

thus 𝑈󸀠
1
(𝑠
4
) + (𝛽𝑃

2

1
(𝑠
4
)/𝑐𝑏) ≥ 0. Then from (8) we have

(
𝑐

𝐷
𝑈 −

𝑑

𝐷
𝑃 +

𝛽𝑃
2

𝐷 (𝑏 + (1 − 𝑚)𝐻)
+
2𝛽𝑃𝑈

𝑐𝑏
)

𝑠=𝑠
4

≥ 0. (51)

Then after some calculation, we obtain

(−
𝛽
2
𝑃

𝐷
(
1

𝑏
−

1

𝑏 + (1 − 𝑚)𝐻
) −

𝑑

𝐷
𝑃 −

2𝛽
2
𝑃
3

𝑐2𝑏
)

𝑠=𝑠
4

≥ 0,

(52)

this is a contradiction. So if 𝑈
1
(𝑠
3
) < −(𝛽𝑃

2

1
(𝑠
3
)/𝑐𝑏), then

𝑈
1
(𝑠
3
) < −(𝛽𝑃

2

1
(𝑠
3
)/𝑐𝑏) for all 𝑠 > 𝑠

3
. Thus,

𝑈
󸀠

1
=

𝑐

𝐷
𝑈
1
−
𝑑

𝐷
𝑃
1
+

𝛽𝑃
2

1

𝐷 (𝑏 + (1 − 𝑚)𝐻)

< −
𝛽𝑃
2

1

𝐷
(
1

𝑏
−

1

𝑏 + (1 − 𝑚)𝐻
1

) −
𝑑

𝐷
𝑃
1
< 0,

(53)

for all 𝑠 > 𝑠
3
. So 𝑈

1
(𝑠) < 𝑈

1
(𝑠
3
) for all 𝑠 > 𝑠

3
. Thus

𝑃
󸀠

1
(𝑠) = 𝑈

1
(𝑠) < 0 and bounded away from zero by 𝑈

1
(𝑠
3
).

Therefore𝑃
1
(𝑠) < 0 for some finite 𝑠, which is a contradiction.

So −(𝛽𝑃2
1
/𝑐𝑏) < 𝑈

1
.

This completes the proof.

Lemma 14. The trajectory 𝑦(𝑠, 𝑦∗) → (𝐻
∗
, 𝑃
∗
, 0) as 𝑠 →

−∞.

Proof. Define following Lyapunov function:

𝑉 (𝐻, 𝑃, 𝑈) =
𝑑𝑐

𝐷
[𝐻 − 𝐻

∗ ln𝐻] + [𝑐 (
𝑃

𝐷
− 𝑃
∗
) − 𝑈]

+ 𝑃
∗
[
𝑈

𝑃
−

𝑐

𝐷
ln 𝑃

𝑃∗
] .

(54)

Then𝑉(𝐻, 𝑃, 𝑈) is continuous and bounded below onΩ,
and

𝑑𝑉

𝑑𝑠
=
𝜕𝑉

𝜕𝐻
⋅ 𝐻
𝑡
+
𝜕𝑉

𝜕𝑃
⋅ 𝑃
𝑡
+
𝜕𝑉

𝜕𝑈
⋅ 𝑈
𝑡

=
𝑑𝑐 (𝐻 − 𝐻

∗
)

𝐷𝐻
⋅
𝐻

𝑐
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
]

+ [
𝑐

𝐷
(1 −

𝑃
∗

𝑃
) −

𝑃
∗
𝑈

𝑃2
] ⋅ 𝑈

+ (
𝑃
∗

𝑃
− 1) ⋅

1

𝐷
[𝑐𝑈 +

𝛽𝑃
2

𝑏 + (1 − 𝑚)𝐻
− 𝑃𝑑]

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
]

+
𝑃
∗
− 𝑃

𝐷
[

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
− 𝑑] −

𝑃
∗
𝑈
2

𝑃2

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
] −

𝑃
∗
𝑈
2

𝑃2

+
𝑃
∗
− 𝑃

𝐷
[

𝛽𝑃

𝑏 + (1 − 𝑚)𝐻
−

𝛽𝑃
∗

𝑏 + (1 − 𝑚)𝐻

+
𝛽𝑃
∗

𝑏 + (1 − 𝑚)𝐻
− 𝑑]

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
]

+
𝑃
∗
− 𝑃

𝐷
[

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
− 𝑑]

−
𝛽(𝑃
∗
− 𝑃)
2

𝐷 (𝑏 + (1 − 𝑚)𝐻)
−
𝑃
∗
𝑈
2

𝑃2

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃

𝑏 + (1 − 𝑚)𝐻
]

+
𝑃
∗
− 𝑃

𝐷
⋅
𝑑 (1 − 𝑚) (𝐻 − 𝐻

∗
)

𝑏 + (1 − 𝑚)𝐻

−
𝛽(𝑃
∗
− 𝑃)
2

𝐷 (𝑏 + (1 − 𝑚)𝐻)
−
𝑃
∗
𝑈
2

𝑃2

=
𝑑 (𝐻 − 𝐻

∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
]

−
𝛽(𝑃
∗
− 𝑃)
2

𝐷 (𝑏 + (1 − 𝑚)𝐻)
−
𝑃
∗
𝑈
2

𝑃2
,

(55)

where 𝑔(𝐻) = 𝑓(𝐻)/(𝑏 + (1 − 𝑚)𝐻) is defined. Obviously,
𝑏+(1−𝑚)𝐻 > 0 inΩ and 𝑔(𝐻∗) = 0. According to Lemma 1,
when 𝑟 > (𝑑(1 − 𝑚)/𝛽), the following result always holds:

𝑑 (𝐻 − 𝐻
∗
)

𝐷
[𝑟 − 𝑎𝐻 −

(1 − 𝑚)𝑃
∗

𝑏 + (1 − 𝑚)𝐻
] ≤ 0. (56)

Therefore, the 𝑑𝑉/𝑑𝑠 is always nonpositive in Ω. Moreover,
𝑑𝑉/𝑑𝑠 = 0 if and only if 𝐻 = 𝐻

∗, 𝑃 = 𝑃
∗, and 𝑈 = 0;

the largest invariant subset of this segment is the single point
(𝐻
∗
, 𝑃
∗
, 0). By LaSalle’s Invariance Principle, 𝑦(𝑠, 𝑦∗) →

(𝐻
∗
, 𝑃
∗
, 0) as 𝑠 → −∞. This completes the proof.
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3.2. Proof of Theorem 3. The Jacobin of system (8) at the
equilibrium 𝐸(𝐻

∗
, 𝑃
∗
, 0) is

𝐽 (𝐸)

= (

−
1

𝑐
(−𝑎𝐻

∗
+
(1 − 𝑚)

2
𝐻
∗
𝑑
2

𝛽2𝑃∗
) −

𝑑 (1 − 𝑚)𝐻
∗

𝑐𝛽𝑃∗
0

0 0 1

−
𝑑
2
(1 − 𝑚)

𝛽𝐷
−
𝑑

𝐷

𝑐

𝐷

).

(57)

Let 𝑀 = −𝑎𝐻
∗
+ ((1 − 𝑚)

2
𝐻
∗
𝑑
2
/𝛽
2
𝑃
∗
); then the

corresponding characteristic equation of (57) is given by

𝑃 (𝜆) = 𝜆
3
− (

𝑀

𝑐
+

𝑐

𝐷
)𝜆
2
+
𝑀 − 𝑑

𝐷
𝜆 −

𝑎𝑑𝐻
∗

𝑐𝐷
= 0. (58)

In order to get the sign of the roots of characteristic equation
(58), we will use Routh-Hurwitz analysis [25]. The Routh-
Hurwitz range of (58) is

𝜆
3

𝑎
3
= 1 𝑎

1
=
(𝑀 − 𝑑)

𝐷

𝜆
2
𝑎
2
= −(

𝑀

𝑐
+

𝑐

𝐷
) 𝑎
0
= −

𝑎𝑑𝐻
∗

𝑐𝐷

𝜆
1

𝑏
1

𝑏
2

𝜆
0

𝑐
1

𝑐
2

, (59)

where

𝑏
1
= −

1

𝑎
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
3
𝑎
1

𝑎
2
𝑎
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −
1

𝑀/𝑐 + 𝑐/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
𝑀 − 𝑑

𝐷

−(
𝑀

𝑐
+

𝑐

𝐷
) −

𝑎𝑑𝐻
∗

𝑐𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −
𝑎𝑑𝐻
∗

𝑀𝐷 + 𝑐2
+
𝑀 − 𝑑

𝐷
,

𝑏
2
= −

1

𝑎
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
3
0

𝑎
2
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0,

𝑐
1
= −

1

𝑏
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
2
𝑎
0

𝑏
1
𝑏
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑎
0
= −

𝑎𝑑𝐻
∗

𝑐𝐷
,

𝑐
2
= −

1

𝑏
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
2
0

𝑏
1
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(60)

In the above range, we easily know that 𝑎
3
> 0, 𝑐
1
< 0. When

𝛽 > 1 − 𝑚, (i) if𝑀/𝑐 + 𝑐/𝐷 < 0 (𝑎
2
> 0), then no matter the

sigh of 𝑏
1
, the sigh of the first arrange of (59) will change once,

and the no row of (59) is full zero. So character equation (59)
always has a real root and two complex roots with negative
real part; (ii) if 𝑀/𝑐 + 𝑐/𝐷 > 0 (𝑎

2
< 0), we obtain ((𝑀 −

𝑑)/𝐷) < 0 with 𝛽 > 1 − 𝑚, and then 𝑏
1
< 0. Thus, the sigh

of the first arrange of (59) will change once and the no row
of (59) is full zero. So character equation (58) has a real root
and two complex roots with negative real part.

Therefore, there is a 2-dimensional stable manifold and
1-dimensional unstable manifold based at (𝐻∗, 𝑃∗, 0) when
𝛽 > 1 − 𝑚.

The differentiation of (58) is

𝑃
󸀠
(𝜆) = 3𝜆

2
− 2 (

𝑀

𝑐
+

𝑐

𝐷
)𝜆 +

𝑀 − 𝑑

𝐷
. (61)

Let 𝑃󸀠(𝜆) = 0; then we obtain

𝜆
±
=
2 (𝑀/𝑐 + 𝑐/𝐷) ± √4 (𝑀/𝑐 + 𝑐/𝐷) − 12 ((𝑀 − 𝑑) /𝐷)

6
.

(62)

Thus, 𝑃(𝜆) get the maximum at 𝜆 = 𝜆
−
, 𝑃(𝜆) get the

minimumat𝜆 = 𝜆
+
, and𝑃(𝜆)minimum < 0. Sowe just consider

𝑃(𝜆)maximum = 𝜆
−

3
− (

𝑀

𝑐
+

𝑐

𝐷
)𝜆
−

2
+
𝑀 − 𝑑

𝐷
𝜆
−
−
𝑎𝑑𝐻
∗

𝑐𝐷
.

(63)

If 𝑃(𝜆)maximum > 0, (58) has two negative roots and a
positive root. If 𝑃(𝜆)maximum = 0, (58) has a negative
root and a positive root. If 𝑃(𝜆)maximum < 0, (58) has a
positive root and two complex roots with negative real part.
So the solution of (8) satisfying (7) spreads to the positive
equilibrium (𝐻

∗
, 𝑃
∗
, 0) monotonously when 𝑃(𝜆)maximum ≥

0, and it spreads to the positive equilibrium (𝐻
∗
, 𝑃
∗
, 0)

nonmonotonously when 𝑃(𝜆)maximum < 0.

3.3. Proof ofTheorem 4. In order to proveTheorem 4, we take
𝐷, 𝑟, 𝑎,𝑚, and 𝑑 as fixed and 𝛽 and 𝑐 as parameters. It means
we only allow the predator effectiveness to vary.We search for
purely imaginary roots of the characteristic equation

𝜆
3
− (

𝑝 + 𝑑

𝑐
+

𝑐

𝐷
)𝜆
2
+
𝑝

𝐷
𝜆 −

𝑞

𝑐𝐷
= 0, (64)

where 𝑝 = 𝑀 − 𝑑, 𝑞 = 𝑎𝑑𝐻
∗, 𝑀 = −𝑎𝐻

∗
+ ((1 −

𝑚)
2
𝐻
∗
𝑑
2
/𝛽
2
𝑃
∗
), and𝐻∗ = ((𝑑𝑚 − 𝑑 + 𝛽𝑟)/𝑎𝛽).

It is easy to see that 𝑝 < 0, 𝑞 > 0 and 0 < 𝐻
∗
< 𝑟/𝑎.

Substituting 𝜆 = 𝑘𝑖 into (64) and simplifying it, we have

𝑘
2
=
𝑝

𝐷
,

𝑘
2
=

𝑞

𝐷 (𝑝 + 𝑑) + 𝑐2
.

(65)

Thus, a pair of imaginary eigenvalues exists if the parameters
𝛽 and 𝑐 satisfy the condition

𝑐
2
= 𝐷(

𝑞

𝑝
− 𝑝 − 𝑑) . (66)
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Figure 1: The traveling wave solution of system (8) from 𝐸
1
(1, 0) tends to 𝐸(𝐻∗, 𝑃∗) monotonously with the parameters 𝐷 = 0.8, 𝑟 = 1,

𝑎 = 1,𝑚 = 0.3, 𝑏 = 6.65, 𝑑 = 0.5, and 𝛽 = 0.5.

Regarding 𝜆 as a function of 𝛽 and differentiating the
characteristic equation (64) with respect to 𝛽, we obtain

d𝜆 (𝛽)
d𝛽

=

(𝑝
󸀠
/𝑐) 𝜆
2
− (𝑝
󸀠
/𝐷) 𝜆 + (𝑞

󸀠
/𝑐𝐷)

3𝜆2 − 2 (((𝑝 + 𝑑) /𝑐) + (𝑐/𝐷)) 𝜆 + (𝑝/𝐷)
. (67)

Here (󸀠) denotes the differentiation with respect to 𝛽. Substi-
tuting 𝜆 = 𝑘𝑖 into (66), we have

d𝜆 (𝛽)
d𝛽

=

(− (𝑝
󸀠
/𝑐) 𝑘
2
+ (𝑞
󸀠
/𝑐𝐷)) − (𝑝

󸀠
/𝐷) 𝑘𝑖

(3𝑘2 + (𝑝/𝐷)) − 2 (((𝑝 + 𝑑) /𝑐) + 𝑐/𝐷) 𝑘𝑖
. (68)

After some calculation, we have that the sign of the real part
of d𝜆(𝛽)/d𝛽 is determined by the sign of

−2

𝑐𝐷
(𝑝𝑞
󸀠
− 𝑝
2
𝑝
󸀠
− 𝑝
󸀠
𝑞) . (69)

From (64), we know (d𝑐2/d𝛽) = (𝐷/𝑝
2
)(𝑝𝑞
󸀠
− 𝑝
2
𝑝
󸀠
− 𝑝
󸀠
𝑞).

Thus, it is obvious that

−
2𝑝
2

𝑐𝐷2

d𝑐2

d𝛽
=
−2

𝑐𝐷
(𝑝𝑞
󸀠
− 𝑝
2
𝑝
󸀠
− 𝑝
󸀠
𝑞) . (70)
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Figure 2:The travelingwave solution of system (8) from𝐸
1
(10, 0) tends to𝐸(𝐻∗, 𝑃∗) nonmonotonously with the parameters𝐷 = 0.8, 𝑟 = 1.5,

𝑎 = 0.15,𝑚 = 0.35, 𝑏 = 0.15, 𝑑 = 1, and 𝛽 = 0.75.

So the sign of Re(d𝜆(𝛽)/d𝛽) is opposite to that of 𝑑𝑐2/𝑑𝛽. In
fact, 𝑞󸀠 = 𝑎𝑑(𝐻

∗
)
󸀠

𝛽
= 𝑑(1 − 𝑚)/𝑎𝛽

2
> 0, while

𝑝
󸀠
= {𝑀 − 𝑑}

󸀠

𝛽

= {−𝑎𝐻
∗
+

𝑑(1 − 𝑚)
2
𝐻
∗

𝛽 (𝑏 + (1 − 𝑚)𝐻
∗
)
− 𝑑}

󸀠

𝛽

= −
𝑑 (1 − 𝑚)

𝛽2

+ (
𝑑
2
(1 − 𝑚)

3

𝑎𝛽
[𝑏 + (1 − 𝑚)𝐻

∗
]

− 𝑑(1 − 𝑚)
2
𝐻
∗
[𝑏 + (1 − 𝑚)𝐻

∗
+
𝑑(1 − 𝑚)

2

𝑎𝛽
])

× (𝛽
2
[𝑏 + (1 − 𝑚)𝐻

∗
]
2

)
−1

= 𝑑 (1 − 𝑚){
𝑏𝑑(1 − 𝑚)

2

𝑎𝛽

− [(1 − 𝑚)
2
(𝐻
∗
)
2

+ 3𝑏 (1 − 𝑚)𝐻
∗
+ 𝑏
2
] } .

(71)

Define function ℎ(𝐻∗) = (1 − 𝑚)
2
(𝐻
∗
)
2
+ 3𝑏(1 −𝑚)𝐻

∗
+ 𝑏
2,

and then ℎ󸀠(𝐻∗) = 2(1 − 𝑚)𝐻
∗
+ 3𝑏(1 − 𝑚) > 0 if 0 < 𝐻

∗
<

𝑟/𝑎, where (󸀠) denotes the differentiation with respect to𝐻∗.
So ℎ(𝐻∗) is increasing with respect to𝐻∗. Thus,

ℎ (𝐻
∗
) < ℎ (

𝑟

𝑎
) =

(1 − 𝑚)
2
𝑟
2
+ 3𝑎𝑏𝑟 (1 − 𝑚) + 𝑎

2
𝑏
2

𝑎2

<
((1 − 𝑚) 𝑟 + (3/2) 𝑎𝑏)

2

𝑎2
.

(72)
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So if

𝛽 <
𝑎𝑏𝑑(1 − 𝑚)

2

((1 − 𝑚) 𝑟 + (3/2) 𝑎𝑏)
2
, (73)

we have

𝑏𝑑(1 − 𝑚)
2

𝑎𝛽
− ℎ (𝐻

∗
) > 0, that is 𝑝󸀠 > 0. (74)

Then we have

d𝑐2

d𝛽
=
𝐷

𝑝2
(𝑝𝑞
󸀠
− 𝑝
󸀠
(𝑝
2
+ 𝑞)) < 0. (75)

Therefore,

Re(
d𝜆 (𝛽)
d𝛽

) > 0. (76)

By the Hopf bifurcation Theorem, we obtain that when the
parameter 𝛽 crosses the bifurcation curve 𝑐2 = 𝐷((𝑞/𝑝)−𝑝−

𝑑) at 𝛽
0
in the 𝛽 − 𝑐 parameter plane, system (8) undergoes

a Hopf bifurcation to a small amplitude periodic solution at
the equilibrium point (𝐻∗, 𝑃∗, 0). It corresponds to a small
amplitude traveling wave train solution of system (5). This
completes the proof.

4. Numerical Simulations

In this section, we will give numerical examples to illustrate
the results ofTheorems 2 and 3. All the numerical simulations
are under the Neumann boundary conditions.

Figure 1 shows that there exists traveling wave solution
and it from 𝐸

1
((𝑟/𝑎), 0) tends to 𝐸(𝐻∗, 𝑃∗)monotonously. In

Figure 1, we consider the following parameters𝐷 = 0.8, 𝑟 = 1,
𝑎 = 1, 𝑚 = 0.3, 𝑏 = 6.65, 𝑑 = 0.5, and 𝛽 = 0.5. Figure 2
shows that there exists traveling wave solution and it from
𝐸
1
((𝑟/𝑎), 0) tends to 𝐸(𝐻

∗
, 𝑃
∗
) nonmonotonously with the

parameters 𝐷 = 0.8, 𝑟 = 1.5, 𝑎 = 0.15, 𝑚 = 0.35, 𝑏 = 0.15,
𝑑 = 1, and 𝛽 = 0.75.
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