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We focus on a spatially extendedHolling-type IV predator-preymodel that contains some important factors, such as noise (random
fluctuations), external periodic forcing, and diffusion processes. By a brief stability and bifurcation analysis, we arrive at the
Hopf and Turing bifurcation surface and derive the symbolic conditions for Hopf and Turing bifurcation on the spatial domain.
Based on the stability and bifurcation analysis, we obtain spiral pattern formation via numerical simulation. Additionally, we
study the model with a color noise and external periodic forcing. From the numerical results, we know that noise or external
periodic forcing can induce instability and enhance the oscillation of the species density, and the cooperation between noise and
external periodic forces inherent to the deterministic dynamics of periodically driven models gives rise to the appearance of a rich
transport phenomenology. Our results show that modeling by reaction-diffusion equations is an appropriate tool for investigating
fundamental mechanisms of complex spatiotemporal dynamics.

1. Introduction

Predation, a complex natural phenomenon, exists widely in
theworld, for example, the sea, the plain, the forest, the desert,
and so on [1]. To model this phenomenon, the predator-prey
model has been suggested for a long time since the pioneering
works of Kendall [2]. Predator-prey model is a kind of “pur-
suit and evasion” system in which the prey trie to evade the
predator and the predator tries to catch the prey if they inter-
act [3]. Pursuit means the predator tries to shorten the spatial
distance between the predator and the prey; evasion means
the prey tries to widen this spatial distance. In fact, predator-
prey model is a mathematical method to approximate some
part of our real world. And the dynamic behavior of predator-
prey model has long been and will continue to be one of the
dominant themes in both ecology and mathematical ecology
due to its universal existence and importance [4, 5].

In general, a classical predator-prey model can be written
as the form [6, 7]

𝑑𝑁

𝑑𝑡
= 𝑁𝑓 (𝑁) − 𝑚𝑃𝑔 (𝑁, 𝑃) ,

𝑑𝑃

𝑑𝑡
= 𝑃 [𝑐𝑚𝑔 (𝑁, 𝑃) − 𝑑] ,

(1)

where 𝑁 and 𝑃 stand for prey and predator quantity,
respectively, 𝑓(𝑁) is the per capita rate of increase of the
prey in absence of predation, 𝑑 is the food-independent
death rate of predator, 𝑔(𝑁, 𝑃) is the functional response, the
prey consumption rate by an average single predator, which
obviously increases with the prey consumption rate and can
be influenced by the predator density, which refers to the
change in the density of prey attached per unit time per
predator as the prey density changes,𝑚𝑔(𝑁, 𝑃) is the amount
of prey consumed per predator per unit time, and 𝑐𝑚𝑔(𝑁, 𝑃)

is the predator production per capita with predation.
In population dynamics, a functional response 𝑔(𝑁, 𝑃)

describes the relationship between the predator and their
prey, and the predator-prey model is always named after
the corresponding functional response for its key position
[6–9]. In the history of population ecology, both ecologists
and mathematicians have a great interest in the Holling-type
predator-prey models [3, 8, 10–21], including Holling-types
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I–III, originally due to Holling [22, 23], and Holling-type
IV, suggested by Andrews [24]. The Holling-type functional
responses are the so-called “prey-dependent” type [8], for
𝑔(𝑁, 𝑃) in (1) is a function only related to prey 𝑁. The
classical expression of Holling-type II functional response is
𝑔(𝑁, 𝑃) = 𝑚𝑁/(1 + 𝑏𝑁), and 𝑔(𝑁, 𝑃) = 𝑚𝑁

2
/(1 + 𝑎𝑁

2
)

is called Holling-type III. The Holling-type IV functional
response is written as follows:

𝑔 (𝑁, 𝑃) =
𝑚𝑁

1 + 𝑏𝑁 + 𝑎𝑁2
. (2)

Function (2) is called Monod-Haldane-type functional
response too [25]. In addition, when 𝑏 = 0, a simplified form
𝑔(𝑁, 𝑃) = 𝑚𝑁/(1+𝑎𝑁

2
) is proposed by Sokol [26], and some

scholars also called it as Holling-type IV [9, 25]. In this paper,
we focus on the Holling-IV functional response taking the
form (2), and the corresponding predator-prey model takes
the form

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑚𝑁𝑃

1 + 𝑏𝑁 + 𝑎𝑁2
,

𝑑𝑃

𝑑𝑡
= 𝑃(−𝑞 +

𝑐𝑚𝑁

1 + 𝑏𝑁 + 𝑎𝑁2
) ,

(3)

where 𝑟 > 0 stands for maximum per capita growth rate of
the prey,𝑚 > 0 is the capture rate, 𝑐 > 0 is the conversion rate
of prey captured by predator, 𝑞 > 0 is the food-independent
death rate of predator, 𝐾 > 0 is the carrying capacity, and
𝑎 > 0 is the so-called half-saturation constant; 𝑏 > −2√𝑎

such that the denominator of above system does not vanish
for nonnegative𝑁.

On the other hand, the real world we live in is a spatial
world, and spatial patterns are ubiquitous in nature, which
modify the temporal dynamics and stability properties of
population density at a range of spatial scales, whose effects
must be incorporated in temporal ecological models that do
not represent space explicitly [27]. And the spatial component
of ecological interactions has been identified as an important
factor in how ecological communities are shaped. Empirical
evidence suggests that the spatial scale and structure of the
environment can influence population interactions and the
composition of communities [1].

The reaction-diffusion model is a typical spatially
extended model. It considers not only time but also space
and consists of several species which react with each other
and diffuse within the spatial domain. It involves a pair of
partial differential equations and represents the time course
of reacting and diffusing process. In spatially extended
predator-prey model, the interaction between the predator
and the prey is the reaction item, and the diffusion item
comes to being for the predator’s “pursuit” and the prey’s
“evasion.” Diffusion is a spatial process, and the whole model
describes the evolution of the predator and the prey going
with time.

Decades after Turing [28] demonstrated that spatial
patterns could arise from the interaction of reactions or
growth processes and diffusion; reaction-diffusion models
have been studied in ecology to describe the population
dynamics of predator-prey model for a long time since Segel

and Jackson applied Turing’s idea [29]. Since then, a new
field of ecology, pattern formation, came into being. The
problemof pattern and scale is the central problem in ecology,
unifying population biology and ecosystems science and
marrying basic and applied ecology [30]. The study of spatial
patterns in the distribution of organisms is a central issue
in ecology, geology, chemistry, physics, and so on [1, 3, 11,
15, 16, 25, 31–56]. Theoretical work has shown that spatial
and temporal pattern formation can play a very important
role in ecological and evolutionary systems. Patterns can
affect, for example, stability of ecosystems, the coexistence
of species, invasion of mutants, and chaos. Moreover, the
patterns themselves may interact, leading to selection on the
level of patterns, interlocking eco-evolutionary time scales,
evolutionary stagnation, and diversity.

Based on the above discussions, the spatially extended
Holling-type IV predator-prey model with reaction diffusion
takes as the form

𝜕𝑁

𝜕𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑚𝑁𝑃

1 + 𝑏𝑁 + 𝑎𝑁2
+ 𝑑
1
∇
2
𝑁,

𝜕𝑃

𝜕𝑡
= 𝑃(−𝑞 +

𝑐𝑚𝑁

1 + 𝑏𝑁 + 𝑎𝑁2
) + 𝑑
2
∇
2
𝑃,

(4)

where 𝑑
1
and 𝑑

2
are the diffusion coefficients, respectively,

and∇
2
= 𝜕/𝜕𝑥

2
+𝜕/𝜕𝑦

2 is the usual Laplacian operator in two-
dimensional space; other parameters are the same definition
as those in model (3).

It is easy to know that when a spatially extended predator-
prey model is considered, the evolution of the model is
decided by two sorts of sources (internal source and external
source) which act together.The internal source is the dynam-
ics of the individuals of the model, and the external source
is the variability of environment. Some of the variability is
periodic, such as temperature, water, food supply of the prey,
and mating habits. It is necessary and important to consider
models with periodic ecological parameters or perturbations
which might be quite naturally exposed [57]. These periodic
factors are regarded as external periodic forcing in the
predator-prey systems. The external forcing can affect the
population of predator and prey, respectively, which would
go extinct in a deterministic environment. And some of
the variability is irregular, such as the seasonal changes of
the weather, food supply of the prey, and mating habits,
and the effects of this variability are the so-called “noise.”
Ecological population dynamics are inevitably “noisy” [2].
In the predator-prey systems, the random fluctuations also
are undeniably arising from either environmental variability
or internal species. To quantify the relationship between
fluctuations and species’ concentration with spatial degrees
of freedom, the consideration of these fluctuations supposes
to deal with noisy quantities whose variance might at times
be a sizable fraction of their mean levels. For example, the
birth and death processes of individuals are intrinsically
stochastic fluctuations which become especially pronounced
when the number of individuals is small [16].Moreover, there
are many other stochastically factors causing predator-prey
populations to change, such as effects of spatial structure of
the habitat on the predator-prey ecosystem. The interactions
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between the predator and prey, which are far from being
uniformly distributed, also introduce randomness. And these
processes can be regarded as a parameter that fluctuates
irregularly in space and time.

External forcing and noise induce effects in population
dynamics, such as pattern formation, stochastic resonance,
delayed extinction, enhanced stability, and quasiperiodic
oscillations, which have been investigated with increasing
interest in the past decades [16, 34, 48, 56, 58–63]. And
noise cannot systematically be neglected in models of popu-
lation dynamics [63]. Zhou and Kurths [56] concluded these
periodic variabilities as external forcing and investigated the
interplay among noise, excitability, and mixing and external
forcing in excitablemedia advected by a chaotic flow, in a two-
dimensional FitzHugh-Nagumo model described by a set
of reaction-advection-diffusion equations. And Si et al. [61]
studied the propagation of traveling waves in subexcitable
systems driven; Liu et al. [59] considered a spatially extended
phytoplankton-zooplankton system with additive noise and
periodic forcing. Following thesemodels they considered, the
Holling-type IV predator-prey model with external periodic
forcing and colored noise is as follows:
𝜕𝑁

𝜕𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) −

𝑚𝑁𝑃

1 + 𝑏𝑁 + 𝑎𝑁2
+ 𝐴 sin (𝜔𝑡) + 𝑑

1
∇
2
𝑁,

𝜕𝑃

𝜕𝑡
= 𝑃(−𝑞 +

𝑐𝑚𝑁

1 + 𝑏𝑁 + 𝑎𝑁2
) + 𝜂 (r, 𝑡) + 𝑑

2
∇
2
𝑃,

(5)

where 𝐴 sin(𝜔𝑡) denotes the periodic forcing with ampli-
tude 𝐴 and angular frequency 𝜔. The colored noise term
𝜂(r, 𝑡) (r = (𝑥, 𝑦)) is introduced additively in space and
time, referring to the fluctuations in the predator death rate,
which partially results from the environmental factors such
as epidemics, weather, and nature disasters and it is the
Ornstein-Uhlenbeck process that obeys the following linear
stochastic partial differential equation:

𝜕𝜂 (r, 𝑡)
𝜕𝑡

= −
1

𝜏
𝜂 (r, 𝑡) + 1

𝜏
𝜉 (r, 𝑡) , (6)

where 𝜉(r, 𝑡) is a Gaussian white noise or the so-called
Markovian random telegraph process in both space and time
with zero mean and correlation:

⟨𝜉 (r, 𝑡)⟩ = 0, ⟨𝜉 (r, 𝑡) 𝜉 (r, 𝑡)⟩ = 2𝜀𝛿 (r − r) 𝛿 (𝑡 − 𝑡

) ,

(7)

where ⟨⋅⟩ denotes averaging with respect to the noise 𝜉(r, 𝑡)
and 𝛿 the Dirac delta-function and 𝛿(r − r) is the spatial
correlation function of the Gaussian white noise 𝜉(r, 𝑡).

Integrating (6) with respect to time 𝑡, we get

𝜂 (r, 𝑡) = 𝜂 (r, 0) 𝑒−𝑡/𝜏 + 1

𝜏
𝑒
−𝑡/𝜏

∫

𝑡

0

𝑒
𝑠/𝜏

𝜉 (r, 𝑠) 𝑑𝑠. (8)

The mean value of the colored noise is

⟨𝜂 (r, 𝑡)⟩ = ⟨𝜂 (r, 0)⟩ 𝑒−𝑡/𝜏 + 1

𝜏
𝑒
−𝑡/𝜏

× ∫

𝑡

0

𝑒
𝑠/𝜏

⟨𝜉 (r, 𝑠)⟩ 𝑑𝑠 = ⟨𝜂 (r, 0)⟩ 𝑒−𝑡/𝜏,
(9)

and the correlation function of the colored noise is given by

⟨𝜂 (r, 𝑡) 𝜂 (r, 𝑡)⟩

= ⟨𝜂 (r, 0)⟩ ⟨𝜂 (r, 0)⟩ 𝑒
−(𝑡+𝑡

)/𝜏

+
1

𝜏2
𝑒
−(𝑡+𝑡

)/𝜏

× ∫

𝑡

0

∫

𝑡


0

𝑒
(𝑠+𝑠

)/𝜏

⟨𝜉 (r, 𝑠) 𝜉 (r, 𝑠)⟩ 𝑑𝑠 𝑑𝑠


= ⟨𝜂 (r, 0)⟩ ⟨𝜂 (r, 0)⟩ 𝑒
−(𝑡+𝑡

)/𝜏

+
𝜀

𝜏2
𝑒
−(𝑡+𝑡

)/𝜏

𝛿 (r − r)

× ∫

𝑡

0

∫

𝑡


0

𝑒
(𝑠+𝑠

)/𝜏

𝛿 (𝑡 − 𝑡

) 𝑑𝑠 𝑑𝑠



= ⟨𝜂 (r, 0)⟩ ⟨𝜂 (r, 0)⟩ 𝑒
−(𝑡+𝑡

)/𝜏

+
𝜀

𝜏
𝛿 (r − r)

× (𝑒
−(𝑡+𝑡

)/𝜏

− 2𝑒
−𝑡/𝜏

+ 𝑒
−(𝑡−𝑡

)/𝜏

) .

(10)

Let 𝑡 → +∞; then

⟨𝜂 (r, 𝑡) 𝜂 (r, 𝑡)⟩ →
𝜀

𝜏
𝑒
−(𝑡−𝑡

)/𝜏

𝛿 (r − r) . (11)

The colored noise 𝜂(r, 𝑡) generated in this way represents
a simple spatiotemporal structured noise that can be used
to real mimic situations, which is temporally correlated and
white in space, satisfying

⟨𝜂 (r, 𝑡) 𝜂 (r, 𝑡)⟩ =
𝜀

𝜏
𝑒
−|𝑡−𝑡

|/𝜏

𝛿 (r − r) , (12)

where the temporal memory of the stochastic process is
controlled by 𝜏 and 𝜀 is the intensity of noise. In this paper,
we set 𝜏 = 1.

Based on these discussions above, in this paper, we
mainly focus on the spatiotemporal dynamics of models (4)
and (5). And the organization is as follows. In Section 2,
we employ the method of stability analysis to derive the
symbolic conditions for Hopf and Turing bifurcation in the
spatial domain. In Section 3, we give the complex dynamics
of models (4) and (5), involving pattern formation, phase
portraits, time-series plots and resonant response, and so on,
via numerical simulation. Then, in the last section, we give
some discussions and remarks.

2. Hopf and Turing Bifurcation

The nonspatial model (3) has at least two equilibria (steady
states) which correspond to spatially homogeneous equilibria
of models (4) and (5), in the positive quadrant: (0, 0) (total
extinct) is a saddle; (𝐾, 0) (extinct of the predator or prey-
only) is a attracting node if 𝑞 > 𝑐𝑚𝐾/(1+𝐾𝑏+𝑎𝐾

2), a saddle
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if 𝑞 < 𝑐𝑚𝐾/(1+𝐾𝑏+𝑎𝐾
2
), or a saddle-node if 𝑞 = 𝑐𝑚𝐾/(1+

𝐾𝑏 + 𝑎𝐾
2
). When

(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) ∈ 𝐸
1
,

here, 𝐸
1
= { (𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) | 𝑚𝑐 > 𝑞𝑏,

𝑞
2
𝑎 < (𝑚𝑐 − 𝑞𝑏)

2

,

√ (𝑚𝑐 − 𝑞𝑏)
2

− 4 𝑞2𝑎

> (−𝑚
2
𝑐
2
+ 2 𝑞𝑏𝑚𝑐 + 𝑞𝑎𝐾𝑚𝑐

− 𝑞
2
𝑎𝐾𝑏 + 2 𝑞

2
𝑎 − 𝑞
2
𝑏
2
)

× (−𝑚𝑐 + 𝑞𝑏 + 𝑞𝑎𝐾)
−1

> 0,

𝑏

𝑎
−

𝑚𝑐

𝑞𝑎
+ 𝐾 < 0} ,

(13)

there exists unique stationary coexistence state (𝑁
∗

1
, 𝑃
∗

1
),

where

𝑁
∗

1
=

1

2

−𝑞𝑏 + 𝑚𝑐 − 𝐴

𝑞𝑎
,

𝑃
∗

1
=

𝑐𝑟 ((−𝑚𝑐 + 𝑏𝑞 + 𝑞𝑎𝐾)𝑁
∗

1
+ 𝑞)

𝑎𝑞2𝐾
.

(14)

On the other hand, when

(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) ∈ 𝐸
2
,

here, 𝐸
2
= { (𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) | 𝑚𝑐 > 𝑞𝑏,

𝑞
2
𝑎 < (𝑚𝑐 − 𝑞𝑏)

2

,

√ (𝑚𝑐 − 𝑞𝑏)
2

− 4𝑞2𝑎

> − (−𝑚
2
𝑐
2
+ 2 𝑞𝑏𝑚𝑐 + 𝑞𝑎𝐾𝑚𝑐

− 𝑞
2
𝑎𝐾𝑏 + 2 𝑞

2
𝑎 − 𝑞
2
𝑏
2
)

× (−𝑚𝑐 + 𝑞𝑏 + 𝑞𝑎𝐾)
−1

> 0,

𝑏

𝑎
−

𝑚𝑐

𝑞𝑎
+ 𝐾 > 0} ,

(15)

there exists another unique stationary coexistence state
(𝑁
∗

2
, 𝑃
∗

2
) implying

𝑁
∗

2
=

1

2

−𝑞𝑏 + 𝑚𝑐 + 𝐴

𝑞𝑎
,

𝑃
∗

2
=

𝑐𝑟 ((−𝑚𝑐 + 𝑏𝑞 + 𝑞𝑎𝐾)𝑁
∗

2
+ 𝑞)

𝑎𝑞2𝐾
.

(16)

It is worth mentioning that equilibria (𝑁
∗

1
, 𝑃
∗

1
) and

(𝑁
∗

2
, 𝑃
∗

2
) cannot coexist. In this paper, we mainly focus on

the dynamics of (𝑁
∗

1
, 𝑃
∗

1
) and rewrite it as (𝑁

∗
, 𝑃
∗
). The

dynamics behavior of (𝑁∗
2
, 𝑃
∗

2
) is similar to that of (𝑁∗

1
, 𝑃
∗

1
).

To perform a linear stability analysis, we linearize model
(3) around the stationary state (𝑁∗, 𝑃∗) for small space- and
time-dependent fluctuations and expand them in Fourier
space:

𝑁(r, 𝑡) ∼ 𝑁
∗
𝑒
𝜆𝑡
𝑒
𝑖�⃗�⋅r

, 𝑃 (r, 𝑡) ∼ 𝑃
∗
𝑒
𝜆𝑡
𝑒
𝑖�⃗�⋅r

,

r = (𝑥, 𝑦) , �⃗� = (𝑘
𝑥
, 𝑘
𝑦
) ,

(17)

where 𝜆 is the eigenvalue of the Jacobian matrix of model (3).
Hopf bifurcation is an instability induced by the transfor-

mation of the stability of a focus. Mathematically speaking,
Hopf bifurcation occurs when Im(𝜆) ̸= 0 and Re(𝜆) = 0, at
𝑘 = 0; Im(𝜆) is the imaginary part, Re(𝜆) is the real part, and
𝑘 is the wave number. So we get the Hopf bifurcation surface:

𝐻 = {(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) | det (𝐽
0
) > 0,

trace (𝐽
0
) = 0} ,

(18)

where

det (𝐽
0
) = −(𝑟 − 2

𝑟𝑁
∗

𝐾
)𝑞

+
𝑚𝑞𝑃
∗
+ 𝑐𝑚 (𝑟 − 2 (𝑟𝑁

∗
/𝐾))𝑁

∗

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)

−
𝑚𝑞𝑁
∗
𝑃
∗
(𝑏 + 2𝑎𝑁

∗
)

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)
2
,

trace (𝐽
0
) = 𝑟 − 2

𝑟𝑁
∗

𝐾
− 𝑞

+
𝑚(−𝑃

∗
+ 𝑐𝑁
∗
+ 𝑎𝑁
∗2
𝑃
∗
+ 𝑏𝑐𝑁

∗2
+ 𝑐𝑁
∗3
𝑎)

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)
2

,

(19)
the frequency of periodic oscillations in time 𝜔

𝐻
satisfies

𝜔
𝐻

= Im(𝜆) = √det(𝐽
0
), and the corresponding wavelength

𝜆
𝐻
satisfies 𝜆

𝐻
= 2𝜋/𝜔

𝐻
= 2𝜋/√det(𝐽

0
). In particular, we

take 𝐾 as the bifurcation parameter and can get the critical
value of Hopf bifurcation from (18):

𝐾
𝐻

= (− (𝑎𝑞
2
(5𝑚𝑐 − 3𝑞𝑏) − (3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏)

2
)

× √(𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞2𝑎 − 4𝑞

4
𝑎
2
+ 𝑞
2
(𝑚𝑐 − 𝑞𝑏)

× (11𝑚𝑐 − 5𝑞𝑏) 𝑎 − (3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏)
3
)

× ((−𝑎𝑞 (((2𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏) − 2𝑞
2
𝑎)

× √(𝑚𝑐 − 𝑞𝑏)
2
− 4𝑞2𝑎 − 2𝑎𝑞

2

× (3𝑚𝑐 − 2𝑞𝑏) + (2𝑚𝑐 − 𝑞𝑏)

×(𝑚𝑐 − 𝑞𝑏)
2
)))
−1

.

(20)
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Turing instability is induced only by “pursuit and evasion”
if the predator can catch the prey by pursuit. We call the
critical state of Turing instability as Turing bifurcation. Turing
bifurcation occurs when “Im(𝜆) = 0 and Re(𝜆) = 0, at 𝑘 =

𝑘
𝑇

̸= 0,” and thewavenumber 𝑘
𝑇
satisfies 𝑘2

𝑇
= √det(𝐽

0
)/𝑑
1
𝑑
2
.

In addition, at the Turing threshold, the spatial symmetry of
the system is broken and the patterns are stationary in time
and oscillatory in space with the wavelength 𝜆

𝑇
= 2𝜋/𝑘

𝑇
.

And the Turing bifurcation surface is given by

𝑇 = {(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝑑
1
, 𝑑
2
, 𝐾) | det (𝐽

𝑘
) = 0,

trace (𝐽
𝑘
) = 0} ,

(21)

where

det (𝐽
𝑘
)

= −(𝑟 − 2
𝑟𝑁
∗

𝐾
− 𝑑
1
𝑘
2
) (𝑞 + 𝑑

2
𝑘
2
)

× ((𝑞 + 𝑑
2
𝑘
2
)𝑚𝑃
∗

+ (𝑟 − 2(
𝑟𝑁
∗

𝐾
) − 𝑑
1
𝑘
2
) 𝑐𝑚𝑁

∗
)

× (1 + 𝑏𝑁
∗
+ 𝑎𝑁
∗2

)
−1

−
𝑚 (𝑏 + 2𝑎𝑁

∗
) (𝑞 + 𝑑

2
𝑘
2
)𝑁
∗
𝑃
∗

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)
2

,

(22)

trace (𝐽
𝑘
) = 𝑟 − 2

𝑟𝑁
∗

𝐾
− 𝑞 − (𝑑

1
+ 𝑑
2
) 𝑘
2

+
𝑚(−𝑃

∗
+ 𝑐𝑁
∗
+ 𝑎𝑁
∗2
𝑃
∗
+ 𝑏𝑐𝑁

∗2
+ 𝑐𝑁
∗3
𝑎)

(1 + 𝑏𝑁∗ + 𝑎𝑁∗
2
)
2

,

(23)

and the critical value of Turing bifurcation can be obtained
from (21) as follows:

𝐾
𝑇
=

𝐹
1

𝐹
2

, (24)

where

𝐹
1
= 𝑟 ((4𝑞

2
𝑎 (2𝑚𝑐 − 𝑞𝑏)

− (3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏)
2

)

× √(𝑚𝑐 − 𝑞𝑏)
2

− 4𝑞2𝑎

+ ((𝑚𝑐 − 𝑞𝑏)
2

− 4𝑞
2
𝑎)

⋅ ((3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏) − 2𝑞
2
𝑎))

× ( (3𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏) − 4𝑞
2
𝑎 − (3𝑚𝑐 + 𝑞𝑏)

×√(𝑚𝑐 − 𝑞𝑏)
2

− 4𝑞2𝑎) 𝑑
2
,

𝐹
2
= 𝑞𝑎 (2𝑚𝑐 ((𝑚𝑐 − 𝑞𝑏)√(𝑚𝑐 − 𝑞𝑏)

2

− 4𝑞2𝑎

+ 4𝑞
2
𝑎 − (𝑚𝑐 − 𝑞𝑏)

2

)𝐵

+ ( (3𝑚𝑐 − 𝑞𝑏) 𝑑
2

⋅ (2𝑚
2
𝑐
2
− 3𝑞𝑏𝑚𝑐 + 𝑞

2
𝑏
2
− 4𝑞
2
𝑎) 𝑟

+ 2𝑞𝑑
1
𝑚𝑐(𝑚𝑐 − 𝑞𝑏)

2

)

× ((𝑚𝑐 − 𝑞𝑏)
2

− 4𝑞
2
𝑎)

+ (−2𝑑
2
((3𝑚𝑐 − 𝑞𝑏) (2𝑚𝑐 − 𝑞𝑏) (𝑚𝑐 − 𝑞𝑏)

2

− 2𝑞
2
𝑎 (−4𝑞

2
𝑎 + 3𝑞

2
𝑏
2

− 12𝑞𝑏𝑚𝑐 + 11𝑚
2
𝑐
2
)) 𝑟

−4𝑞𝑐𝑚 (𝑚𝑐 − 𝑞𝑏) 𝑑
1
((𝑚𝑐 − 𝑞𝑏)

2

− 4𝑞
2
𝑎))

× √(𝑚𝑐 − 𝑞𝑏)
2

− 4𝑞2𝑎

+ (𝑞
2
𝑏
2
− 2𝑞𝑏𝑚𝑐 + 𝑚

2
𝑐
2
− 4𝑞
2
𝑎)

× ( (2𝑚𝑐 − 𝑞𝑏) 𝑑
2
(3𝑚
2
𝑐
2
− 4𝑞𝑏𝑚𝑐

+𝑞
2
𝑏
2
− 4𝑞
2
𝑎) 𝑟

+2𝑚𝑐𝑞𝑑
1
((𝑚𝑐 − 𝑞𝑏)

2

− 4𝑞
2
𝑎) ) ) ,

𝐵 = ( − 2𝑑
1
𝑞 (( (𝑑

1
𝑏𝑞
2
− 𝑞𝑑
1
𝑚𝑐 − 𝑞𝑟𝑏𝑑

2
+ 2𝑟𝑚𝑐𝑑

2
)

× (4𝑞
2
𝑎 − (𝑚𝑐 − 𝑞𝑏)

2

)

−𝑟𝑚𝑐𝑑
2
(𝑚𝑐 − 𝑞𝑏)

2

)

⋅ √(𝑚𝑐 − 𝑞𝑏)
2

− 4𝑞2𝑎

+ (8𝑞
4
𝑑
2
𝑟 − 8𝑞

5
𝑑
1
) 𝑎
2

+ 4 (𝑚𝑐 − 𝑞𝑏) 𝑎𝑞
2
𝑟𝑚𝑐𝑑
2

+ (3𝑟𝑚𝑐𝑑
2
− 𝑞𝑑
1
𝑚𝑐 + 𝑑

1
𝑏𝑞
2
− 𝑞𝑟𝑏𝑑

2
)

× ((𝑚𝑐 − 𝑞𝑏)
3

− 6(𝑚𝑐 − 𝑞𝑏)𝑎𝑞
2
)) )

1/2

.

(25)

Linear stability analysis yields the bifurcation diagram
with 𝑟 = 1, 𝑎 = 0.125, 𝑏 = 1, 𝑐 = 0.7, 𝑚 = 0.625, 𝑞 = 0.18,
and 𝑑

2
= 0.2 as shown in Figure 1(a). In this case, parameters

(𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) ∈ 𝐸
1
, and (𝑁

∗
, 𝑃
∗
) is the unique stationary

coexistence state. From Figure 1(a), one can see that the Hopf
bifurcation line and the Turing bifurcation curve separate
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the parametric space into three distinct domains. In domain
I, all two bifurcation lines are located below; the uniform
steady state is the only stable solution of the model. Domain
II is the region of pure Hopf instability. When the parameters
correspond to domain III, which is located above all two
bifurcation lines, both Hopf and Turing instability occur.
Figure 1(b) illustrates the relation between the real and the
imaginary parts of the eigenvalue 𝜆 with 𝐾 = 2.8 > 𝐾

𝐻
=

2.279, which is located in domain II; one can see that when
𝑘 = 0, Re(𝜆(𝑘)) > 0 and Im(𝜆(𝑘)) ̸= 0. Figure 1(c) displays
the case of the critical value of Turing bifurcation 𝐾 = 𝐾

𝑇
=

3.499; in this case, Re(𝜆(𝑘)) = 0 and Im(𝜆(𝑘)) = 0 at 𝑘 =

𝑘
𝑇
= 2.080. When𝐾 = 4.0, parameters are located in domain

III; Figure 1(d) indicates that, at 𝑘 = 0, Re(𝜆(𝑘)) > 0 and
Im(𝜆(𝑘)) ̸= 0.

3. Spatiotemporal Dynamics of the Models

In this section, we perform extensive numerical simula-
tions of the spatially extended models (4) and (5) in two-
dimensional space, and the qualitative results are shown
here. All our numerical simulations employ the zero-flux
Neumannboundary conditionswith a system size of 200×200
space units. The parameters are 𝑟 = 1, 𝑎 = 0.125, 𝑏 = 1, 𝑐 =

0.7, 𝑚 = 0.625, 𝑞 = 0.18, 𝑑
1
= 0.02, 𝑑

2
= 0.2, and 𝐾 = 2.8 or

𝐾 = 4.0, which satisfy (𝑎, 𝑏, 𝑐, 𝑚, 𝑞, 𝑟, 𝐾) ∈ 𝐸
1
.Models (4) and

(5) are integrated initially in two-dimensional space from the
homogeneous steady state; that is, we start with the unstable
uniform solution (𝑁

∗
, 𝑃
∗
) with small random perturbation

superimposed; in each, the initial condition is always a small
amplitude random perturbation (±5 × 10

−4
), using a finite

difference approximation for model (4) or Fourier transform
method for model (5) for the spatial derivatives and an
explicit Euler method for the time integration with a time
stepsize of Δ𝑡 = 1/24 and space stepsize (lattice constant) of
Δ𝑥 = Δ𝑦 = 1.When the system reached a periodic oscillatory
state, we took a snapshot with white corresponding to the
high value of prey 𝑁 while black corresponding to the low
one.

In the numerical simulations, different types of dynamics
are observed and we have found that the distributions of
predator and prey are always of the same type. Consequently,
we can restrict our analysis of pattern formation to one
distribution. In this section, we show, for instance, the
distribution of prey𝑁.

3.1. Pattern Formation of Model (4). Figure 2 shows the
evolution of the spatial patterns of prey 𝑁 at 𝑡 = 0, 100,
300, 500, 1000, and 2000, with random small perturbation
of the equilibrium (𝑁

∗
, 𝑃
∗
) = (0.748, 2.132) of model (4)

with 𝐾 = 2.8, located in domain II, more than the Hopf
bifurcation threshold 𝐾

𝐻
= 2.279 and less than the Turing

bifurcation threshold 𝐾
𝑇

= 3.499. In this case, pure Hopf
instability occurs.One can see that, formodel (4), the random
initial distribution (cf. Figure 2(a)) leads to the formation
of macroscopic spiral patterns (cf. Figures 2(d) to 2(f)). In
other words, in this situation, spatially uniform steady-state
predator-prey coexistence no longer exists. Small random

fluctuations will be strongly amplified by diffusion, leading
to nonuniform population distributions. From the analysis in
Section 2, we find that, with these parameters in domain II,
the spiral pattern arises from the Hopf instability. The lower
panel in Figure 2 shows the corresponding (g) time series
and (h) phase portraits. Figure 2(g) illustrates the evolution
process of prey𝑁 and periodic oscillating in time finally; (h)
exhibits the fact that a limit cycle arises, which is caused by
the Hopf bifurcation.

When 𝐾 = 4.0 > 𝐾
𝑇

> 𝐾
𝐻
, in this case,

parameters in domain III (Figure 1(a)) and both Hopf and
Turing instabilities occur. The nontrivial stationary state is
(𝑁
∗
, 𝑃
∗
) = (0.748, 2.365). As an example, the formation

of a regular macroscopic two-dimensional spatial pattern is
shown in Figure 3. The lower panel in Figure 3 shows the
corresponding (g) time-series plots and (h) phase portraits.

Comparing this situation (Figure 3) with the one above
(Figure 2), it is easy to see that the pattern formations are
all spiral wave. From the analysis in Section 2, we know that
when 𝐾 = 2.8, the wavelength 𝜆 = 3.100 while, at 𝐾 = 4.0,
𝜆 = 3.021. And the frequency of periodic oscillations in time
is as inverse proportion with wavelength, so we can know
that Turing instability has positive effect on the frequency
while it has negative effect on wavelength. This is the reason
why the spiral curves are more dense in Figure 3(f) than
in Figure 2(f). On the other hand, one can see that when
𝐾 = 4.0, the time-series plots (cf. Figure 3(g)) indicate that
when Turing instability occurs, the solution of model (4)
is strongly oscillatory in time while with 𝐾 = 2.8 (pure
Hopf bifurcation emerges) it is periodic (cf. Figure 2(g)). In
addition, comparing Figure 2(g) with Figure 3(g), one can see
that Turing instability has positive effects on the amplitude of
prey 𝑁. And from Figure 3(h), one can see that a quasilimit
cycle emerges while, in Figure 2(h), it is a cycle. Although
there is some difference points between Figures 2 and 3,
we can know that Turing instability cannot give birth to
different type pattern. In our previous work [51], we find that
Turing instability can change pattern type. This may be an
important difference between the Holling-type IV and the
ratio-dependent functional response of predator-preymodel.

On the other hand, the basic idea of diffusion-driven
instability in a reaction-diffusion system can be understood
in terms of an activator-inhibitor system or predator-prey
model (4). The functioning of this mechanism is based on
three points [6]. First, a random increase of activator species
(prey 𝑁) should have a positive effect on the creation rate
of both activator (prey 𝑁) and inhibitor (prey 𝑃) species.
Second, an increment in inhibitor species should have a
negative effect on formation rate of both species. Finally,
inhibitor species 𝑃 must diffuse faster than activator species
𝑁. Certainly, the reaction-diffusion predator-prey model
(4), with Holling-type IV functional response and predators
diffusing faster than prey (i.e., 𝑑

2
> 𝑑
1
), provides this

mechanism. And spirals and curves are the most fascinating
clusters to emerge from the predator-preymodel. A spiral will
form from a wave front when the prey line (which is leading
the front) overlaps the pursuing line of predator [38]. The
prey on the extreme end of the line stops moving as there is
no predator in their immediate vicinity. However the prey𝑁
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Figure 1: (a) 𝐾 − 𝑑
1
Bifurcation diagram for model (4) with 𝑟 = 1, 𝑎 = 0.125, 𝑏 = 1, 𝑐 = 0.7, 𝑚 = 0.625, 𝑞 = 0.18, and 𝑑

2
= 0.2. Hopf

and Turing bifurcation lines separate the parameter space into three domains. The other parameters in (b)–(d) are 𝑑
1
= 0.02; the bifurcation

parameter𝐾 equals (b) 2.8 > 𝐾
𝐻

= 2.279; (c) 3.499 = 𝐾
𝑇
; (d) 4.0 > 𝐾

𝑇
> 𝐾
𝐻
. The real parts Re(𝜆) and the imaginary parts Im(𝜆) are shown

by solid curves and dashed curves, respectively.

and the predator 𝑃 in the center of the line continue moving
forward. This forms a small trail of prey at one (or both) end
of the front. This prey starts breeding and the trailing line
of prey thickens and attracts the attention of predator at the
end of the fox line that turns towards this new source of prey.
Thus a spiral forms with predator 𝑃 on the inside and prey
𝑁 on the outside. If the original overlap of prey occurs at
both ends of the line a double spiral will form. Spirals can also
form as prey blob collapses after predator eats into it. This is
the reason why the pattern formation of model (4) is spiral
wave.

3.2. The Effect of Noise Only of Model (5). Now, we turn our
focus on the effect of noise on the predator 𝑃 of stochastic
model (5). In this case, 𝐴 = 0; that is, the periodic forcing is
not present.

Figure 4 shows the dynamics of model (5) with noise
on the predator. The first row of Figure 4, that is, (a), 𝜀 =

0.0001; the second row, (b), 𝜀 = 0.01; the third row, (c),
𝜀 = 0.05; and the last row of Figure 4, (d), 𝜀 = 0.1.
And the first column of Figure 4, marked as (i), shows the
snapshots of spatiotemporal pattern of model (5) at 𝑡 =

2000 with different intensity of noise, respectively. In this
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Figure 2: Grey-scaled snapshots of spatiotemporal pattern of the prey 𝑁 of model (4) with 𝐾 = 2.8. (a) 𝑡 = 0, (b) 𝑡 = 100, (c)
𝑡 = 300, (d) 𝑡 = 500, (e) 𝑡 = 1000, and (f) 𝑡 = 2000. The lower panels show the corresponding (g) time-series plots and (h) phase portraits.

case, one can see that the pattern formation turns into
spatial chaotic from spiral wave with the increase of noise
intensity 𝜀. And the second column of Figure 4, marked as
(ii), displays the phase portraits of model (5) with different
intensity of noise, respectively. We can see that, as noise
intensity 𝜀 increasing, the symmetry of the limit cycle is
broken and gives rise to chaos. The last column of Figure 4,
(iii), illustrates the time-series plots of prey 𝑁 with different
intensity of noise, respectively. One can see that noise breaks
the periodic oscillations in time and gives rise to drastically
ruleless oscillations in time.

3.3.The Effect of Periodic Forcing ofModel (5). In the previous
subsection, we have shown the effect of noise on the predator
𝑃 ofmodel (5). An interesting question is whether such noise-
sustained oscillations can be entrained by a weak external
forcing, in this case, 𝜀 = 0. This is investigated here.

When model (5) is noise free, there is a phenomenon
of frequency locking or resonant response [56, 58–61]. That

is, without noise, the spatially homogeneous oscillation does
not respond to the external periodic forcing when the
amplitude 𝐴 is below a threshold whose value depends on
the external period 𝑇in = 2𝜋/𝜔. Above the threshold, model
(5) may produce oscillations about period 𝑇out with respect
to external period 𝑇in, which is called frequency locking or
resonant response. That is, the model produces one spike
within each of the𝑀 = 𝑇out/𝑇in periods of the external force,
called 𝑀 : 1 resonant response [56, 61]. The phenomenon of
coherence resonance is of great importance [60]. Following
Si et al. [61], in the present paper, the output period 𝑇out is
defined as follows:𝑇

𝑖
is the time interval between the 𝑖th spike

and (𝑖 + 1)th spike. 𝑚 spikes are taken into account and the
average value of them is 𝑇out = ∑

𝑚−1

𝑖=1
𝑇
𝑖
/(𝑚 − 1).

As an example, with the amplitude 𝐴 = 0.001, Figure 5
shows 5 : 1 resonant response with 𝜔 = 0.2𝜋 (a) and
𝜔 = 0.02𝜋 (c), respectively. And Figures 5(b) and 5(d) are the
phase portraits corresponding to (a) and (c). We can see that
when𝜔 = 0.2𝜋, there exists a periodic orbit, while,𝜔 = 0.02𝜋,
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Figure 3: Grey-scaled snapshots of spatiotemporal pattern of the prey 𝑁 of model (4) with 𝐾 = 4.0. (a) 𝑡 = 0, (b) 𝑡 = 100, (c) 𝑡 = 300, (d)
𝑡 = 500, (e) 𝑡 = 1000, and (f) 𝑡 = 2000. The lower panels show the corresponding (g) time-series plots and (h) phase portraits.

a periodic-2 orbit of model (5) emerges. Obviously, different
𝜔 can emerge from the same resonant response, and different
phase orbits, that is, different numerical solution ofmodel (5),
may correspond to the same resonant response.

3.4. The Effect of Noise and Periodic Forcing of Model (5).
Now, we consider the dynamics about resonant response of
model (5) with both noise and periodic forcing. As depicted
in Figure 6, the prey can generate 5 : 1 (a) and 4 : 1 (c)

locked oscillations, depending on the amplitude 𝐴 and
angular frequency 𝜔. Figures 6(b) and 6(d) illustrate the
spiral pattern at 𝑡 = 2000 corresponding to (a) and (c),
respectively. In contrast, we change one of the parameters
of Figure 6(c) 𝐴 = 0.001 to 𝐴 = 0.01 (e); one can see that
the resonant response vanishes and the corresponding spiral
pattern (f) is similar to (b). It indicates that the amplitude
𝐴 is a control factor for pattern formation. In addition,
comparing Figure 6(b) with 6(d), one can see that the
pattern formations are determined by noise intensity 𝜀, too.
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Figure 4: Dynamics of model (5), for the following noise intensity. (a) 𝜀 = 0.0001; (b) 𝜀 = 0.01; (c) 𝜀 = 0.05; (d) 𝜀 = 0.1. (i) Snapshots of
pattern formation at time 2000; (ii) phase portraits; (iii) time-series plots. 𝐴 = 0 and the other parameters are the same as those in Figure 2.

In Figure 7, we have shown a typical pattern formation
process in the 5 : 1 frequency locking regime with 𝐴 = 0.001

and 𝜔 = 0.2𝜋. From 𝑡 = 1870 (a) to 𝑡 = 1920 (f), the pattern
formation of prey𝑁 is spiral wave and some small excitations
already develop.One can see that, during the secondperiod of
the forcing, the prey is almost fully synchronized and relaxes
slowly back to the state atmoment (f). Obviously, the external
periodic forcing at moment (e) repeats that at moment (a).
However, the prey 𝑁 does not exactly repeat that due to a
small fluctuation of the phase difference.

4. Conclusions and Remarks

In this paper, we present a spatial Holling-type IV predator-
prey model containing some important factors, such as noise
(random fluctuations), the external periodic forcing, and
diffusion processes. And the numerical simulations were
consistent with the predictions drawn from the bifurcation
analysis, that is, Hopf bifurcation and Turing bifurcation.

If the parameter 𝐾, the carrying capacity, is located in
domain II of Figure 1(a), the Hopf instability occurs and
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Figure 5: External periodic forcing induced frequency locking of model (4). The solid curve is time series of prey 𝑈; the dash curve is the
corresponding external periodic forcing. Other parameters are the same as those in Figure 3.

the destruction of the pattern begins from the prey 𝑁, while
it begins from the predator 𝑃 if 𝐾 is located in domain
III and both Hopf and Turing instabilities occur. From an
ecological viewpoint, it shows that the initial and relatively
rapid invasion of prey by predators can be followed by two
subsequent invasions.

Furthermore, we demonstrate that noise and the external
periodic forces play a key role in the predator-prey model
(5) with the numerical simulations. We provoke qualitative
transformations of the response of the model by changing
noise intensity; noise can enhance the oscillation of the
species density and format large clusters in the space. Periodic
oscillations appear when the spatial noise and external peri-
odic forcing are turned on; it also has been realized thatmodel
(5) is very sensitive to external periodic forcing through the
natural annual variation of prey growth. In conclusion, we
have shown that the cooperation between noise and external

periodic forces inherent to the deterministic dynamics of
periodically driven models gives rise to the appearance of a
rich transport phenomenology.

Significantly, model (5) exhibits oscillations when both
noise and external forces are present. This means that
the dynamics of the predator population may be partly
determined not only by the deterministic factors but also
by the external forcing and the stochastic factors. There-
fore, the model for spatially extended systems composed
of two species could be useful to explain spatiotempo-
ral behaviors of populations whose dynamics are strongly
affected by noise and the environmental physical vari-
ables, and the results of this paper are an important
step toward providing the theoretical biology commu-
nity with simple practical numerical methods, for inves-
tigating the key dynamics of realistic predator-prey mod-
els.
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Figure 6: Dynamics of model (5) with both noise and periodic forcing. (b, d, and f) are snapshots at 𝑡 = 2000 corresponding to the left hand
side resonant response. The other parameters are the same as those in Figure 3.
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Figure 7: Typical pattern formation of the forced noisy prey in the 5 : 1 locking region at 𝐴 = 0.001 and 𝜀 = 0.0001 corresponding to
Figure 6(a). The lower panel shows the time series of the prey𝑁 (the solid curve) and the corresponding external periodic forcing (the dash
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