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Statistical challenges in monitoring modern biosurveillance data are well described in the literature. Even though assumptions of
normality, independence, and stationarity are typically violated in the biosurveillance data, statistical process control (SPC) charts
adopted from industry have been widely used in public health for communicable disease monitoring. But, blind usage of SPC
charts in public health that ignores the characteristics of disease surveillance data may result in poor detection of disease outbreaks
and/or excessive false-positive alarms.Thus, improved biosurveillance systems are clearly needed, and participation of statisticians
knowledgeable in SPC alongside epidemiologists in the design and evaluation of such systems can bemore productive.We describe
and study amethod formonitoring reportable disease counts using a Poisson distributionwhosemean is allowed to vary depending
on theweek of the year.The seasonality ismodeled by a trigonometric functionwhose parameters can be estimated by some baseline
set of data. We study the ability of such a model to detect an outbreak. Specifically, we estimate the probability of detection (POD),
the average number of weeks to signal given that a signal has occurred (conditional expected delay, or CED), and the false-positive
rate (FPR, the average number of false-alarms per year).

1. Introduction

Homeland Security Presidential Directive 21 of October 18,
2007, defined biosurveillance as “. . . the process of active data-
gathering with appropriate analysis and interpretation of
biosphere data thatmight relate to disease activity and threats
to human or animal health—whether infectious, toxic, meta-
bolic, or otherwise, and regardless of intentional or natural
origin—in order to achieve early warning of health threats,
early detection of health events, and overall situational aware-
ness of disease activity. . ..” This suggests two distinct goals:
situational awareness and early event detection. While situa-
tional awareness is certainly an important characteristic of a
disease surveillance system, we focus on the problem of early
event detection (EED).

Many diseases have an occurrence rate that is periodic
throughout the year. Often a disease will peak in the summer
and have a low occurrence rate in the winter, or vice versa.

For example, E. coli O157:H7 infections tend to peak in the
summer and pertussis tends to peak in the winter. There
are some diseases, such as tuberculosis, that have a nearly
constant occurrence rate throughout the year. A surveillance
system for diseases whose occurrence rate is seasonal cannot
have a constant control limit since there would be frequent
signal limits in the peak season and practically no signals in
the off-season. In this paper, we propose and study the use of a
seasonalmodel for themean, or expected, disease count. Data
are typically collected weekly and the Poisson distribution is a
reasonable model for these disease counts. Figure 1 illustrates
the seasonality in the reported cases of pertussis in the state
of Missouri from 2002 through 2011. The rate is least in late
winter, early spring, and highest in late fall and throughout
most of the winter. The control limits, which are shown in
red in this figure, will be discussed in the next section.

The problem of disease surveillance or biosurveillance
has been addressed in a number of books in recent years.
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Figure 1: Weekly Pertussis cases, 2002–2011, Missouri, USA.

The edited books by Kass-Hout and Zhang [1], Lawson and
Kleinman [2], Lombardo and Buckeridge [3], M’ikanatha
et al. [4], Wagner et al. [5],Wilson et al. [6], andZeng et al. [7]
cover a wide spectrum of techniques for monitoring disease.
Recently, the books by Chen et al. [8] and Fricker [9] have
systematically studied the problem of disease surveillance.

Disease surveillance shares many characteristics with
quality control. In quality control or quality surveillance, con-
trol charts are used to monitor the quality of a manufactur-
ing process. When a special event occurs, causing the output
of the process to abruptly change, the control chart should
raise a signal for workers to investigate. Thus, a control

chart is used in industry to identify when the output differs
from what would be expected by chance. In a similar
fashion, disease surveillance is supposed to detect when the
occurrence of a disease exceeds what would be expected
by chance because this aberration in data may indicate a
probable disease outbreak. Thus, the primary tool for disease
surveillance could be a control chart, similar to what is used
in industry.This technique is called statistical process control
(SPC).

There are, however, differences between biosurveillance
and SPC, and SPC methods must be modified before using
them for biosurveillance analysis. While quality control has
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the single objective of detecting process changes, biosurveil-
lance has the dual goals of early event detection and sit-
uational awareness. In quality control, no effort is placed
on estimating the current state of the system, since in the
absence of a signal, the process mean is assumed unchanged.
In quality control, when a chart does raise an out-of-control
signal, the process is stopped and a search is made for the
cause. When the process resumes, the control charts are
reset when monitoring begins after a signal. By contrast, in
biosurveillance, there is no “stopping of the process” and as
a result, process monitoring continues and the monitoring
statistics are never reset. Even without intervention, disease
outbreaks that cause out-of-control signals are transient,
and disease incidence returns to its original rate when the
outbreak is over. Because of this, the metric of average run
length (ARL), which presumes a prolonged constant step
shift, is inappropriate for comparingmethods of surveillance.
Montgomery [10] gave a comprehensive account of methods
for statistical process control, including charts for counts,
and Woodall [11] gave a review of methods for discrete
charts and provided a thorough review of literature up to
that point in time. The Poisson distribution, which plays
a central role in disease surveillance is monitored using
the c-chart or the u-chart. Borror et al. [12] proposed use
of an exponentially weighted moving average control chart
for Poisson data which has better run length properties for
small shifts, and Jonsson [13] proposed use of the CUSUM.
Farrington et al. [14] developed methods for detecting the
occurrence of outbreaks using a scanning system along with
a simple regression algorithm. Parker [15] specifically applied
the Poisson distribution to problems of disease surveillance.
Recently, Noufaily et al. [16], Unkel et al. [17], and Enki et al.
[18] developed and applied methods for Poisson counts and
quasi-Poisson counts. Shmueli and Burkom [19] and Fricker
[20] discuss some of the methodological issues in disease
surveillance. Serfling [21] was the first to suggest modeling
seasonality in disease rates when he studied the spread of
influenza.

In this paper, we describe a simple method for early out-
break detection, DESTEM (Disease Electronic Surveillance
with TrigonometricModels), andwe apply it to the reportable
communicable diseases data in Missouri, USA.

2. The Trigonometric Model

We assume that the disease count in week 𝑡 follows a Poisson
distribution with mean 𝜇

𝑡
where 𝜇

𝑡
varies by week according

to a first-order trigonometric model
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Figure 2: First-order trigonometric model (top) and second-order
trigonometricmodel (bottom).The second-ordermodel can be used
in situations where the disease “lingers” after peaking.

Of course, a higher-order model, such as
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could be used, but the first-order and second-order models
are sufficient to model most diseases. Also, for diseases
that exhibit no seasonality, a zeroth order model, 𝜇

𝑡
=

𝑎

0
can be applied. A first-order trigonometric model can

model simple seasonality, where the expected counts follow
a sinusoidal curve. A second-order trigonometric model can
model situations where a disease “lingers” for a while once
the disease peaks. Figure 2 shows the added flexibility in a
second-order model.

For the Poisson distribution, the variance equals the
mean, or, equivalently, the standard deviation equals the
square root of the mean. As mentioned in the previous
section, the main reason for monitoring diseases is to detect
when an outbreak occurs. In order to do this, either in disease
surveillance or quality surveillance, it is common to put an
upper limit (or both an upper and a lower limit) and when
observed points are outside the limits, it is inferred that
a change in the process has occurred and an investigation
should be done into the nature and cause. In this way, quality
surveillance and disease surveillance are similar. Usually,
however, in disease surveillance we are interested in whether
there has been an increase in the underlying disease rate 𝜇

𝑡
;

this suggests using an upper control limit only. Thus, when
an observed count exceeds the upper limit, an outbreak is
inferred. The most common approach is to put limits three
standard deviations above the mean (also, three standard
deviations below themean in the case of quality surveillance).
Since the standard deviation of the Poisson is equal to the
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square root of the mean, we have the following result for the
upper control limit:

UCL = 𝜇

𝑡
+ 𝐿√𝜇

𝑡
. (4)

The most common choice for 𝐿 is 𝐿 = 3, since for most
distributions nearly all of the probability lies with three
standard deviations of the mean. For a discrete distribution
like the Poisson, this probability is quite variable since the
output is constrained to be an integer. For example, if the
mean is 𝜇

𝑡
= 6.4, then the standard deviation is 2.5298 and

the upper control limit is 13.99, leaving a probability of
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∞
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of exceeding the upper control limit. (Here 𝑋 indicates the
random count for the week.) On the other hand, if the mean
is just slightly higher, say 𝜇

𝑡
= 6.5, then the upper control

limit is 14.63, leaving a probability of

𝑃 (𝑋 > 14.63) = 𝑃 (𝑋 ≥ 15) =

∞

∑

𝑘=15

𝑃 (𝑋 = 𝑘) = 0.00339

(6)

of exceeding the upper control limit. While these are both
small numbers, their reciprocals, 1/0.00625 = 160.0 and
1/0.00339 = 294.7, which have an interpretation as the
expected number of time periods for a signal (assuming that
the means stays constant), are quite different.

Thus, a small change in the mean, from 6.4 to 6.5, caused
a significant change in the probability of exceedance, with one
being almost double the other.

The trigonometric models in (1) and (2) assume that
the disease pattern remains constant from year to year. This
assumption can be relaxed by incorporating one or more
terms that depend on time 𝑡; for example, a simple linear
trend can be accounted for by modifying the models to be
of the form
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For some diseases, such as tick-borne ehrlichiosis, there is a
strong increasing trend across time that must be taken into
account, and for other diseases, such as giardiasis, there is a
decreasing trend. We have found that for most such diseases,
a linear trend as in (7) or (8) is adequate.

It is possible that the predicted means near the trough,
the lowest point on the curve, are negative if the models in (1)
through (8) are used. This phenomenon actually occurs for

some diseases. There are two approaches to dealing with this
problem. One is to truncate the expected count at 0 andmake
a single case cause a signal.This is desirable for some diseases,
such as anthrax, where a single occurrence of a disease is
evidence of an outbreak. The second approach is to assume
that the expected count is actually the exponential of the value
shown in (1) to (8). For example, the second-ordermodelwith
a linear trend would have mean function
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For only a few of the diseases that are monitored does the
estimated mean function dip below zero, so we have found
that applying one of the formulas (1) through (8) is sufficient.
Even in these cases the estimated mean function will usually
dip below zero for just a few weeks during the year, and in
these cases a single case is sufficient to raise a signal.

Figure 1 shows the pertussis cases in Missouri from 2002
through 2011 with the upper control limits, calculated by
UCL = 𝜇

𝑡
+ 𝐿

√
𝜇

𝑡
, where 𝜇

𝑡
is the second-order model from

(2). For pertussis, the estimated equation for 𝜇
𝑡
is
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Figure 3 shows the more recent case of E. coli O157:H7
infections for the year 2013. For E. coli O157:H7, a first-order
model is adequate. Here the estimated trigonometric curve,
from (1), is

𝜇
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= 1.5420 − 0.9203 sin(
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) − 0.9363 cos(2𝜋𝑡
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Calculations for the method and the resulting plots were
done using the package R [22]. The regressions were done
using the linear model function (lm) in R. Figure 3 shows the
system, developed in R [22], that is used to do the required
calculations and display the graphs.

Typically, 50 to 60 diseases (of the 152 reportable diseases)
aremonitored eachweek.A summary is prepared for all of the
monitored diseases. The report gives the current week count,
the year to date count, the count from the same week of the
previous year, a flag denoting the status, and the upper control
limit for the next week. The flag is red if the point is above
the upper control limit, and blue otherwise. The next week’s
upper control limit is given so that a signal can be raised at
the earliest possiblemoment. For example, if next week’s UCL
is 2.4 and three cases have been observed by the middle of
the week, then a signal can be raised at that point. Table 1
shows part of the weekly summary based on the DESTEM
procedure of the status of reportable diseases for the state of
Missouri in Week 17 of 2014, the week ending April 26, 2014.
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Table 1: A portion of the weekly report for the week ending April 26, 2014, showing the status of just the first eleven diseases. The red flag
(circled) indicates a point above the upper control limit. Altogether, there were three “red flags” for this week, with the other two not shown
in this table.

Disease Week 17 count YTD count Previous YTD count Flag Next week upper
control limit

Anaplasma phagocytophilum 1 3 0 1.1
Botulism infant 0 2 1 0
Brucellosis 0 0 1 0
Campylobacteriosis 8 99 163 24.1
Coccidioidomycosis 0 5 2 1.3
Creutzfeldt-Jakob disease (CJD) 0 1 5 1
Cryptosporidiosis 1 36 50 6.2
Cyclosporiasis 0 0 0 0
Dengue fever 0 2 0 0
E. coli Shiga toxin positive 0 24 21 5.4
E. coli O157 0 11 19 4.8
Missouri Department of Health and Senior Services.
DESTEM report for Week 17, week ending, April 26, 2014.
State.

Figure 3: E. coli O157:H7 infections for the year 2013 with the upper control limits computed using the first-order trigonometric model in
(1).

3. A Simulation Study of
DESTEM Performance

In order to test the method’s ability to detect aberrations
indicative of a possible disease outbreak, a Monte-Carlo
simulation is used to model a number of processes with
an induced outbreak. The typical outbreak is one where the
incidence increases linearly for 𝑐 time periods, reaching a
maximum of 𝑏 additional cases, then, decreasing linearly for
𝑐 time periods when the number of additional cases is back
to zero. Figure 4 illustrates this type of outbreak and how it
is applied to the simulated data. Following the suggestions of
Fraker et al. [23], we use simulation to estimate the following
quantities.

(1) The probability of outbreak detection (POD): this is
the probability that the outbreak is detected while it is
still occurring. A small outbreak for a short period of
time will have a smaller probability of being detected
than a large outbreak for a longer period of time.

(2) Conditional expected delay (CED): this is the
expected number of time periods until a signal is
reached conditioned on there being a signal.

(3) False-positive rate (FPR): this is the average number
of false-alarms that are signaled per year.

The usual metric of average run length (ARL), which is
ubiquitous in the process control literature and widely used
in disease surveillance, is inappropriate for the application
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Figure 4: Illustration of typical outbreak and its effect on the
expected disease count.The bottom figure shows the outbreak times
used in the simulations.

discussed here. Use of the ARL presupposes a prolonged step
shift in the variable being monitored, which is unrealistic for
most diseases. More reasonable is an outbreak for which the
number of cases increases for a while and then, even in the
absence of an intervention, decreases back to the background
noise.

We used a 10-year database of Missouri’s surveillance
of two epidemiologically distinct diseases: E. coli O157:H7
infections and pertussis. For pertussis, we selected a second-
order model and for E. coli O157:H7 infections we selected
a first-order model. These choices were based on the epi-
demiological curve of those diseases across the ten-year data
base. In order to obtain baseline data, the weeks where an
outbreak was obviously occurring were removed from the

data base. Because most outbreaks usually occur within a
defined geographic region rather than in the entire state at
once, we tested DESTEM on both, the regional and the state
level data.

3.1. First-Order Trigonometric Model Simulation for E. coli
O157:H7. The experimental factors included outbreak start
time, maximum outbreak size, and outbreak duration. One
outbreak per year was considered in the simulation which
could start at trough, midrange, or peak time of the yearly
disease cycle. The outbreak duration for E. coli O157:H7
was 2 (short), 3 (medium), or 4 (long) weeks. Two sets of
outbreaks, small and large, were imposed in the simulation.
The magnitude of small and large outbreaks varied by the
outbreak start time. The outbreak sizes considered for E. coli
O157:H7 were 1 and 2 additional cases per week during the
trough time, and 2 and 4 additional cases per week during the
disease midrange and peak occurrence. In total, 18 scenarios
were designed to assess the performance of DESTEM in
detecting disease outbreaks. Figure 5 illustrates four years of
a Monte-Carlo simulation using the parameters of scenario
15 (size = 2, duration = 4, signature = (1, 2, 2, 1), total cases =
6, occurring at peak) along with real E. coli O157:H7 counts
in Missouri’s Eastern region during 2010–2013. The signature
of an outbreak gives the number of additional expected
cases for each week during the outbreak; for example, a
signature of (1, 3, 1) would indicate a three-week outbreak
with one additional case the first week, three the second
week, and one the third week.The blue line shows fitted first-
order trigonometric curve used to model the average weekly
counts. The circles are the real E. coli O157:H7 cases, and
the triangles are simulated counts. The simulated outbreaks
occurred at disease peak (week 32) and are shown in red
triangles.The outbreak duration was 4 weeks and the size was
2 additional cases per week.

Each scenario was simulated 10,000 times and the average
POD, CED, and FPR were computed. The simulation results,
shown in Table 2, indicate that the probability of detecting an
outbreak at the regional level was higher and the detection
was faster (CED values were smaller) when compared to the
state level data. The false-positive signal rate was higher for
the regional data analysis; however, the overall false-positive
rate was small for all scenarios. On average, one false-alarm
was produced by DESTEM in 1.91 years at the state level, and
one false-alarm was produced in 1.26 years at the regional
level for E. coli O157:H7 infections.

3.2. Second-Order Trigonometric Model Simulation for Pertus-
sis. Since pertussis cases occur more frequently than E. coli
O157:H7 cases and the outbreaks are prolonged, the experi-
mental parameters were changed. One outbreak per year was
considered at trough, midrange, or peak of yearly occurrence
and could last for 4 (short), 5 (medium), or 6 (long) weeks.
The outbreak size during the pertussis trough time (Week 10)
is assumed to be equal to either 5 or 10 additional cases per
week, and during midrange and peak time (weeks 25 and 46,
resp.) the imposed outbreak is considered to be either 10 or 20
additional cases per week. Figure 6 shows the actual pertussis
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Table 2: Simulation results for E. coli O157:H7 infection outbreaks assuming Poisson model.

E. coli-like outbreak Probability of detection1 Conditional expected delay2 False-positive rate3

Size (𝑏) Duration (2𝑐) Signature4 Time Region State Region State Region State
1 2 (1, 1): 2 Trough 1.000 0.373 1.000 1.433 0.797 0.531
1 3 (1, 1, 1): 3 Trough 1.000 0.516 1.000 1.878 0.832 0.482
1 4 (1, 1, 1, 1): 4 Trough 1.000 0.637 1.000 2.282 0.811 0.459
2 2 (2, 2): 4 Trough 1.000 1.000 1.000 1.000 0.825 0.521
2 3 (1, 2, 1): 4 Trough 1.000 1.000 1.000 1.798 0.799 0.494
2 4 (1, 2, 2, 1): 6 Trough 1.000 1.000 1.000 1.796 0.803 0.462
2 2 (2, 2): 4 Mid 0.545 0.142 1.451 1.586 0.835 0.553
2 3 (1, 2, 1): 4 Mid 0.421 0.133 2.007 2.107 0.791 0.546
2 4 (1, 2, 2, 1): 6 Mid 0.653 0.207 2.417 2.476 0.762 0.537
4 2 (4, 4): 8 Mid 1.000 0.708 1.000 1.393 0.826 0.558
4 3 (2, 4, 2): 8 Mid 1.000 0.573 1.701 1.979 0.797 0.534
4 4 (2, 4, 4, 2): 12 Mid 1.000 0.789 1.694 2.281 0.784 0.536
2 2 (2, 2): 4 Peak 0.457 0.136 1.432 1.453 0.814 0.548
2 3 (1, 2, 1): 4 Peak 0.371 0.119 1.954 2.004 0.783 0.540
2 4 (1, 2, 2, 1): 6 Peak 0.543 0.183 2.358 2.414 0.740 0.535
4 2 (4, 4): 8 Peak 1.000 0.544 1.000 1.410 0.791 0.529
4 3 (2, 4, 2): 8 Peak 1.000 0.405 1.739 1.931 0.773 0.532
4 4 (2, 4, 4, 2): 12 Peak 1.000 0.596 1.747 2.295 0.757 0.536
1Probability of detection (POD) per “outbreak.”
2Conditional expected delay (CED) per “detected outbreaks.”
3False-positive rate in terms of false-positive signals per year.
4The signature is the number of cases in each week during the outbreak, along with the total number of cases.
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Figure 5: Simulated (triangles) and real (circles) E. coli O157:H7 infection counts, Missouri, Eastern Region, 2010–2013. Simulated outbreaks
are the red triangles. The fitted trigonometric model is the blue curve.

data (circles) along with the simulated data (triangles) using
the parameters of scenario 15 in Table 3 (size = 10, duration =
6, signature = (4, 7, 10, 10, 7, 4), with a total of 42 additional
cases, occurring at peak). Although we found a seasonal
component to the counts of pertussis cases, others such as
de Greeff et al. [24] have found an even stronger seasonal
component. We then ran the simulation 10,000 times for
each of the 18 scenarios (Table 3). DESTEM performed well
in detecting pertussis outbreaks accurately and timely. The
false-positive signal rate was small: roughly one false-alarm
every 5.35 years at the state level and one false-alarm every

3.89 years at the regional level. The probability of detection
was nearly 1 for many outbreak scenarios and the conditional
expected delay was usually about 2 or under.

3.3. Performance of DESTEM When There Is Overdispersion.
ThePoisson distribution is the simplestmodel for counts, and
it can be an appropriate model for counts in a number of
situations. The Poisson distribution, being a one-parameter
distribution, has the property that the mean and the variance
are equal. In many applications, the variance of the data
exceeds the mean, making the Poisson model inappropriate.
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Table 3: Simulation results for pertussis outbreaks assuming outbreak model.

Outbreak Probability of detection1 Conditional expected delay2 False-positive rate3

Size (𝑏) Duration (2𝑐) Signature4 Time Region State Region State Region State
5 4 (3, 5, 5, 3): 16 Trough 0.863 0.518 1.903 1.228 0.268 0.187
5 5 (2, 4, 5, 4, 2): 17 Trough 0.758 0.429 2.097 1.237 0.249 0.181
5 6 (1, 3, 5, 5, 3, 1): 18 Trough 0.908 0.583 2.700 1.881 0.255 0.174
10 4 (5, 10, 10, 5): 30 Trough 1.000 0.999 1.371 1.790 0.259 0.187
10 5 (4, 7, 10, 7, 4): 32 Trough 1.000 0.998 1.836 2.255 0.244 0.182
10 6 (4, 7, 10, 10, 7, 4): 42 Trough 1.000 1.000 1.839 2.267 0.255 0.186
10 4 (5, 10, 10, 5): 30 Mid 1.000 0.976 1.577 1.922 0.243 0.192
10 5 (4, 7, 10, 7, 4): 32 Mid 1.000 0.939 2.039 2.391 0.252 0.184
10 6 (4, 7, 10, 10, 7, 4): 42 Mid 1.000 0.987 2.038 2.580 0.244 0.185
20 4 (10, 20, 20, 10): 60 Mid 1.000 1.000 1.000 1.172 0.257 0.186
20 5 (7, 14, 20, 14, 7): 62 Mid 1.000 1.000 1.153 1.616 0.260 0.177
20 6 (7, 14, 20, 20, 14, 7): 82 Mid 1.000 1.000 1.158 1.607 0.244 0.185
10 4 (5, 10, 10, 5): 30 Peak 0.946 0.629 1.965 1.437 0.272 0.195
10 5 (4, 7, 10, 7, 4): 32 Peak 0.881 0.524 2.342 1.504 0.261 0.194
10 6 (4, 7, 10, 10, 7, 4): 42 Peak 0.970 0.704 2.723 2.262 0.263 0.194
20 4 (10, 20, 20, 10): 60 Peak 1.000 1.000 1.276 1.582 0.268 0.197
20 5 (7, 14, 20, 14, 7): 62 Peak 1.000 0.999 1.715 2.119 0.269 0.190
20 6 (7, 14, 20, 20, 14, 7): 82 Peak 1.000 1.000 1.714 2.104 0.264 0.190
1Probability of detection (POD) per “outbreak.”
2Conditional expected delay (CED) per “detected outbreaks.”
3False-positive rate in terms of false-positive signals per year.
4The signature is the number of cases in each week during the outbreak, along with the total number of cases.
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Figure 6: Simulated (triangles) and real (circles) Pertussis case counts, Missouri, Eastern region, 2010–2013. Simulated outbreaks are the red
triangles. The fitted trigonometric model is the blue curve.

This concept is called overdispersion. As a remedy, the
negative binomial distribution is often used as an alternative
to the Poisson (Sparks et al. [25]). The negative binomial
distribution is often thought of as the number of failures in a
sequence of Bernoulli trials before obtaining the 𝑟th success.
The probability mass function for the random variable𝑌with
negative binomial distribution is

𝑃 (𝑌 = 𝑦) = (

𝑦 + 𝑟 − 1

𝑟 − 1

)𝑝

𝑟
(1 − 𝑝)

𝑦

, 𝑦 = 0, 1, 2, . . . .

(12)

While the description given above requires the parameter 𝑟 to
be a positive integer, the above formula is a valid probability
mass function for every 𝑟 > 0, so long as the gamma
distribution is used instead of factorials.Thus, for an arbitrary
positive value 𝑟, the negative binomial has probability mass
function

𝑃 (𝑌 = 𝑦) =

Γ (𝑦 + 𝑟)

Γ (𝑟) 𝑦!

𝑝

𝑟
(1 − 𝑝)

𝑦−𝑟

, 𝑦 = 0, 1, 2, . . . .

(13)
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Figure 7: Negative binomial fit to pertussis data (top), where points above UCL are shown in red. After these points were removed, the
negative binomial was fit again, with the results shown in the bottom.

The mean and variance of the negative binomial distribution
are 𝜇

𝑌
= 𝑟(1 − 𝑝)/𝑝 and 𝜎

2
= 𝑟(1 − 𝑝)/𝑝

2, so that the vari-
ance tomean ratio is 𝜎2

𝑌
/𝜇

𝑌
= 1/𝑝 > 1.The negative binomial

can be reparameterized so that the mean is equal to 𝜇 and the
variance is 𝜎2 = 𝜇 + 𝜃𝜇

2. The parameter 𝜃 is called the over-
dispersion parameter. A value of 𝜃 = 0 leads to the variance
being equal to the mean, and as 𝜃 → 0 the negative binomial
approaches the Poisson.

We ran this negative binomialmodel on the pertussis data
and found that the estimated mean function was

𝜇

𝑡
= 10.7319 − 2.7483 sin(

2𝜋𝑡

52

) + 2.9622 cos(2𝜋𝑡

52

)

− 1.5460 sin(

4𝜋𝑡

52

) + 2.1789 cos(4𝜋𝑡

52

)

(14)

with an estimated overdispersion parameter of ̂𝜃 = 0.5392.
There were, however, a number of pertussis outbreaks during
this period. These outbreaks seem to exaggerate the effect
of overdispersion. If the points above the three standard
deviation limits are removed, the estimates become

𝜇

𝑡
= 8.0568 − 2.1514 sin(

2𝜋𝑡

52

) + 2.3674 cos(2𝜋𝑡

52

)

− 1.1188 sin(

4𝜋𝑡

52

) + 1.3768 cos(4𝜋𝑡

52

)

(15)

with an estimated overdispersion parameter of ̂𝜃 = 0.3215.
The estimated curves are shown in Figure 7. The top part of
Figure 7 is the original data and the bottom part is the data
with outliers removed. Although there are still some points

above the UCL in the bottom figure, these seem to be due to
the higher variability and not to newly discovered outbreaks.

To see how the DESTEM algorithm works when the
assumption of a Poisson distribution is violated, we ran
several simulations under which the counts had a negative
binomial distribution. For both E. coli O157:H7, where the
counts averaged approximately 1.5 per week, and pertussis,
where the counts averaged approximately 8 per week, we
chose the overdispersion parameter to be 𝜃 = 0.1, 𝜃 = 0.2,
or 𝜓 = 0.4. This corresponds to a variance to mean ratio of

𝜎

2

𝜇

=

(𝜇 + 𝜃𝜇

2
)

𝜇

= 1 + 𝜃𝜇,

(16)

which is 1.15, 1.3, or 1.6 for O157:H7 and 1.8, 2.6, and 4.2 for
pertussis.

The simulations were performed much as in Tables 2
and 3. The observations were simulated according to a neg-
ative binomial coefficient with mean 𝜇

𝑡
and overdispersion

parameter 𝜃. The Poisson distribution was then (incorrectly)
assumed and the control limits were computed using three
standard deviation limits. The results of the simulations are
shown in Tables 4 and 5. Although the results vary a bit,
the general conclusions from these tables are that the POD
increases when there is overdispersion (desirable), but the
FPR also increases (undesirable). These results are somewhat
expected since the added variability will cause more signals,
but when the process is stable, these will be false signals.

The DESTEM method here could have assumed the
negative binomial distribution instead of the Poisson, and
the upper control limit would have been a bit higher. This,
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however, requires one additional important parameter to be
estimated (the overdispersion parameter 𝜃). Altogether, for
the full model in (9) seven parameters would have to be
estimated: 𝑎

0
, 𝑎

1
, 𝑏

1
, 𝑏

2
, 𝑐

1
, 𝑐

2
, and 𝜃. It has been shown (Jensen

et al. [26] and Champ et al. [27]) that very large sample
sizes are often needed when the number of parameters is
large. Misestimation of these parameters can lead to charts
whose properties do not resemble those of the corresponding
chart with assumed known parameters. For moderate sample
sizes, the overdispersion parameter is estimated with a fairly
large standard error. In addition, the existence of outbreaks
makes the problem more difficult because we must remove
the outbreak from the data set and reestimate the parameters.
As a general rule, we have excluded observations that are
above the upper control limit and refit themodel based on the
remaining observations. Of course, when these are removed
the upper control limit drops and inevitably there are more
points outside the limits. The process of removing outliers
and recomputing limits can continue, but we have found that
one or two iterations are sufficient. Whatever points remain
outside can either be explained by overdispersion or stillmore
outbreaks; in many cases, it is difficult to distinguish between
these two possibilities.

4. Discussion and Conclusion

We developed a simple analytical methodology, DESTEM,
that was able in this simulation study to timely and accurately
detect aberrations in the reportable diseases weekly data.
Aberrations in the usual communicable disease patterns may
provide a warning sign of an outbreak, but detection of
such aberrations still remains an important challenge in
public health surveillance. Statistical simulation confirmed
that DESTEM performs well under different scenarios rou-
tinely encountered by the epidemiologist at the Missouri
Department of Health and Senior Services (DHSS).

Current widespread usage of syndromic surveillance sys-
tems by public health departments across the USA does not
preclude necessity of traditional surveillance of reportable
communicable diseases [28]. Syndromic surveillance sys-
tems, usually based on sophisticated algorithms, have major
strengths, such as improved timeliness of data availability
(often within hours), completeness of data, flexibility, rea-
sonably good situational awareness, and so forth. But, unlike
diagnostic data that underlies reportable communicable dis-
ease surveillance, syndromic data are an indirect indicator
of a disease outbreak because it is based on the nonspecific
symptom data rather than on the actual disease diagnosis.
Systems such as Biosense [29], Essence [30], and others, are
by contrast systems for collecting, archiving, and presenting
surveillance data. The goals of syndromic surveillance are
often short-term (such as for the Olympics, or a political
convention) and look for omnibus signals in the data. By
contrast, our reportable infections data are cyclical and we
look for a deviation from this norm. SeeChen et al. [8, chapter
2] for a summary ofmany of the popular surveillance systems.

The reportable diseases list includes a variety of condi-
tions with very different incidence rates, incubation periods,

seasonality, and urgency. Despite such a variety, DESTEM
performed well when two epidemiologically distinct infec-
tion outbreaks, E. coli O157:H7 and pertussis, were simu-
lated. For the communicable disease epidemiologist, early
detection of an outbreak is a priority. But, direct application
to biosurveillance of the industrial SPC methods requiring
sufficient data accumulation to detect change in the process
mean could result in the delayed timeliness of detection,
and therefore practical usefulness of surveillance system is
diminished. Thus, the primary goal for DESTEM was set
to meet a specific surveillance purpose, such as accurate
and timely detection of disease outbreaks. The characteristic
of DESTEM is that it does not directly detect a change
in a disease trend; it rather detects an aberration that is
different from a historical trend in any given week of the
year. DESTEM analyzes whether the increased number of
individual observations in any specific week of the year is
unlikely to be happening by chance alone based on the
modeled upper control limit that changes fromweek to week.
Once the probability of such an occurrence by chance alone
is determined to be too low, DESTEM produces a signal,
prompting investigation by the epidemiologist regarding
whether a true disease outbreak is occurring.

It is postulated that public health surveillance data is often
overdispersed, and therefore negative binomial rather than
Poisson distribution is more appropriate assumption (Sparks
et al. [25]). Our simulation data showed that assuming
negative binomial distribution for analysis may not be always
advantageous: while the POD did increase, the FPR also went
up. The problem of using estimated parameters instead of
assumed known parameters arises when we must estimate
the overdispersion. It is likely that both, Poisson and negative
binomial distribution, can be reasonable assumptions when
applied to surveillance data.

Simulation results were also consistent with a common
epidemiological experience that all outbreaks start locally and
should be analyzed using local data. DESTEM performed
better when applied to the historical regional data rather than
using state level data as a baseline for comparison. Thus,
surveillance analysismethodology needs to be accurate, but it
also needs to be applied to amore relevant andmore precisely
defined dataset.

We chose a relatively long 10-year historical baseline
period for modeling because of the need for appropriate
sample size and for better estimation of the variance. While
producing statisticallymore stable estimates, longer historical
periods could affect accuracy of those estimates due to
systematic effects accumulating over the prolonged period
of time. Naturally changing disease trends, new diagnos-
tics, public health control measures, and changing attitudes
of health care providers and population represent various
systematic effects that may distort estimated baseline with
a variable degree. Such a difficult tradeoff seemed to be
justified based on the limited simulation analysis of DESTEM
performance, but it will certainly need more vigorous assess-
ment with the real public health surveillance data. In order
to reduce possible systematic effects in the data, DESTEM
renews the 10-year baseline dataset every year by discarding
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the oldest year from the model while adding the most recent
year’s data.

In conclusion, DESTEM represents a promising tool for
analysis of surveillance data of variety of reportable infectious
diseases. The analytical reports based on this methodology
are easy to understand not only for epidemiologists without
advanced mathematical expertise, but for the general public
as well.
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