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We derive a newmethod of conditional Karhunen-Loève (KL) expansions for stochastic coefficients inmodels of flow and transport
in the subsurface, and in particular for the heterogeneous random permeability field. Exact values of this field are never known, and
thus onemust evaluate uncertainty of solutions to the flow and transportmodels.This is typically done by constructing independent
realizations of the permeability field followed by numerical simulations of flow and transport for each realization and assembling
statistical estimates of moments of desired quantities of interest.We follow the well-known framework of KL expansions and derive
a new method that incorporates known values of the permeability at given locations so that the realizations of the permeability
field honor this data exactly. Our method relies on projections to an appropriate subspace of random weights applied to the
eigenfunctions of the covariance operator. We use the permeability realizations constructed with our stochastic simulation method
in simulations of flow and transport and compare the results to those obtained when realizations are constructed with sequential
Gaussian simulation (SGS). We also compare efficiency and stochastic convergence with that of stochastic collocation.

1. Introduction

Computational modeling of flow and transport in the sub-
surface requires detailed knowledge of coefficients of partial
differential equations (PDEs), in particular of permeabilities
K and porosities Φ. These are heterogeneous; that is, K =

K(𝑥) where 𝑥 ∈ 𝐷 and 𝐷 ⊂ R𝑑 is the domain of flow.
However, the actual values of K(𝑥) are never known exactly
in a real subsurface reservoir; thus the values ofK(𝑥) can only
be inferred from partial measurements at well locations, say
x∗ = (𝑥

∗

1
, . . . , 𝑥

∗

𝑁
𝑚

) ∈ 𝐷, or from some other information
such as seismic and other geological analyses. Therefore
the PDEs are stochastic and a typical set of simulations of
flow and transport involves geostatistical realizations ofK(𝑥)
to account for the associated uncertainty of this data, the
solutions to the PDE, and any associated quantities of interest
𝑄.The randomness (uncertainty) ofK(𝑥) is denoted, as usual,
byK(𝑥, 𝜔)where𝜔 is a randomelement of a probability space.

The use of Karhunen-Loève (KL) expansions, a close
relative of Principal Component Analysis (PCA), for
parametrization of a random field, is well known in
computational mathematics and engineering community
[1] and has been also applied in mathematical geosciences
[2]. Assume that K(𝑥) = K(𝑥, 𝜔) is a Gaussian log-normal
field with known covariance function 𝐶(𝑥, 𝑦). By design, KL
expansions account for spatial variability of K(𝑥) through
a sequence of eigenfunctions of 𝐶 smooth in 𝑥. Since these
correspond to rapidly decreasing eigenvalues, one typically
truncates the KL expansion to 𝑁 terms in K𝑁(𝑥, 𝜔) which
capture the desired proportion of the variance of the field.
Finally, KL expansions are independent of the resolution
intended for 𝑥 in the sense that a realization of K𝑁(𝑥, 𝜔) can
be constructed with arbitrary resolution.

The framework of KL expansions discussed in [1, 2] does
not however take into account existing point measurement
data at locations x∗.Though the variability, or “noise,” around
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a given mean K(𝑥) expected of a reservoir [2] is indicated,
observed data are not honored.

In this paper we construct (truncated) conditional
Karhunen-Loève (KL) expansions K̃𝑁(𝑥) for the permeability
field K(𝑥) with a given analytical spatial covariance model
𝐶(𝑥, 𝑦) and observations K(x∗). Our method uses the point
data K(x∗) in the construction of random weights applied
to eigenfunctions. This gives a mean background field K(𝑥)
which is essentially a kriged field based on K(x∗). Also,
the expansions K̃𝑁(𝑥) − K(𝑥) provide random fluctuations
which are zero at the observed locations. Consequently,
all realizations K̃𝑁(𝑥) agree exactly with the point data:
K̃𝑁(x∗) = K(x∗).

Before KL expansions became popular, other geostatis-
tics methods, for example, sequential Gaussian simulation
(SGS), were used to construct conditional or unconditional
realizations of K(𝑥). Thus we compare our expansions to
those obtained with SGS implemented in a well known
geostatistics package [3]. SGSuses the same covariancemodel
and conditioning points as our method and outputs a set of
independent realizations of K(𝑥, 𝜔) of desired size and at a
prescribed resolution. We use next the permeability realiza-
tions obtained with our method and with SGS as data for
a deterministic saturated Darcy flow and single component
advection-diffusion transport solver. While the flow results
have been published by many authors for unconditional
stochastic simulations, the transport results coupled to the
flow are less frequently considered and bring interesting
insights.

Our comparison of KL and SGS is of theoretical and prac-
tical value andwe discuss various aspects of these two entirely
different family of methods. Finally, we consider stochastic
collocation, a highly accuratemethod of computing statistical
moments of quantities of interest, and discuss its use in the
context of conditional representations.

Our approach gives a new method of using KL expan-
sions to simulate conditioned random fields. An alternative
approach to conditioning of K(𝑥) was considered in [4].
In order to honor the observed values, they compute the
eigenfunction and eigenvalue pairs of the conditioned pro-
cess. This results in an ensemble of eigenpairs that depend
on the particular locations. In this paper we project the
random coefficients of the KL expansion onto the appropriate
subspace, so that the resulting realizations depend on the
particular locations. This allows us to work with the eigen-
functions and eigenvalues derived for the unconditioned
process. It also gives a simple decomposition of the simulated
process in terms of the conditional mean (kriged values)
and the fluctuations around that mean. Other stochastic
numerical methods for flow and transport equations include
the contributions in [5–9]; these consider very different
avenues from direct stochastic parametrizations and will not
be reviewed here.

The analytical covariance models used in this paper
are the ubiquitous exponential model and the less com-
monly considered Gaussian model. These stationary mod-
els depend only on two-point correlations. We do not

address nonstationary field, experimental covariance, mul-
tipoint geostatistics or physical models beyond linear flow
and transport. These important extensions will be discussed
elsewhere, while we refer to [10] for some work in these
directions.

The plan of the paper is as follows. In Section 2 we recall
the flow and transport models which use field realizations of
the random field K(𝑥) as their input. In Section 3 we show
how realizations of the field Y(𝑥) = lnK(𝑥) are generated
with a known covariance function 𝐶Y(𝑥, 𝑦) together with
point measurement data given at x∗. Section 3.1 develops the
main theoretical result, the conditional KL expansions for
a generic random field Y(𝑥). We also recall in Section 3.2
how SGS creates realizations based on the same information.
In Section 4 we present simulation results of the numerical
model using realizations of K(𝑥) obtained with KL and with
SGS, paying particular attention to the use of stochastic
collocation method with data based on prior measurements.

2. Stochastic Flow and Transport Models

In this sectionwemake precise the flow and transportmodels
and their numerical discretizations.These are well known [11,
12] but are provided for completeness together with appro-
priate boundary and initial conditions. The corresponding
numerical discretization of these is also standard [12, 13];
details for the formally defined weak formulations of flow
and transport are provided in Appendix D. We follow the
structure of stochastic models established, for example, in
[1, 2, 14].

Let𝐷 ∈ R𝑑 be the open bounded domain inR𝑑 where the
flow and transport take place. In principle, one can consider
𝑑 = 1, 2, 3 but our examples involve 𝑑 = 2. The time
variable is denoted by 𝑡. The boundary 𝜕𝐷 of 𝐷 is assumed
to be smooth so that, in particular, the outer unit normal
n(𝑥) to 𝜕𝐷 is well defined. The boundary 𝜕𝐷 is split twofold
into disjoint subboundaries depending on the prescribed
boundary conditions for the flow 𝜕𝐷 = 𝜕𝐷𝐷 ∪ 𝜕𝐷𝑁 and
transport 𝜕𝐷 = 𝜕𝐷𝐼 ∪ 𝜕𝐷𝑂. These are made precise below.

The region 𝐷 has associated permeability field K and
porosity field 𝜙. In this paper we assume thatK = K(𝑥, 𝜔) is a
random heterogeneous field and 𝜙 is constant. For simplicity
we also assume that K(𝑥) is isotropic. Furthermore, the
fluid and themediumhave an associated diffusion-dispersion
coefficientD, but we ignore the dispersion by settingD equal
to molecular diffusivity; that is, D = 𝑐𝑜𝑛𝑠𝑡 = 𝑑𝑚I. Since
𝑑𝑚 correlates with porosity, it makes sense to assume D is
constant. The case of random 𝜙, D will not be considered in
this paper. In comparisons, we also consider no diffusion; that
is,D = 0.

In the flow problem we seek fluid velocity u and its
pressure 𝑝. Since K is random, so are 𝑝 and u, as given
by Doob-Dynkin Lemma [15]. The stochastic model of flow
combines momentum (Darcy’s law) with mass conservation
as follows:

u (𝑥, 𝜔) = −K (𝑥, 𝜔) ∇𝑝 (𝑥, 𝜔) , 𝑥 ∈ 𝐷, (1a)

∇ ⋅ u (𝑥, 𝜔) = 𝑓 (𝑥) , 𝑥 ∈ 𝐷. (1b)
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This flowmodel is complemented by boundary conditions of
Dirichlet andNeumann type, respectively, prescribed on 𝜕𝐷𝐷
and 𝜕𝐷𝑁 as follows:

𝑝 (𝑥, 𝜔) = 𝑔𝐷 (𝑥) , 𝑥 ∈ 𝜕𝐷𝐷, (1c)

u (𝑥, 𝜔) ⋅ n (𝑥) = 0, 𝑥 ∈ 𝜕𝐷𝑁. (1d)

In (1a) above 𝑓(𝑥) are the fluid sources and sinks due to, for
example, the presence of wells, henceforth assumed absent.

Once the flow model is solved, the pressures 𝑝 and fluxes
u are known. Now the solute is subject to advection with
velocity u and to diffusion. The transport model is solved for
the solute concentration 𝑐 and is a mass conservation com-
bined with Fick’s law, with 𝑞 denoting the solute source/sink
term. Consider

𝜙
𝜕𝑐 (𝑥, 𝑡, 𝜔)

𝜕𝑡
+ ∇ ⋅ [𝑐 (𝑥, 𝑡, 𝜔) u (𝑥, 𝜔)] − ∇ ⋅ [D∇𝑐 (𝑥, 𝑡, 𝜔)]

= 𝑞 (𝑥) , 𝑥 ∈ 𝐷, 𝑡 > 0,

(2a)

subject to the following initial conditions

𝑐 (𝑥, 0, 𝜔) = 𝑐0 (𝑥) , 𝑥 ∈ 𝐷. (2b)

The boundary conditions are imposed on the inflow and
outflow boundaries with 𝜕𝐷𝐼 denoting the inflow boundary
where u⋅n < 0 and 𝜕𝐷𝑂 the outflow boundarywhere u⋅n ≥ 0.
These are prescribed as

𝑐 (𝑥, 𝑡, 𝜔) = 𝑐𝐼 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝜕𝐷𝐼 × (0, 𝑇] , (2c)

D (𝑥) ∇𝑐 (𝑥, 𝑡, 𝜔) ⋅ n (𝑥) = 0, 𝑥 ∈ 𝜕𝐷𝑂, 𝑡 > 0. (2d)

An important quantity of interest is the average breakthrough
curve

BTC (𝑡, 𝜔) = ∫
𝜕𝐷
𝑂

𝑐 (𝑥, 𝑡, 𝜔) [u (𝑥, 𝜔) ⋅ n (𝑥)] 𝑑𝑥, (3)

which represents the total amount of the substance leaving
the region𝐷. It is best plotted against another time dependent
quantity, the pore volume injected which in the case of fully
saturated flow grows simply linearly with time

PVI (𝑡, 𝜔) = 𝑡 ∫
𝜕𝐷
𝐼

[u (𝑥, 𝜔) ⋅ n (𝑥)] 𝑑𝑥. (4)

Finally, the breakthrough times BTT are

BTT (𝜔; 𝑏) := sup {𝑡 : BTC (𝑡, 𝜔) = 𝑏} , (5)

where 𝑏 is some desired value of the breakthrough curve.

2.1. Numerical Solution for Flow and Transport. Given
K(𝑥, 𝜔) and boundary and initial data we can solve the flow
((1a), (1b), (1c), (1d)) and the transport models ((2a), (2b),
(2c), (2d)) numerically. Let Tℎ be a partition of the domain
𝐷 into nonoverlapping rectangular elements 𝐸𝑖, where ℎ

denotes the largest diameter of elements 𝐸𝑖 from Tℎ. Also

let 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 = 𝑇 be a given partition of the
time interval [0, 𝑇] and Δ𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛−1. (We also use the
subscript 𝑛 for random sequences in Section 3, but as they
appear in separate contexts there is no risk of confusion.)
We seek numerically the approximations𝑝ℎ(𝑥, 𝜔), uℎ(𝑥, 𝜔) to
𝑝(𝑥, 𝜔),u(𝑥, 𝜔), and 𝐶𝑛

ℎ
(𝑥, 𝜔) to 𝑐(𝑥, 𝑡𝑛, 𝜔).

To define these approximations, we use standard numer-
ical methods for which natural stochastic extensions have
either been already established [1, 2], or are straightforward.
For the flow problem we employ cell-centered finite differ-
ences (CCFD). These are equivalent to mixed finite elements
RT[0] of the lowest Raviart-Thomas order on rectangles [16].
For the transport we employ CCFD and upwinding, as well as
implicit Backward Euler time discretization.These numerical
methods are well known and are first order accurate in time
and space. They are also superconvergent in some norms,
and can be modified to obtain higher accuracy, but we do
not discuss numerical error. See [2] for a recent formal
extension of CCFD to stochasticmethods and error estimates
for flow. See also Appendix D for the formal weak setting of
these methods for flow and transport, extending [13] to the
stochastic case.

See Figure 4 for typical results of flow and transport
simulations.

3. Methods for Generating Realizations
of K(𝑥, 𝜔) and Computing Moments of
Quantities of Interest 𝑄(⋅, 𝜔)

In this section we describe how to generate independent
realizations of the random heterogeneous permeability field
K(𝑥, 𝜔), 𝑥 ∈ 𝐷. Here 𝜔 is a random element in an underlying
probability space. Most of the crucial information about K
comes from measurements and its spatial structure with
𝜔 indexing the uncertainty of the information. In physical
simulations of flow and transport we consider 𝑀 indepen-
dent realizationsK(𝑥, 𝜔1), . . . ,K(𝑥, 𝜔𝑀)with whichwe assess
statistical moments of the simulation results; that is, some
quantities of interest 𝑄 which depend on the (𝜔𝑗)’s and
possibly on 𝑥, 𝑡. For example, 𝑄 could be pointwise values
of pressures or some averages of fluxes or concentrations.
In what follows we will denote this dependence by 𝑄(⋅, 𝜔𝑗)
where the “⋅” accounts for any relevant nonstochastic vari-
ables or parameters.

We assume the following probabilistic information about
K(𝑥, 𝜔): it is a stationary field, its logarithm

Y (𝑥, 𝜔) = lnK (𝑥, 𝜔) , (6)

has a normal distribution, with known bounded (analytical)
covariance function

𝐶Y (𝑥, 𝑦) = Cov [Y (𝑥) ,Y (𝑦)] . (7)

We also assume that 𝑁𝑚 measurements Y1,Y2, . . . ,Y𝑁
𝑚

of Y are given at𝑁𝑚 points x∗ := (𝑥∗1 , 𝑥
∗

2
, . . . , 𝑥

∗

𝑁
𝑚

) so that

Y (𝑥∗
𝑖
) = Y𝑖, 𝑖 = 1, . . . , 𝑁𝑚, (8)
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is known. If nomeasurements are available, this is denoted by
𝑁𝑚 = 0.

Both KL expansions and SGS require a model for (7) and
can work with either 𝑁𝑚 = 0 or 𝑁𝑚 > 0. In the examples
reported in this paper we assume that the covariance is
stationary, so 𝐶Y(𝑥, 𝑦) = 𝐶Y(‖𝑥 − 𝑦‖). We also assume 𝐶Y is
a quickly decaying function, exponential or Gaussian, given,
respectively, as

𝐶Y (𝑥, 𝑦) = 𝜎
2 exp(−

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

𝜂
) , (9)

𝐶Y (𝑥, 𝑦) = 𝜎
2 exp(−

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝜂2
) , (10)

where the fixed parameters 𝜎2 and 𝜂, representing respec-
tively the stationary variance (or sill) and the correlation
length, give the assumed second-order spatial properties of
the field.

KL expansions additionally require that the mean field,

Y(𝑥) = 𝐸 [Y] (𝑥) , (11)

is known. In practice, it appears that (11) provides a highly
variable background and a realistic looking field to which the
spatially distributed “noise” constructed by unconditional KL
expansions is added. However, this does not allow the realiza-
tions of the field K(𝑥) to satisfy the prescribed given values
exactly. Thus the unconditional expansions investigated in
[1, 2] could not be compared to conditional Gaussian fields.

Below we describe how to get K(𝑥, 𝜔1), . . . ,K(𝑥, 𝜔𝑀)
using KL and SGS. Next we show how themoments of𝑄(⋅, 𝜔)
are calculated.

3.1. Karhunen-Loève (KL) Representation and Realizations
of K(𝑥,𝜔). First we consider the well known case when𝑁𝑚 =
0, next we develop 𝑁𝑚 > 0. By Mercer’s theorem [17] the
spectral decomposition of the positive definite covariance
matrix is

𝐶Y (𝑥, 𝑦) =
∞

∑

𝑛=1

𝜆𝑛𝜙𝑛 (𝑥) 𝜙𝑛 (𝑦) , (12)

where 𝜆𝑛 are positive eigenvalues and 𝜙𝑛(𝑥) are mutually
orthogonal eigenfunctions, that is, solutions to the Fredholm
integral equation of the second kind [14]

𝜆𝜙 (𝑥) = ∫
𝐷

𝐶Y (𝑥, 𝑦) 𝜙 (𝑦) 𝑑𝑦, (13)

which satisfy ∫
𝐷
𝜙𝑛(𝑥)𝜙𝑚(𝑥)𝑑𝑥 = 𝛿𝑛,𝑚 with 𝛿𝑛,𝑚 being the

Kronecker-delta.
In what follows we denote byΛ the infinitely dimensional

diagonal matrix of eigenvalues 𝜆𝑛, 𝑛 ≥ 0. By convention,
the eigenvalues are arranged in Λ from the largest to small-
est. Also, we denote by Φ(𝑥) the vector of eigenfunctions
evaluated at 𝑥. One can thus rewrite (12) as 𝐶𝑌(𝑥, 𝑦) =

Φ
𝑇
(𝑦)ΛΦ(𝑥). We denote the upper left diagonal block ofΛ of

size𝑁 × 𝑁 by Λ𝑁 and also define Φ𝑁(𝑥) as the finite length
vector corresponding to the first𝑁 eigenfunctions.

3.1.1. Unconditional Representation When 𝑁𝑚 = 0. The KL
expansion [18] of Y is well known

Y (𝑥, 𝜔) = Y (𝑥) +
∞

∑

𝑛=1

√𝜆𝑛𝜙𝑛 (𝑥) 𝜉𝑛 (𝜔) , (14)

where {𝜉𝑛(𝜔)}
∞

𝑛=1
are independent standard Gaussian

(𝑁(0, 1)) random variables. In other words, (14) represents
the fluctuation

Y (𝑥, 𝜔) − Y (𝑥) = Φ𝑇 (𝑥)√ΛΞ (𝜔) , (15)

where Ξ(𝜔) = {𝜉𝑛(𝜔)}
∞

𝑛=1
.

In practice (14) is truncated to the first𝑁 terms

Y (𝑥, 𝜔) ≈ Y𝑁 (𝑥, 𝜔) = Y (𝑥) +
𝑁

∑

𝑛=1

√𝜆𝑛𝜙𝑛 (𝑥) 𝜉𝑛 (𝜔) , (16)

that is,Y𝑁(𝑥, 𝜔)−Y(𝑥) = Φ𝑇𝑁(𝑥)√Λ𝑁Ξ𝑁.𝑁 is chosen so that
most of the “energy” or “volatility” represented by the sum
of eigenvalues in Λ𝑁 is captured to the desired accuracy; see
Section 3.1.3.

3.1.2. Conditional Representation When 𝑁𝑚> 0. In order for
Y(𝑥) to have a given measurement value Y(𝑥∗

𝑖
) at every point

𝑥
∗

𝑖
in x∗, we consider the associated conditional process Ỹ(𝑥).

Our main idea is that in the representation of Ỹ(𝑥) we use
the original eigenfunctions listed in Φ(𝑥) but we project the
random coefficients in Ξ onto the appropriate subspace. In
other words, we replace the original 𝜉𝑛 by 𝜉𝑛 in (14). The
variable {𝜉𝑛} has the same distribution as the original random
sequence {𝜉𝑛} after being conditioned on X∗ := 𝜎({Y(x∗)}),
the 𝜎-algebra generated by the𝑁𝑚 measurements Y(x∗).

Define Σ ∈ R𝑁𝑚×𝑁𝑚 to be the covariance matrix corres-
ponding to the observed locations

Σ𝑖,𝑗 := 𝐶Y (𝑥
∗

𝑖
, 𝑥
∗

𝑗
) =

∞

∑

𝑛=1

𝜆𝑛𝜙𝑛 (𝑥
∗

𝑖
) 𝜙𝑛 (𝑥

∗

𝑗
) ,

𝑖, 𝑗 = 1, . . . , 𝑁𝑚,

(17)

and 𝑅 to be the matrix with 𝑛th row given by the values of the
𝑛th eigenfunction at the observed locations x∗

𝜙𝑛 (x
∗
) = (𝜙𝑛 (𝑥

∗

1
) , 𝜙𝑛 (𝑥

∗

2
) , . . . , 𝜙𝑛 (𝑥

∗

𝑁
𝑚

)) . (18)

This gives Σ = (Σ𝑖𝑗) = 𝑅
𝑇
Λ𝑅. We assume that Σ is full rank.

Notice that for every 𝑛 and 𝑥∗
𝑖
,

Cov [𝜉𝑛,Y (𝑥
∗

𝑖
)] = √𝜆𝑛𝜙𝑛 (𝑥

∗

𝑖
) . (19)
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Using the usual formula for conditional means and covari-
ances of Gaussian random variables [19], we compute the
mean𝜇 and covarianceM = (𝑚𝑛,𝑘) of the sequence of random
variables {𝜉𝑛}

∞

𝑛=1
conditioned on X∗

𝜇𝑛 = 𝐸 [𝜉𝑛 | X
∗
] = √𝜆𝑛𝜙𝑛 (x

∗
) Σ
−1
(Y (𝑥∗) − Y (𝑥∗)) ,

(20)

𝑚𝑛,𝑘 = Cov [𝜉𝑛, 𝜉𝑘 | X
∗
]

= 𝛿𝑛,𝑘 − √𝜆𝑘𝜙𝑘 (x
∗
) Σ
−1
𝜙𝑛 (x
∗
)√𝜆𝑛.

(21)

ThusM = I−Λ1/2𝑅Σ−1𝑅𝑇Λ1/2, and it is easy to showM = M2;
that is,M is a projectionmatrix. (See Appendix A for details.)
Finally, the sequence {𝜉𝑛}

∞

𝑛=1
conditioned on X∗ has the same

distribution as

𝜉 = 𝜇 +M𝜂, (22)

where {𝜂𝑘}
∞

𝑘=1
is a sequence of i.i.d.𝑁(0, 1) random variables.

In particular M projects 𝜂 onto the subspace that gives the
Ỹ process conditional variance 0 at the locations 𝑥∗

1
, . . . , 𝑥

∗

𝑁
𝑚

.
We can thus state the conditional representation Ỹ(𝑥) ofY(𝑥)

Ỹ(𝑥, 𝜔) = Y(𝑥) +
∞

∑

𝑛=1

√𝜆𝑛𝜙𝑛 (𝑥) 𝜉𝑛 (𝜔) , 𝑥 ∈ 𝐷, (23)

which modifies (14).
The truncation at 𝑁 finite of the expansion (23) written

componentwise is

̃Y𝑁(𝑥, 𝜔) = Y(𝑥) +
𝑁

∑

𝑛=1

√𝜆𝑛𝜙𝑛 (𝑥) 𝜉𝑁,𝑛 (𝜔) , 𝑥 ∈ 𝐷, (24)

where the {𝜉𝑁,𝑛}
𝑁

𝑛=1
are the random coefficients for the

truncated expansion constructed from the analogues 𝜇𝑁 and
M𝑁 of 𝜇 and M. In particular Σ is replaced by Σ𝑁, the
covariance matrix (also assumed full rank) of Y𝑁(x∗). (For
more details, see Appendix A.)

It should be noted that M𝑁 projects the 𝑁 dimensional
vector Ξ𝑁 onto the 𝑁 − 𝑁𝑚 dimensional subspace corre-
sponding to Ỹ𝑁(x∗) = Y(x∗). In order to have a sufficient
number of degrees of freedom for the projection, we must
then have

𝑁 > 𝑁𝑚. (25)

Obviously, the elements of the sequence {𝜉𝑛}
𝑁

𝑛=1
are not

independent. Hence their joint probability density function,
which is needed later in moment calculations, is not a
product. While this can be handled as in [1], it is much more

convenient to work directly with the 𝜂𝑗’s which are indepen-
dent and consequently have a product density. Combining
(24) with the truncated version of (22) we get

Ỹ𝑁 (𝑥) = Y (𝑥) +
𝑁

∑

𝑛=1

√𝜆𝑛𝜙𝑛 (𝑥) (𝜇𝑁,𝑛 + (M𝑁𝜂)𝑛)

= (Y (𝑥) +
𝑁

∑

𝑛=1

√𝜆𝑛𝜙𝑛 (𝑥) 𝜇𝑁,𝑛)

+

𝑁

∑

𝑛=1

√𝜆𝑛𝜙𝑛 (𝑥)(

𝑁

∑

𝑗=1

(𝑀𝑁)𝑛,𝑗
𝜂𝑗) .

(26)

The practical expression (26) is used in moment calculations
using stochastic collocation discussed in the sequel. We also
see that the first term in (26)

Y𝑁 (𝑥) := Y (𝑥) +
𝑁

∑

𝑛=1

√𝜆𝑛𝜙𝑛 (𝑥) 𝜇𝑁,𝑛 = 𝐸 [Y𝑁 (𝑥) | X
∗
] ,

(27)

is essentially deterministic, depending on the Y𝑖 but not on
the 𝜂𝑗’s. It can be readily interpreted as the kriged mean of
Y(𝑥) which honors the known data. The second term in (26)
is associated with M𝑁𝜂 and forces the fluctuations of Y𝑁 to
be zero at the x∗ locations.

3.1.3. Truncation Error and Conditioning. The truncation Y𝑁
of Y reduces total variability as follows:

∫
𝐷

Var [Y𝑁 (𝑥)] 𝑑𝑥 = ∫
𝐷

∑

𝑛≤𝑁

𝜆𝑛𝜙
2

𝑛
(𝑥) 𝑑𝑥

= ∑

𝑛≤𝑁

𝜆𝑛 ≤ ∑

𝑛≥1

𝜆𝑛 = ∫
𝐷

Var [Y (𝑥)] 𝑑𝑥.

(28)

The conditioned process has, conditionally, reduced total
variability in the following sense:

∫
𝐷

Var [Ỹ𝑁(𝑥) | X
∗
] 𝑑𝑥 = ∑

𝑛≤𝑁

𝜆𝑛𝑚𝑛, (29)

where 𝑚𝑛 = (M𝑁)𝑛,𝑛 ∈ [0, 1]. (See Appendix A for
computations.) It should be stressed however that the total
unconditional variability of the truncated conditioned process
matches that of the truncated Y𝑁 process; in particular for
any𝑁 ≥ 1,

∫
𝐷

Var [Ỹ𝑁(𝑥)] 𝑑𝑥 = ∑

𝑛≤𝑁

𝜆𝑛. (30)

As a consequence, the conditioned process replicates the
irregularity and other distributional properties of the uncon-
ditioned process; compare [17]. Again, see Appendix A for
details.
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Figure 1: (a) plot of exponential (9) and Gaussian (10) covariance models as function of the lag ‖𝑥 − 𝑦‖, with 𝜂 = 0.3 and 𝜎 = 1. (b) first 15
eigenvalues of their KL representations.

3.1.4. Example of Conditional Representation with KL (24).
A given covariance function 𝐶Y(𝑥, 𝑦), in principle, uniquely
determines the spectra (𝜆𝑛, 𝜙𝑛)

∞

𝑛=1
of 𝐶Y(𝑥, 𝑦) via (13). The

analytical solutions of (13) are known only for a few selected
stationary separable models of 𝐶Y(𝑥, 𝑦) [20, 21], and even
these require some numerical calculations. In general, a
numerical solution of (13) must be obtained via, for example,
collocation or Galerkin methods [22]. We use the collocation
method to obtain the spectra for covariances corresponding
to a few variograms common in geostatistics [23, Chapter
4] and in particular, for the exponential, Gaussian, spherical,
and hole variograms common in geostatistics [3]. Examples
of the first two are given in Figure 1 alongwith the plot of their
eigenvalues.

We provide now an example illustrating conditional
realizations using KL in 𝑑 = 1. Let 𝐷 = (0, 1) and let
the Gaussian covariance 𝐶Y(𝑥, 𝑦) be given by (10) with 𝜂 =

0.3, 𝜎 = 1. We consider the truncated conditional series
expansion (24) with 𝑁 = 100 terms and 𝑁𝑚 = 3 data
points x∗ = (0.2, 0.6, 0.8) and Y(x∗) = (1, 0, −1). We consider
the background mean Y(𝑥) = 0. In Figure 2 we plot the
realizations and illustrate how they agreewithY(x∗), and how
they are decomposed into the conditionedmeanY(𝑥) and the
fluctuations Ỹ(𝑥) − Y(𝑥).

3.2. Sequential Gaussian Simulation SGS. Geostatistical Soft-
ware Library (GSLIB) is an open source library of routines
which allows simulation of realizations of porousmedia using
different variograms (or covariance functions) as a proxy
for assumed physical properties [3]. GSLIB is well known in
the geostatistical community and SGS is a relatively simple
but quite robust simulation method. The realizations of Ỹ(𝑥)
honor input data at their locations, and the global histogram

and variogram are reproduced within ergodic fluctuations.
SGS follows a sequence of well defined steps including
transformations to and from normal scores and establishing
a random path through the locations where the new data is
needed.

Themajor differences between Y simulated with SGS and
with KL are that (i) KL realizations are grid independent
while realizations with SGS are grid dependent, and (ii) the
KL fields are, by construction, a linear combination of basis
functions; thus they are smooth if the basis functions are
smooth. On the other hand, SGS realizations are not smooth.
Smoothness is important in history matching and reservoir
optimization [10].

3.3. Examples of Conditional K(𝑥) Constructed with SGS and
KL Expansions. Now we show examples of realizations in
𝐷 = [0, 1]

2 constructed with SGS and with KL expansions
on a 50 × 50 grid. For both we use the Gaussian covariance
model (10) with 𝜂 = 0.2, 𝜎 = 1.

We select as the “true” data a sample field of the same
spatial structure generated without conditioning using the
sgsim routine in GSLIB 2.0 [3]. See Figure 3 and Appendix B
for the GSLIB parameter file. Next we select 𝑁𝑚 = 30 data
locations x∗ to be used for conditioning, as shown in Figure 3.

Simulations with SGS.We generate𝑀 = 6400 realizations of
Ỹ(𝑥) conditioned on the “true” data at the selected locations
using SGS and follow up with (6) to obtain the𝑀 realizations
K(⋅, 𝜔1), . . . ,K(⋅, 𝜔𝑀) of the permeability field.

Simulations with KL. To get KL expansions, we calculate
the eigenfunctions and eigenvalues solving (13). The first
𝑁 = 250 eigenvalues contribute 97% of the variance of
the logarithm of the permeability field. We further generate
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Figure 2: Illustration of a conditional representation Ỹ(𝑥) of a random one-dimensional field on [0, 1] with Gaussian covariance function
(10) with 𝜂 = 0.3 and 𝜎 = 1. We use𝑁 = 100 terms and𝑁𝑚 = 3 data points x∗ = (0.2, 0.6, 0.8)withY(x∗) = (1, 0, −1) Left: first 10 realizations
of Ỹ(𝑥, 𝜔

𝑘
), 𝑘 = 1, . . . , 10. Middle: the conditional mean 𝑌(𝑥) as in (27). Right: the fluctuations of individual realizations which are added to

𝑌(𝑥) to produce Ỹ(𝑥).
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Figure 3: Far left: Permeability field used as the “true field” (and a source of data) for conditional simulations and the location of 𝑁𝑚 = 30

points x∗ (left). Right and far right: realizations of a conditional permeability field based on 𝑁𝑚 = 30 data points: GSLIB (right) and KL
expansion (far right).

𝑀 = 6400 conditional realizations using the KL expansion
(24) with𝑁 = 250 terms and follow with (6) to obtain the𝑀
realizations of the permeability fieldK𝑁(⋅, 𝜔1), . . . ,K𝑁(⋅, 𝜔𝑀).

Comparison of SGS andKL. Figure 3 shows x∗ and two typical
conditional realizations produced, respectively, with SGS and
KL expansion. As expected, the latter looks substantially
smoother than that obtained with SGS.

3.4. Computing Moments of Quantities of Interest. The solu-
tions to physical models of flow and transport (described
below) use the realizations 𝐾(𝑥, 𝜔) as their data. These
physical models compute some quantities of interest 𝑄(⋅, 𝜔),
which may also depend on 𝑥, 𝑡, denoted by the dot (⋅). For
brevity we skip (⋅) in 𝑄(⋅) when no confusion results.

Themean and variance of𝑄(⋅) can be computed using the
probability density 𝜌(y) of 𝑄(⋅, y) via

𝐸 [𝑄 (⋅)] = ∫
Γ

𝑄 (⋅, y) 𝜌 (y) 𝑑y, (31)

Var [𝑄 (⋅)] = ∫
Γ

(𝑄 (⋅, y) − 𝐸 [𝑄 (⋅)])2𝜌 (y) 𝑑y, (32)

if 𝜌(y) is known. Alternatively, we can approximate (31) and
(32) with the Monte Carlo method. This is especially helpful

when the vector y ∈ Γ is multidimensional. The approxima-
tion process is the same for both simulation methods given
in Section 3. However, the choice of the method affects the
accuracy of the approximation. We provide details below,
focusing on the expectation (31).

3.4.1. Monte Carlo with SGS (SGS-MC). If SGS is used, the
realizations,

𝐾(𝑥, 𝜔1) , . . . , 𝐾 (𝑥, 𝜔𝑀) , (33)

are independent realizations of the random field 𝐾(𝑥), as in
the Monte Carlo method. Thus the moments 𝐸[𝑄], Var[𝑄]
are estimated by the sample mean and variance

𝐸 [𝑄 (⋅)] ≈ 𝐸𝑀 [𝑄 (⋅)] =
1

𝑀

𝑀

∑

𝑘=1

𝑄 (⋅, 𝜔𝑘) , (34)

Var [𝑄 (⋅)] ≈ Var𝑀 [𝑄 (⋅)]

=
1

𝑀 − 1

𝑀

∑

𝑘=1

(𝑄 (⋅, 𝜔𝑘) − 𝐸𝑀 [𝑄 (⋅)])
2
.

(35)

3.4.2. KL Expansions with Monte Carlo (KL-MC). For KL
expansions, the randomness in 𝐾 comes from the vector Ξ
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in (24).When we draw𝑀 independent realizations of Ξ (that
is of Y) we treat this process as a Monte Carlo simulation.
Since the representation of 𝐾(𝑥, 𝜔) is truncated to 𝐾𝑁(𝑥, 𝜔),
we generate

K𝑁 (𝑥, 𝜔1) , . . . ,K𝑁 (𝑥, 𝜔𝑀) . (36)

Thus it is appropriate to denote the corresponding quantity of
interest as 𝑄𝑁. We estimate (31) by the sample mean

𝐸 [𝑄 (⋅)] ≈ 𝐸𝑁,𝑀 [𝑄 (⋅)] := 𝐸𝑀 [𝑄𝑁 (⋅)] , (37)

where the latter is defined in (34). Var[𝑄(⋅)] is analogously
estimated by Var𝑁,𝑀[𝑄(⋅)].

The following point is important. Let Γ𝑛 = 𝜉𝑛(Ω) denote
the image of 𝜉𝑛 and Γ = ∏

𝑁

𝑛=1
Γ𝑛 ⊂ R𝑁. When 𝑁𝑚 =

0, the joint probability density function 𝜌 = ∏
𝑁

𝑛=1
𝜌𝑛. In

this paper we assume that each 𝜉𝑛 is 𝑁(0, 1); thus 𝜌 is a
multivariate normal density. However if 𝑁𝑚 > 0 the 𝜉𝑛’s are
not independent and their joint density is not a product of the
individual densities. Via the shift expressed in (26) though,we
can work with the product density of the independent 𝜂𝑛’s.

3.4.3. KL with Stochastic Collocation (KL-SC). An approach
yielding more accuracy than that of Monte Carlo is the 2-
step stochastic collocation (SC) method as given in [1, 14].
First𝑄(y) is approximated by a (multivariate) tensor product
polynomial 𝑄m of degree m := (𝑚1, . . . , 𝑚𝑁) where 𝑚𝑛 is
the degree of the component polynomial in 𝑦𝑛, the stochastic
dimension 𝑛. This is followed by a highly accurate numerical
integration method which is optimal for the polynomial
approximation. The polynomial degrees in m and the total
number of degrees of freedom𝑀m := ∏

𝑁

𝑛=1
(𝑚𝑛 +1) of𝑄m(y)

are chosen to yield the desired degree of accuracy. In practice
we choose𝑚𝑘 = 𝑚 uniform in 𝑘 so that

𝑀m = (𝑚 + 1)
𝑁
. (38)

The details are somewhat involved but standard [1, 2, 14]. We
provide somehere for the sake of direct comparisonwith (34);
the remaining details are given in Appendix C.

The polynomial 𝑄m(𝑦) is constructed in a special way
intended to make (31) easy to evaluate, while maintaining
accuracy. As in [14], 𝑄m is an interpolating polynomial of 𝑄
constructed with collocation points {y𝑘}

𝑀m
𝑘=1

⊂ Γ as follows.
Let {𝐿m

𝑘
(y)}𝑀m
𝑘=1

be the Lagrange basis with 𝐿m
𝑘
(y𝑗) = 𝛿𝑘,𝑗, 𝑗,

𝑘 = 1, . . . ,𝑀m. Then

𝑄m (y) =
𝑀m

∑

𝑘=1

𝑄 (y𝑘) 𝐿
m
𝑘
(y) , (39)

and we approximate the integral

𝐸 [𝑄] ≈ 𝐸 [𝑄m] = ∫
Γ

𝑀m

∑

𝑘=1

𝑄 (y𝑘) 𝐿
m
𝑘
(y) 𝜌 (y) 𝑑y

=

𝑀m

∑

𝑘=1

𝑤𝑘𝑄 (y𝑘) ,

(40)

where 𝑤𝑘 = ∫
Γ
𝐿
m
𝑘
(y)𝜌(y)𝑑y. Details on the polynomials 𝐿𝑘,

weights𝑤𝑘, and points y𝑘 are in Appendix C. In practice, only
the weights 𝑤𝑘 and points y𝑘 are needed for (40), since the
approximation (39) is never formed explicitly.

3.5. Summary: Stochastic Simulations of the Model Problems.
Consider the formulas (34), (37), and (40). We see that the
three corresponding methods, respectively, SGS-MC, KL-
MC, and KL-SC, require the knowledge of 𝑄(⋅) evaluated for
each realization 𝜔𝑘 or at each collocation point y𝑘. While
the implementation of all three methods is very similar,
their accuracy differs. For the estimation of moments in (31)
or (32), SGS-MC and KL-MC use similar uniform weights
1/𝑀 ≈ 1/(𝑀 − 1) since all realizations are equally probable,
while KL-SC uses weights 𝑤𝑘 optimal for accuracy and
optimal choice of realizations.

We summarize the simulations steps for each of the three
methods.

3.5.1. SGS-MC Outline

(1) Fix ℎ and the gridTℎ.
(2) Define a desired number 𝑀 ∈ N+ of realizations of

the permeability field.
(3) Generate 𝑀 independent realizations K(⋅, 𝜔𝑘), 𝑘 =

1, . . . ,𝑀with SGS; these automatically honor the data
K(x∗).

(4) For each realization of K(⋅, 𝜔𝑘), 𝑘 = 1, . . . ,𝑀,
find the approximate solutions to the flow equations
((1a), (1b), (1c), (1d)), and at each time step find the
approximate solutions to the transport model ((2a),
(2b), (2c), (2d)). Calculate 𝑄(⋅, 𝜔𝑘) for each 𝑘 =

1, . . .𝑀.
(5) Approximate 𝐸[𝑄] by the sample average (34) and

Var[𝑄] by the sample variance (35).

All the realizations generated in Step (4) of SGS-MC are
equally probable and oscillate around the mean.

3.5.2. KL-MC Outline

(1) Decide on the finite number 𝑁 of terms in KL
expansion (24).

(2) Obtain Φ,Λ or Φ𝑁, Λ𝑁 analytically or numerically.
If finding these numerically, choose a spatial grid
on 𝐷 at least as fine as Tℎ chosen below. If found
analytically, there is no grid dependence.

(3) Compute Σ𝑁, 𝑅𝑁 for the given x∗ and Φ.
(4) Fix ℎ and the gridTℎ.
(5) Fix a desired number𝑀 ∈ N+.
(6) Generate 𝑀 realizations of Ξ̃(𝜔𝑘). For each vec-

tor Ξ̃(𝜔𝑘) build ̃Y𝑁(𝑥, 𝜔𝑘) with (24) and calculate
K𝑁(𝑥, 𝜔𝑘) with (6).

(7) (Same as Step (4) from SGS-MC): Calculate𝑄𝑁(⋅, 𝜔𝑘)
for each 𝑘 = 1, . . . ,𝑀.



Journal of Applied Mathematics 9

(8) Approximate 𝐸[𝑄𝑁] by the sample average (37) and
Var[𝑄𝑁] analogously.

In contrast to SGS-MC, the realizations of KL-MC in Step
(6), while equally probable, can capture the desired stochastic
accuracy by varying𝑁.

3.5.3. KL-SC Outline

(1) Follow steps (1)–(4) from KL-MC.
(5) Define a desired order of polynomials with multi-

index m as in Section 3.4.3. (For simplicity, consider
(38) with 𝑚 a small integer.) Set up the collocation
points y𝑘, 𝑘 = 1, . . . ,𝑀m, corresponding tom.

(6) For each collocation point y𝑘, build Ỹ(𝑥, y𝑘)with (24),
and calculate K(𝑥, y𝑘) with (6).

(7) For each realization of K(⋅, y𝑘), 𝑘 = 1, . . . ,𝑀m,
find the solutions to the flow equations ((1a), (1b),
(1c), (1d)), and for each 𝑡𝑛 find the solutions to the
transport model ((2a), (2b), (2c), (2d)). Calculate
𝑄(⋅, y𝑘) for each 𝑘 = 1, . . . ,𝑀m.

(8) Approximate 𝐸[𝑄] by (40) and variance analogously.

The realizations of KL-SC in Step (6) are actually not
random, but the moments calculated with KL-MC capture a
desired stochastic accuracy by varying𝑁 andm.

4. Results of Stochastic Simulations of Flow
and Transport

Now we present numerical experiments and discuss the
properties of associated moments of the quantities of interest
𝑄(⋅, 𝜔).

Take 𝐷 = [0, 1]
2 covered with a uniform 50 × 50 spatial

grid Tℎ using the Gaussian (10) and exponential (9) covari-
ancemodels withK(𝑥, 𝜔) computed as discussed in Section 3.
Different choices of the number 𝑁𝑚 of conditioning points
are used; we also vary the number of terms 𝑁 in the KL
expansions (24) and the number of realizations 𝑀, as well
as the polynomial order m in KL-SC. In all simulations we
assume for simplicity that the background Y(𝑥) ≡ 0. This is
of course easy to modify for practical simulations.

Boundary conditions for the flow and transport models
are the same for all examples, and so are the homogeneous
source/sink terms

𝑓 (𝑥) = 0, 𝑞 (𝑥) = 0, 𝑥 ∈ 𝐷, (41)

and thus the flow and transport are driven only by boundary
data.

For the flow model (1a)–(1c) we use the conditions

𝑝 (𝑥) = 1, 𝑥 ∈ {(𝑥1, 𝑥2) ∈ 𝜕𝐷 : 𝑥1 = 0} , (42)

𝑝 (𝑥) = 0, 𝑥 ∈ {(𝑥1, 𝑥2) ∈ 𝜕𝐷 : 𝑥1 = 1} , (43)

u (𝑥) ⋅ n (𝑥) = 0, 𝑥 ∈ {(𝑥1, 𝑥2) ∈ 𝜕𝐷 : 𝑥2 = 0 or 𝑥2 = 1} .
(44)

These boundary conditions mean that the prevailing direc-
tion of the flow is from left to right. Thus the left boundary
is also the inflow, and the right boundary is the outflow
boundary, and the bottomand top boundaries are the no-flow
boundaries.

For the transport model (2a), (2b)–(2d) we use porosity
𝜙(𝑥) = 1 and either diffusion D = 0 or D = 𝑑𝑚 = 0.0252I.
We also define the following initial and boundary conditions

𝑐 (𝑥, 0) = 1, 𝑥 ∈ 𝐷, (45)

𝑐 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ {(𝑥1, 𝑥2) ∈ 𝜕𝐷 : 𝑥1 = 0} × (0, 𝑇] ,

(46)

D (𝑥) ∇𝑐 (𝑥, 𝑡) ⋅ n (𝑥) = 0,

(𝑥, 𝑡) ∈ {(𝑥1, 𝑥2) ∈ 𝜕𝐷 : 𝑥1 ̸= 0} × (0, 𝑇] .

(47)

The condition (47) imposes the no-flow condition on top and
bottom boundaries, as well as the usual numerical outflow
boundary for D ̸= 0 on the right (outflow) boundary of 𝐷.
If D = 0, no boundary condition is imposed on the outflow
boundary. Simulations are run for 𝑇 sufficiently long so that
BTC(𝑇) ≈ 0.

An illustration of the typical behavior of the flow and
transport solutions is given in Figure 4. As we show below,
some of the cumulative quantities of interest associated with
the transport solutions have a somewhat different behavior
than the pointwise quantities for the flow.

Our emphasis in the examples below is threefold. We
compare SGS-MC and KL-MC methods in Section 4.1. In
Section 4.2 we consider the impact of conditioning on the
KL-MC method on transport results. In Section 4.3 we
evaluate stochastic convergence for KL-MC versus that for
KL-SC.

In what follows we drop ℎ when referring to numerical
results.

4.1. Comparison of SGS-MC and KL-MC Methods. This
section gives comparisons of the flow and transport results
using 𝑀 = 6400 realizations of K(𝑥, 𝜔1), . . . ,K(𝑥, 𝜔𝑀), that
is, Monte Carlo simulations corresponding to the example in
Section 3.3. Our focus is on the quality of the approximations
to themoments of the quantities of interest𝐸[𝑄(⋅)], Var[𝑄(⋅)].
For conditioning we use 𝑁𝑚 = 30 points; see examples
in Figure 3. For 𝑄(⋅) we choose either pointwise values of
pressure 𝑝(𝑥) or fluxes u(𝑥) or breakthrough curves BTC(𝑡).
The approximations to their moments are 𝐸𝑀[𝑄(⋅)] and
𝐸𝑁,𝑀[𝑄(⋅)] as defined in (34) and (37), respectively. See
results in Figure 5.

The first observation is that, as expected, the structure of
results corresponding to SGS-MC andKL-MC is very similar.
This is also true about unconditional realizations but we do
not show these here (see [23]).

Next the flow results are examined with a bit more
detail; in particular the dependence of the quality of the
approximations tomoments as𝑀 increases is shown. Figures
6 and 7 show the statistical moments of solution of the
flow problem along the profile 𝑥2 = 0.5 approximated by
unconditional and conditional simulationswith SGS-MCand
KL-MC, respectively. We see that, as expected, conditional
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Figure 5: Conditional simulations with SGS-MC (a) and KL-MC (b) with𝑀 = 6400,𝑁𝑚 = 30.

moments of the solutions converge faster than unconditional
ones to the asymptotic values for large𝑀. More significantly,
the fluxes appear to settle earlier (around𝑀 = 800) for KL-
MC than for SGS-MC (around𝑀 = 1200).

Next we discuss transport results shown in Figures 8 and
9.The breakthrough time distributions are qualitatively simi-
lar for both GSLIB andKL based experiments. Unconditional
breakthrough times have a more skewed distribution and a
wider spread in comparison with conditional breakthrough
times. As expected, the variances converge faster when𝑁𝑚 >
0 than when 𝑁𝑚 = 0. However, in the averaged quantities
of interest shown in Figure 8, we do not see a dramatic
difference between SGS-MC and KL-MC, but the variance of
𝐵𝑇𝑇 appears smaller for KL-MC than for SGS-MC. On the
other hand, Figure 9 seems to suggest that both variance and
expectation estimates settle down more quickly for KL-MC
than for SGS-MC.

In summary, KL-MC seems to require half as many
realizations than SGS-MC for pointwise quantities of interest.
This is not as strongly exhibited for those transient quantities

of interest that are averaged over space such as breakthrough
curves. More simulations are needed over various correlation
lengths and other parameters to determine the relative
benefits of KL-MC versus SGS-MC.

4.2. Stochastic Convergence of Moments Depending on the
Number 𝑁𝑚 of Conditioning Points. In this example we
consider KL-MC only and assess the dependence on 𝑁𝑚

of the convergence of moments of various 𝑄(⋅) associated
with the flow and transport. This example is motivated by
[24] where experiments of this type were performed with a
nonlinear flow and transport model and SGS.

We use a nonseparable exponential covariance model (9)
with 𝜂 = 0.3, 𝜎 = 1, and 𝑁 = 200 and generate 𝑀 =

𝑀max realizations of K(𝑥, 𝜔𝑗); 𝑗 = 1, . . . ,𝑀 with KL-MC as
described in Section 3.1. First we consider the unconditional
field with 𝑁𝑚 = 0. For conditional simulations we use one
arbitrarily chosen unconditional realization as the “true data”
providing a source of measurements. We first select a set
x∗ of size 𝑁𝑚 = 12 for conditioning locations and then
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Figure 6: Profiles obtained with SGS-MC of moments of pressures and fluxes for unconditional field𝑁𝑚 = 0 (a) and conditional field with
𝑁𝑚 = 30 (b).
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Figure 7: Profiles obtained with KL-MC of moments of pressures and fluxes for unconditional field 𝑁𝑚 = 0 (a) and conditional field with
𝑁
𝑚
= 30 (b).



12 Journal of Applied Mathematics

0 0.01 0.02 0.03 0.04 0.05
0

0.005

0.01

0.015

0.02

0.025

PVI

Av
er

ag
e 

br
ea

kt
hr

ou
gh

 c
ur

ve

0 0.01 0.02 0.03 0.04 0.05
0

1.4

2.8

4.2

5.6

7

PVI
Br

ea
kt

hr
ou

gh
 c

ur
ve

 v
ar

ia
nc

e
Breakthrough times

Fr
eq

ue
nc

y

Breakthrough times

Fr
eq

ue
nc

y

×10−5EM[BTC (PVI)] VarM[BTC (PVI)] BTT (M), Nm = 30BTT (M), Nm = 0

0 0.003 0.006 0.009 0.012
0

70

140

210

280

350

0 0.003 0.006 0.009 0.012
0

70

140

210

280

350

Unconditional
Conditional

Unconditional
Conditional

(a)

0 0.01 0.02 0.03 0.04 0.05
0

0.005

0.01

0.015

0.02

0.025

PVI

Av
er

ag
e 

br
ea

kt
hr

ou
gh

 c
ur

ve

Unconditional
Conditional

Unconditional
Conditional

0 0.01 0.02 0.03 0.04 0.05
0

1.4

2.8

4.2

5.6

7

PVI

Br
ea

kt
hr

ou
gh

 c
ur

ve
 v

ar
ia

nc
e

Breakthrough times

Fr
eq

ue
nc

y

Breakthrough times

Fr
eq

ue
nc

y

×10−5EN,M [BTC(PVI)] VarN,M[BTC(PVI)] BTT(N,M), Nm = 30BTT(N,M), Nm = 0

0 0.003 0.006 0.009 0.012
0

70

140

210

280

350

0 0.003 0.006 0.009 0.012
0

70

140

210

280

350

(b)

Figure 8: Transport results with SGS-MC (a) andKL-MC (b)with𝑀 = 1600. From left to right:moments of breakthrough curves BTC (PVI),
and histograms of breakthrough times BTT.
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Figure 9: Example from Section 4.1. Convergence of expectations and variances of breakthrough times BTT depending on the number of
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a superset x∗ of size𝑁𝑚 = 25 containing the smaller set. We
generate𝑀max conditional realizations for all choices of 𝑁𝑚
and investigate the effect on the moments of 𝑄(⋅).

Table 1 presents convergence of the moments of the
flow solutions to ((1a), (1b), (1c), (1d)) as 𝑀 increases. The
convergence is assessed experimentally by comparison of the
quantity of interest 𝑄𝑁,𝑀 with that for 𝑄𝑁,𝑀max

; here we use
𝑀max = 25600. We compute the norm ‖𝑄𝑁,𝑀(⋅)−𝑄𝑁,𝑀max

(⋅)‖

appropriate for the quantity of interest. For pressures it is the
discrete 𝑙2 norm at the cell centers; for fluxes it is the discrete

𝑙
2 norm of the values at the midpoints of the edges. The
results exhibit the usual decrease in the stochastic error which
essentially follows the usual 𝑂(1/√𝑀) ratio. It is important
to notice that the magnitude of the stochastic error seems to
weakly decrease with the number𝑁𝑚 of conditioning points.

The transport model ((2a), (2b), (2c), (2d)) has a con-
siderably larger complexity than the flow model ((1a), (1b),
(1c), (1d)) since the transient solutions for all time steps of
((2a), (2b), (2c), (2d)) must be obtained with the size of the
time step chosen to satisfy CFL condition. In addition, any
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Table 1: Stochastic convergence results for KL-MC simulations with𝑀max = 25600 in the pressures and fluxes. Convergence ratios are given
in parentheses.

𝑀 Pressure error Flux 𝑢1 error Flux 𝑢2 error
Results for𝑁𝑚 = 0

100 0.871395160535 0.065990195314 0.028573904583
400 0.364829041492 (2.39) 0.069916447041 (0.94) 0.018699389288 (1.52)
1600 0.055858569054 (6.53) 0.021215209498 (3.29) 0.006586753979 (2.83)
6400 0.054169889340 (1.03) 0.012411413073 (1.71) 0.003615613202 (1.82)

Results for𝑁𝑚 = 12
100 0.254380891374 0.049476177143 0.026290307316
400 0.112240817113 (2.27) 0.024602883474 (2.01) 0.011912256200 (2.21)
1600 0.064059879872 (1.75) 0.011673912035 (2.11) 0.004237191244 (2.81)
6400 0.050133900679 (1.28) 0.008381613088 (1.39) 0.003806688304 (1.11)

Results for𝑁𝑚 = 25
100 0.441427542393 0.047070576489 0.022927539745
400 0.204776531658 (2.16) 0.025904577051 (1.82) 0.014762469928 (1.55)
1600 0.093540699576 (2.19) 0.015060205886 (1.72) 0.006659195033 (2.22)
6400 0.035279177226 (2.65) 0.005514284413 (2.73) 0.002559067034 (2.60)

comparisons at fixed time steps may be difficult because time
stepping varies from realization to realization due to a large
variability of the fluxes. Therefore the use of large 𝑀 is not
feasible.

Instead, we use 𝑀 = 1600 and present a comparison
of cumulative rather than pointwise quantities of interest
for 𝑁𝑚 = 0 and 𝑁𝑚 = 25. Figure 10 shows the break-
through curves and breakthrough times for conditional and
unconditional simulations. We see that the spread of the
conditional breakthrough curves is considerably smaller than
that for 𝑁𝑚 = 0. We also observe a significant reduction in
the variances of the breakthrough curves after conditioning.
As expected, we see that the presence of diffusion D ̸=

0 when compared to the case D = 0 changes the shape
of the breakthrough curves and affects the distribution of
breakthrough times.

4.3. Comparison of KL-MC and KL-SC. It is well known that
KL-SC has a faster convergence rate compared to KL-MC as
shown in for example [1, 2] for unconditional simulations
of stationary fields. We provide results showing the same
behavior for conditional simulations of coupled flow and
transport.

Here theGaussian covariancemodel (10) with parameters
𝜂 = 0.45, 𝜎 = 1, and𝑁 = 6 terms is used for K𝑁(𝑥). (In this
case, the first𝑁 = 6 eigenvalues of the covariance matrix 𝐶Y
contribute around 70% of the variance of Y). For conditional
simulations we use one of the unconditional realizations as
the “true data” and a source of measurements (see Figure 11).
Then 𝑁𝑚 = 3 conditioning locations x∗ are selected, and
realizations of the permeability field are generated based on
this data at the collocation points 𝑦𝑘, 𝑘 = 1, . . . ,𝑀m. Note
that for KL-SC we need to use a relatively small𝑁 and thus a
small number of conditioning points𝑁𝑚. Figure 11 shows the
construction. Due to the small value of𝑁 it is only possible to

simulate large scale variability. This is in contrast to the scale
of variability illustrated in Figure 3.

Next we perform flow and transport simulations and
compute moments of quantities of interest. We provide
quantitative analysis but omit plots of flow results due to
the similarity with those given in Sections 4.1 and 4.2. The
results in Tables 2 and 3 demonstrate stochastic convergence
for KL-MC and KL-SC methods, respectively. In parentheses
we put the ratios between the errors on successive levels of
refinement. These are to be understood as follows. For KL-
MCwe use as a “true solution” themean calculated over𝑀max
realizations, and we calculate the error. Thus for KL-MC we
see a decrease of the error as𝑀 increases, as to be expected,
but the decrease is rather slow. On the other hand, for KL-SC,
we choose as the “true solution” (or “reference solution”) that
calculated with 𝑀max corresponding to 66 = 46656. Recall
that here we are increasing the order of the polynomial used
for approximations.We observe very fast decrease of the error
with the polynomial order𝑚 and𝑀 ≡ 𝑚

𝑁.
It is then important to compare KL-MC and KL-SC to

evaluate the accuracy of the moments of quantities of interest
corresponding to the same order of computational effort. For
example, compare the errors reported for 𝑀 = 6400 and
that for 𝑀m = 4

6, that is, fourth and third rows in Tables 2
and 3 for KL-MC and KL-SC, respectively. These correspond
roughly to the same order of computational effort, but the
error for KL-SC is about two orders of magnitude smaller.

Next we discuss transport results illustrated in Figure 12.
In each plot we compare the moments for various selected
values of 𝑀 against those for 𝑀max = 6400. First, we see
that the statistical moments approximated by KL-MC and
KL-SC methods seem to agree visually with each other and
appear close to each other for large𝑀. Since the qualitative
nature of expectations of breakthrough curves does not differ
significantly from those reported in Section 4.2, we skip
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Figure 10: Example from Section 4.2. In each row we show expectations (far left) and variances (left) approximated with 𝑀 = 1600

unconditional and conditional realizations and histograms of unconditional (right) and conditional (far right) breakthrough times.The rows
correspond to the cases withD = 0 (a) and D ̸= 0 (b).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4

1

1.6

2.2

2.8

3.4

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4

1

1.6

2.2

2.8

3.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4

1

1.6

2.2

2.8

3.4

x1 x1 x1 x1

x
2

x
2

x
2

x
2

Figure 11: Example from Section 4.3. Far left: permeability field used as a source of data for conditional simulations with KL-SC. Left: location
of𝑁𝑚 = 3 data points x∗. Right and far right: two realizations of conditional permeability field for KL-SC.

detailed discussion. We only mention that the reduction in
variance is about fivefold between 𝑁𝑚 = 0 and 𝑁𝑚 = 3,
for both KL-MC and KL-SC. In addition, KL-MC seems to
overpredict the variance in BTC while KL-SC underpredicts
it, at least for𝑁𝑚 = 0.

These qualitative observations are consistent with the
stochastic error estimates shown in Table 4. The superiority
of KL-SC over KL-MC is confirmed, however it is not as dra-
matic as for pointwise quantities of interest for the stationary
(flow) problems, as we seem to be gaining approximately only

one order of magnitude accuracy between KL-MC and KL-
SC.

5. Summary

In this paper we presented a new method of constructing
conditional Karhunen-Loève (KL) expansions for the perme-
ability field K(𝑥, 𝜔) used as data in simulations of flow and
transport to compute certain pointwise and cumulative quan-
tities of interest𝑄(⋅, 𝜔). Our newmethod is important due to
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Table 2: Stochastic convergence for KL-MC method,𝑀max = 102,400. Convergence ratios are given in parentheses.

𝑀 Pressure error Flux 𝑢
1
error Flux 𝑢

2
error

Results for𝑁
𝑚
= 0

100 4.48455775𝐸 − 1 1.48350640𝐸 − 1 1.17914638𝐸 − 2

400 2.66856506𝐸 − 1 (1.68) 9.76989490𝐸 − 2 (1.52) 1.33512891𝐸 − 2 (0.88)
1600 6.38750772𝐸 − 2 (4.18) 2.85173883𝐸 − 2 (3.43) 3.17813228𝐸 − 3 (4.20)
6400 4.62308181𝐸 − 2 (1.38) 6.09263880𝐸 − 3 (4.68) 1.03454966𝐸 − 3 (3.07)
25600 1.58598120𝐸 − 2 (2.91) 3.18129278𝐸 − 3 (1.92) 7.24256686𝐸 − 4 (1.43)

Results for𝑁𝑚 = 3
100 3.17329908𝐸 − 1 9.52829319𝐸 − 2 8.51644272𝐸 − 3

400 2.01750784𝐸 − 1 (1.57) 6.54737794𝐸 − 2 (1.46) 1.70397643𝐸 − 2 (0.49)
1600 1.30910195𝐸 − 1 (1.54) 2.52870559𝐸 − 2 (2.59) 3.99852809𝐸 − 3 (4.26)
6400 1.85236630𝐸 − 2 (7.07) 6.47435184𝐸 − 3 (3.91) 1.84532439𝐸 − 3 (2.17)
25600 8.95884920𝐸 − 3 (2.07) 1.06851043𝐸 − 3 (6.06) 3.53995511𝐸 − 4 (5.21)

Table 3: Stochastic convergence for KL-SC method,𝑀max = 6
6
= 46,656. Convergence ratios are given in parentheses.

𝑀m Pressure error Flux 𝑢1 error Flux 𝑢2 error
Results for𝑁𝑚 = 0

2
6
= 64 1.73171578𝐸 − 2 1.53781262𝐸 − 2 1.19104228𝐸 − 3

3
6
= 729 1.35136013𝐸 − 3 (12.81) 2.64723907𝐸 − 4 (58.09) 2.63058974𝐸 − 5 (45.28)

4
6
= 4096 1.35036246𝐸 − 4 (10.01) 4.24765346𝐸 − 5 (6.23) 6.34172897𝐸 − 6 (4.15)

5
6
= 15625 2.38436555𝐸 − 5 (5.66) 7.24388553𝐸 − 6 (5.86) 1.10585528𝐸 − 6 (5.73)

Results for𝑁
𝑚
= 3

2
6
= 64 1.14545082𝐸 − 2 2.01435814𝐸 − 3 2.58675228𝐸 − 4

3
6
= 729 6.84148724𝐸 − 4 (16.74) 9.72102804𝐸 − 5 (20.72) 1.53448331𝐸 − 5 (16.86)

4
6
= 4096 4.82400762𝐸 − 5 (14.18) 7.09604144𝐸 − 6 (13.69) 1.46771202𝐸 − 6 (10.45)

5
6
= 15625 4.40509288𝐸 − 6 (10.95) 7.67343049𝐸 − 7 (9.25) 2.27047888𝐸 − 7 (6.46)

its ability to honor given data. It has a natural decomposition
giving (i) a krigedmean field agreeingwith observed data and
(ii) random fluctuations around the kriged mean which are
zero at the observed locations; thus all realizations honor the
point data.

We give details of Monte Carlo implementation KL-MC
of our method as well as of its use in stochastic collocation
KL-SC. We compare the results of simulations with KL-MC
and KL-SC to those of SGS-MC obtained with sequential
Gaussian simulation (SGS) as implemented in GSLIB [3].

All three methods rely on the same initial information: a
covariance model 𝐶Y and the data K(x∗) at𝑁𝑚 conditioning
locations x∗. All three can generate any desired number of
realizations𝑀; those in KL-SC have a particular structure.

The comparison between SGS-MC, KL-MC, and KL-SC
can be summarized as follows. When used for calculation of
the mean and variance of various quantities of interest, KL-
MC seems to converge about twice as fast compared to SGS-
MC. In turn, KL-SC converges orders of magnitude faster
than KL-MC. These observations depend on the quantities
of interest, with the pointwise values seeming to be more
sensitive to the method chosen than the cumulative ones.
However, since 𝑁 > 𝑁𝑚 as in (25), in practice we can
use tensor grid KL-SC implementation only with a few

conditioning points due to the 𝑂(𝑚𝑁) complexity. At this
time we thus see KL-MC as the most versatile and accurate
technique.

The conditional expansions proposed in our method
come from simple algebraic modifications of the uncondi-
tional expansions. The additional cost associated with the
conditioning has complexity equal to that of finding an
inverse of a matrix of size 𝑁𝑚 × 𝑁𝑚. In contrast, the
expansions in [4] require determining the spectra for each
set of conditioning points. As shown in Section 3.5.2, our
method can reuse unconditional expansions and vary the
number and position x∗ of conditioning points. This is in
constrast to SGS which works with a fixed set x∗ and a fixed
spatial grid or resolution.

In order to fully understand the relativemerits of the three
methods, more testing is needed with different covariance
models and parameters and with a variety of conditioning
data sets x∗. Moreover, different physical models and quan-
tities of interest need to be evaluated. To further improve
on KL-MC as presented and the use of the more efficient
KL-SC variant, future plans include exploration of nontensor
grids in stochastic collocation. Other current work includes
numerical error analysis and the use of multipoint statistics
for nonstationary covariance models.
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Figure 12: Moments of the breakthrough curves approximated by KL-MC method (a) and KL-SC (b) with 𝑁 = 6 and varying𝑀 and m,
respectively.

Table 4: Stochastic convergence for transport results unconditional KL-MC method. Errors are reported against the solution obtained with
𝑀 = 6400MC realizations.

Results for KL-MC with𝑀max = 6400

𝑀 BTC error,𝑁𝑚 = 0 BTC error,𝑁𝑚 = 3

100 3.22185276𝐸 − 5 2.34897907𝐸 − 5

400 8.45299874𝐸 − 5 4.45654307𝐸 − 5

1600 2.37960024𝐸 − 5 2.48353941𝐸 − 5

Results for KL-SC with𝑀max = 5
6
= 15625

𝑀m BTC errorr,𝑁𝑚 = 0 BTC error,𝑁𝑚 = 3

2
6
= 64 2.80396825𝐸 − 5 3.89977320𝐸 − 6

3
6
= 729 2.07419462𝐸 − 6 7.03030755𝐸 − 7

4
6
= 4096 1.04005211𝐸 − 6 6.82138851𝐸 − 7

Appendix

A. Details on Stochastic Estimates

The following outlines the moment calculations and 𝐿2

bounds given in Section 3 for the conditioned Ỹ and

additionally truncated Ỹ𝑁. All definitions are as given in
Section 3. Additionally, let

(I𝑁)𝑖,𝑗 = {
𝛿𝑖,𝑗 if 𝑖, 𝑗 ≤ 𝑁
0 otherwise,

(A.1)
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Λ𝑁 = I𝑁Λ, andΥ𝑁 = Λ−Λ𝑁.ThenΣ𝑁, the covariancematrix
of Y𝑁(x∗), can be written as Σ𝑁 = 𝑅

𝑇
Λ𝑁𝑅. Recalling that

Σ = 𝑅
𝑇
Λ𝑅 andM = I − Λ1/2𝑅Σ−1𝑅𝑇Λ1/2 gives

M2 = I − 2Λ1/2𝑅Σ−1𝑅𝑇Λ1/2 + Λ1/2𝑅Σ−1𝑅𝑇Λ𝑅Σ−1𝑅𝑇Λ1/2

= I − Λ1/2𝑅Σ−1𝑅𝑇Λ1/2 = M,
(A.2)

and we see thatM is a symmetric projectionmatrix. Similarly
M𝑁 = I𝑁 − Λ

1/2

𝑁
𝑅Σ
−1

𝑁
𝑅
𝑇
Λ
1/2

𝑁
= M2
𝑁
and, using the decom-

position Σ = 𝑅𝑇Λ𝑁𝑅 + 𝑅
𝑇
Υ𝑁𝑅 = Σ𝑁 + 𝑅

𝑇
Υ𝑁𝑅,

MM𝑁 = M𝑁 − Λ
1/2
𝑅Σ
−1

𝑁
𝑅
𝑇
Λ
1/2

𝑁

+ Λ
1/2
𝑅Σ
−1

𝑁
𝑅
𝑇
Λ
1/2

𝑁
= M𝑁.

(A.3)

The latter gives (M − M𝑁)
2
= M − M𝑁, so M − M𝑁 is also

a symmetric projection matrix. Letting 𝑚𝑛 = 𝑚𝑛,𝑛 and 𝑚𝑛 =
(M𝑁)𝑛,𝑛, we have

0 ≤ 𝑚
2

𝑛
≤ ∑

𝑖≥1

𝑚
2

𝑛,𝑖
= ∑

𝑖≥1

𝑚𝑛,𝑖𝑚𝑖,𝑛 = 𝑚𝑛 ≤ 1. (A.4)

Likewise 0 ≤ 𝑚𝑛 ≤ 1 and 0 ≤ 𝑚𝑛 − 𝑚𝑛 ≤ 1.
We also have 𝜇 = Λ

1/2
𝑅Σ
−1
(Y(x∗) − Y(x∗)), 𝜇𝑁 =

Λ
1/2

𝑁
𝑅Σ
−1

𝑁
(Y(x∗) − Y(x∗)), and 𝜉 = 𝜇 +M𝜂, 𝜉𝑁 = 𝜇𝑁 +M𝑁𝜂.

Writing both Ỹ and Ỹ𝑁 using these matrix representations
gives

Ỹ (𝑥) = Y (𝑥) + Φ𝑇 (𝑥) Λ1/2 (𝜇 +M𝜂)

= Y(𝑥) + Φ𝑇 (𝑥) Λ1/2M𝜂,

Ỹ𝑁 (𝑥) = Y (𝑥) + Φ𝑇 (𝑥) Λ1/2
𝑁
(𝜇𝑁 +M𝑁𝜂)

= Y𝑁 (𝑥) + Φ
𝑇
(𝑥) Λ
1/2

𝑁
M𝑁𝜂,

(A.5)

where Y𝑁(𝑥) = 𝐸[Y𝑁(𝑥) | X∗] as given in (27) and Y(𝑥) =
𝐸[Y(𝑥) | X∗] is defined analogously.

The following verifies that the values of the conditioned
processes as constructed exactly match the given data at
observation locations. For any 1 ≤ 𝑖 ≤ 𝑁𝑚, Φ(𝑥

∗

𝑖
) is a

column of 𝑅. This gives Φ(𝑥∗
𝑖
)
𝑇
Λ
1/2M = 0, Φ(𝑥∗

𝑖
)
𝑇
𝜇 =

Φ(𝑥
∗

𝑖
)
𝑇
Λ
1/2
𝑅Σ
−1
(Y(x∗) − Y(x∗)) = Y(𝑥∗

𝑖
) − Y(𝑥∗

𝑖
), and

Ỹ(𝑥∗
𝑖
) = Y(𝑥∗

𝑖
) = Y(𝑥∗

𝑖
). Likewise Ỹ𝑁(𝑥∗𝑖 ) = Y𝑁(𝑥∗𝑖 ) =

Y(𝑥∗
𝑖
).

The total variability, both conditional and unconditional,
of Ỹ𝑁 can be calculated as follows. Conditioning on the

observations Y(x∗) and using the decomposition of Σ given
above,

𝐸 [Ỹ𝑁 (𝑥) | X
∗
] = Y𝑁 (𝑥) = Φ

𝑇
(𝑥) Λ𝑁𝑅Σ

−1

𝑁
(Y − Y) (x∗) ,

(A.6)

Var [𝐸 [Ỹ𝑁 (𝑥) | X
∗
]]

= 𝐸 [Φ
𝑇
(𝑥) Λ𝑁𝑅Σ

−1

𝑁
(Y − Y) (Y − Y)

𝑇

× (x∗) Λ𝑁𝑅Σ
−1

𝑁
𝑅
𝑇
Φ (𝑥)]

= Φ
𝑇
(𝑥) Λ𝑁𝑅Σ

−1

𝑁
ΣΣ
−1

𝑁
𝑅
𝑇
Λ𝑁Φ (𝑥)

= Φ
𝑇
(𝑥) Λ𝑁𝑅Σ

−1

𝑁
𝑅
𝑇
Λ𝑁Φ (𝑥)

= Φ
𝑇
(𝑥) Λ
1/2

𝑁
(I𝑁 −M𝑁)Λ

1/2

𝑁
Φ (𝑥) ,

(A.7)

Var [Ỹ𝑁 (𝑥) | X
∗
] = Φ

𝑇
(𝑥) Λ
1/2

𝑁
M𝑁Λ
1/2

𝑁
Φ (𝑥) . (A.8)

Using the orthogonality in 𝐿2(𝐷) of the components of Φ(𝑥)
then gives the total variability of the kriged mean Y𝑁 as

∫
𝐷

Var [𝐸 [Ỹ𝑁 (𝑥) | X
∗
]] 𝑑𝑥

= Trace (Λ1/2
𝑁
(I𝑁 −M𝑁)Λ

1/2

𝑁
)

= ∑

𝑛≤𝑁

𝜆𝑛 (1 − 𝑚𝑛) ,

(A.9)

and the total conditional variability of Ỹ𝑁 as

∫
𝐷
Var [Ỹ𝑁 (𝑥) | X∗] 𝑑𝑥 = Trace (Λ1/2

𝑁
M𝑁Λ
1/2

𝑁
)

= ∑

𝑛≤𝑁

𝜆𝑛𝑚𝑛.

(A.10)

The usual decomposition of variance with conditioning
followed by integration yields

∫
𝐷
Var [Ỹ𝑁 (𝑥)] 𝑑𝑥 = ∫

𝐷
𝐸 [Var [Ỹ𝑁 (𝑥) | X∗]] 𝑑𝑥

+∫
𝐷
Var [𝐸 [Ỹ𝑁 (𝑥) | X∗]] 𝑑𝑥

= Trace (Λ𝑁) = ∑

𝑛≤𝑁

𝜆𝑛.

(A.11)

Letting 𝑁 → ∞ gives the comparable quantities for the
nontruncated conditioned Ỹ as

∫
𝐷

Var [𝐸 [Ỹ (𝑥) | X∗]] 𝑑𝑥 = ∑

𝑛≥1

𝜆𝑛 (1 − 𝑚𝑛) , (A.12)

and the total conditional variability of Ỹ as

∫
𝐷

Var [Ỹ (𝑥) | X∗] 𝑑𝑥 = ∑

𝑛≥1

𝜆𝑛𝑚𝑛. (A.13)



18 Journal of Applied Mathematics

The total variability is then seen to be identical to that of the
unconditioned process Y on𝐷

∫
𝐷

Var [Ỹ (𝑥)] 𝑑𝑥 = Trace (Λ) = ∑

𝑛≥1

𝜆𝑛. (A.14)

Comparisons between the truncated and nontruncated
conditioned processes as constructed simultaneously with
the same vector 𝜂 may be of interest. The calculations are
parallel to those done above, so they are omitted. First
Var[𝐸[Ỹ(𝑥) − Ỹ𝑁(𝑥) | X∗]] = Φ

𝑇
(𝑥)Υ
1/2

𝑁
(I − M)Υ1/2

𝑁
Φ(𝑥)

gives

∫
𝐷
Var [𝐸 [Ỹ (𝑥) − Ỹ𝑁 (𝑥) | X∗]] 𝑑𝑥

= Trace (Υ1/2
𝑁

(I −M) Υ1/2
𝑁
)

= ∑

𝑛>𝑁

𝜆𝑛 (1 − 𝑚𝑛) .

(A.15)

ThenVar[Ỹ(𝑥)−Ỹ𝑁(𝑥) | X∗] = Φ𝑇(𝑥)(Υ
1/2

𝑁
MΥ1/2
𝑁
+Λ
1/2

𝑁
(M−

M𝑁)Λ
1/2

𝑁
)Φ(𝑥) gives

∫
𝐷

Var [Ỹ (𝑥) − Ỹ𝑁 (𝑥) | X
∗
] 𝑑𝑥

= Trace (Υ1/2
𝑁

MΥ1/2
𝑁

+ Λ
1/2

𝑁
(M −M𝑁)Λ

1/2

𝑁
)

= ∑

𝑛>𝑁

𝑚𝑛𝜆𝑛 + ∑

𝑛≤𝑁

𝜆𝑛 (𝑚𝑛 − 𝑚𝑛) .

(A.16)

Using the same decomposition of variance as above yields

∫
𝐷

Var [Ỹ (𝑥) − Ỹ𝑁 (𝑥)] 𝑑𝑥

= ∑

𝑛>𝑁

𝜆𝑛 + ∑

𝑛≤𝑁

𝜆𝑛 (𝑚𝑛 − 𝑚𝑛) ≥ ∑

𝑛>𝑁

𝜆𝑛.

(A.17)

The first term is a direct consequence of the truncation and
the second term reflects the total added variability resulting
from the discrepancy between the approximating covariance
matrix Σ𝑁 and the assumed true covariance matrix Σ of
Y(x∗).

B. SGS Parameters

We provide here an example parameter file that we used
to produce unconditional SGS realizations with Gaussian
covariance. We used the GSLIB tool [3]. (See Algorithm 1.)

C. Orthogonal Polynomials, Weights, and
Collocation Points

The choice of collocation points {y𝑘}
𝑀m
𝑘=1

leads to different
variants of stochastic collocation methods. Here we only
describe tensor product grids. More efficient choice and

simulations appropriate for large 𝑀m with sparse grids [25,
26] will be discussed elsewhere.

Recall from Section 3.4.3 m = (𝑚1, . . . , 𝑚𝑁) and let
𝑃m(Γ) = ⨂

𝑁

𝑛=1
𝑃𝑚
𝑛

(Γ𝑛) denote the space of tensor product
polynomials where in each stochastic dimension 𝑛, the
component polynomials have degree at most 𝑚𝑛; that is,
𝑃𝑚
𝑛

(Γ𝑛) = span{𝑦𝑟
𝑛
, 𝑟 = 0, 1, . . . , 𝑚𝑛}.

A polynomial in 𝑃m(Γ) requires 𝑀m := ∏
𝑁

𝑛=1
(𝑚𝑛 + 1)

degrees of freedom and can be written using tensor product
Lagrange basis {𝐿m

𝑛,𝑘
𝑛

}
𝑚
𝑛
+1

𝑘
𝑛
=1

constructed on a collection of
nodes 𝑦𝑛,𝑗 so that 𝐿m

𝑛,𝑖
(𝑦𝑛,𝑗) = 𝛿𝑖,𝑗, 𝑖, 𝑗 = 1, . . . , 𝑚𝑛 + 1. The

choice of the nodes 𝑦𝑛,𝑗 is made to make approximations to
the integrals (31) as accurate as possible. It is well known [22]
that the choice of the roots {𝑦𝑛,𝑘

𝑛

}
𝑚
𝑛
+1

𝑘
𝑛
=1

⊂ Γ𝑛 of orthogonal
polynomial 𝑞𝑚

𝑛

with respect to the weighted inner product
(𝑢, V)𝜌

𝑛

= ∫
Γ
𝑛

𝑢(𝑦)V(𝑦)𝜌𝑛(𝑦)𝑑𝑦 is optimal. Now denote by

y𝑘 = (𝑦1,𝑘
1

, . . . , 𝑦𝑁,𝑘
𝑁

) ∈ Γ, 𝑘 = 1, . . . ,𝑀m, (C.1)

where the global index 𝑘 = 𝑘1+𝑚1(𝑘2−1)+𝑚1𝑚2(𝑘3−1)+⋅ ⋅ ⋅ ,
is associatedwith themulti-index (𝑘1, . . . , 𝑘𝑁), andwe denote
the multivariate Lagrange basis function

𝐿
m
𝑘
(y) =

𝑁

∏

𝑛=1

𝐿
m
𝑛,𝑘
𝑛

(𝑦𝑛) , 𝑘 = 1, . . . ,𝑀m. (C.2)

With this notation, Gaussian quadrature approximation to
the integral 𝐸[𝑄] = ∫

Γ
𝑄(y)𝜌(y)𝑑y for any continuous

function 𝑄 : Γ → R is the value of 𝐸[𝑄m] where 𝑄m is the
polynomial of degree𝑀m approximating𝑄, optimal from the
point of accuracy of the approximate integration. Since as in
(39) we have 𝑄m(y) = ∑

𝑀m
𝑘=1

𝑄(y𝑘)𝐿m𝑘 (y), we have by (40)

𝐸 [𝑄] ≈ 𝐸 [𝑄m] = ∫
Γ

𝑄m (y) 𝜌 (y) 𝑑y

= ∫
Γ

𝑀m

∑

𝑘=1

𝑄 (y𝑘) 𝐿
m
𝑘
(y) 𝜌 (y) 𝑑y

=

𝑀m

∑

𝑘=1

𝑤𝑘𝑄 (y𝑘) ,

(C.3)

with

𝑤𝑘 = ∫
Γ

𝐿
m
𝑘
(y) 𝜌 (y) 𝑑y =

𝑁

∏

𝑛=1

∫
Γ
𝑛

𝐿
m
𝑛,𝑘
𝑛

(𝑦) 𝜌𝑛𝑑𝑦. (C.4)

This choice makes the approximation of (31) by (40) as
accurate as possible.

It remains to specify the orthogonal polynomials. In
our numerical experiments we assume that the random
variables in the representation are Gaussian 𝑁(0, 1). For
Gaussian density 𝜌𝑛 it is best to use the “probabilist” Hermite
polynomials (compare [27])

He𝑚 (𝑦) = 𝑚!
⌊𝑚/2⌋

∑

𝑘=0

(−1)
𝑘
𝑥
𝑚−2𝑘

𝑘!2𝑘 (𝑚 − 2𝑘)!
, (C.5)
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Parameters for SGSIM

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

START OF PARAMETERS:

../data/nodata.dat \file with data

0 0 0 0 0 0 \ columns for X,Y,Z,vr,wt,sec.var.

0.0 1.0e21 \ trimming limits

0 \transform the data (0=no, 1=yes)

sgsim.trn \ file for output trans table

0 \ consider ref. dist (0=no, 1=yes)

histsmth.out \ file with ref. dist distribution

0 0 \ columns for vr and wt

0.0 15.0 \ zmin,zmax(tail extrapolation)

1 0.0 \ lower tail option, parameter

1 15.0 \ upper tail option, parameter

1 \debugging level: 0,1,2,3

sgsim.dbg \file for debugging output

sgsim.out \file for simulation output

100 \number of realizations to generate

50 0.01 0.02 \nx,xmn,xsiz

50 0.01 0.02 \ny,ymn,ysiz

1 1 1.0 \nz,zmn,zsiz

60754 \random number seed

0 8 \min and max original data for sim

4 \number of simulated nodes to use

1 \assign data to nodes (0=no, 1=yes)

1 3 \multiple grid search (0=no, 1=yes),num

0 \maximum data per octant (0=not used)

1 1 1 \maximum search radii (hmax,hmin,vert)

0.0 0.0 0.0 \angles for search ellipsoid

0 0.60 1.0 \ktype: 0=SK,1=OK,2=LVM,3=EXDR,4=COLC

../data/nodata.dat \ file with LVM, EXDR, or COLC variable

0 \ column for secondary variable

1 0.0 \nst, nugget effect

3 1 0.0 0.0 0.0 \it,cc,ang1,ang2,ang3

0.6 0.6 0.6 \a hmax, a hmin, a vert

Algorithm 1

which are orthogonal with respect to the normal density.
Their roots, that is, the associated collocation points 𝑦𝑘,𝑗 can
be found in standard references [27] or computed with a
symbolicmanipulation software.Theweights follow similarly
or via known values for the “physicist” Hermite polynomials
𝐻𝑚(𝑦) = 2

𝑚/2He𝑚(√2𝑦).
Other details on polynomial approximations can be

found in [22].

D. Weak Stochastic Formulation

D.1. Flow Model. We start with the appropriate spaces to set
the flowmodel (1a)–(1c) in the mixed formulation. Following
[2], we define

𝐿
2

𝜌,𝑑
(Γ)

= {k : Γ 󳨀→ R
𝑑
, (∫

Γ

k(y) ⋅ k(y)𝜌(y)𝑑y)
1/2

< ∞} .

(D.1)

We take the tensor product of 𝐿2
𝜌,𝑑
(Γ) with the deterministic

velocity and pressure spaces defined as 𝑉 = {k ∈ 𝐻div(𝐷) :

k ⋅ n = 0 on 𝜕𝐷𝑁} and 𝑊 = 𝐿
2
(𝐷) to form the stochastic

Sobolev spaces

V = 𝑉 ⊗ 𝐿
2

𝜌,2
(Γ) , W = 𝑊 ⊗ 𝐿

2

𝜌,1
(Γ) , (D.2)

with norms

‖k‖2V = ∫
Γ

(∫
𝐷

k ⋅ k + (∇ ⋅ k)2𝑑𝑥)
1/2

𝜌 (y) 𝑑y = 𝐸 [‖k‖2
𝑉
] ,

‖𝑤‖
2

W = ∫
Γ

(∫
𝐷

𝑤
2
𝑑𝑥)

1/2

𝜌 (y) 𝑑y = 𝐸 [‖𝑤‖2
𝑊
] .

(D.3)

Multiplication by test functions and application of
the Generalized Green’s Theorem lead to the stochastic
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equivalent of a standard weak mixed formulation: find u ∈ V

and 𝑝 ∈ W such that

∫
Γ

(K−1u, k) 𝜌 (y) 𝑑y

= ∫
Γ

[(𝑝, ∇ ⋅ k) − ⟨𝑔𝐷, k ⋅ n⟩] 𝜌 (y) 𝑑y, ∀k ∈ V
0
,

∫
Γ

(∇ ⋅ u, 𝑤) 𝜌 (y) 𝑑y = ∫
Γ

(𝑓, 𝑤) 𝜌 (y) 𝑑y, ∀𝑤 ∈ W.

(D.4)

Nowwe are ready to state the semidiscrete formulation of
the problem: find uℎ : Γ → 𝑉ℎ and 𝑝ℎ : Γ → 𝑊ℎ such that
for almost all y ∈ Γ

∫
𝐷

K−1uℎ ⋅ kℎ𝑑𝑥

= ∫
𝐷

𝑝ℎ (∇ ⋅ kℎ) 𝑑𝑥 − ∫
𝜕𝐷
𝐷

𝑔𝐷 (kℎ ⋅ n) 𝑑s, ∀kℎ ∈ 𝑉ℎ,

∫
𝐷

(∇ ⋅ uℎ) 𝑤ℎ𝑑𝑥 = ∫
𝐷

𝑓𝑤ℎ 𝑑𝑥, ∀𝑤ℎ ∈ 𝑊ℎ.

(D.5)

Based on the argument similar to that for the corresponding
deterministic model [28], we can be sure that a solution of
this problem exists and is unique.

D.2. Transport Model. Here we follow the set up for deter-
ministic problems in [13] forD ̸= 0. Let

𝑉
𝑐
= {k ∈ 𝐻div (𝐷) : k ⋅ n = 0 on 𝜕𝐷𝑂} ,

𝑊
𝑐
= 𝐿
2
(𝐷) .

(D.6)

We define the stochastic Sobolev spaces for diffusive flux s
and concentration 𝑐 as

V
𝑐
= 𝐿
2
([0, 𝑇] ; 𝑉

𝑐
) × 𝐿
2

𝜌,2
(Γ) ,

W
𝑐
= 𝐿
2
([0, 𝑇] ;𝑊

𝑐
) × 𝐿
2

𝜌,1
(Γ) ,

(D.7)

with norms

‖k‖V𝑐 = ∫
Γ

(∫

𝑇

0

‖k‖2
𝑉𝑐
𝑑𝑡)

1/2

𝜌 (y) 𝑑y = 𝐸 [‖k‖𝐿2([0,𝑇];𝑉𝑐)] ,

(D.8)

‖𝑤‖W𝑐 = ∫
Γ

(∫

𝑇

0

‖𝑤‖
2

𝑊𝑐
𝑑𝑡)

1/2

𝜌 (y) 𝑑y = 𝐸 [‖𝑤‖𝐿2([0,𝑇];𝑊𝑐)] .

(D.9)

Then we have the following stochastic weak mixed formula-
tion of the transport problem: find s ∈ V𝑐 and 𝑐 ∈ W𝑐 such
that

∫
Γ

[(D−1s, k) − (𝑐, ∇ ⋅ k)] 𝜌 (y) 𝑑y

= −∫
Γ

⟨𝑐𝐼, k ⋅ n⟩𝜌 (y) 𝑑y, ∀k ∈ V ,

∫
Γ

(𝜙
𝜕𝑐

𝜕𝑡
+ ∇ ⋅ 𝑐u + ∇ ⋅ s, 𝑤) 𝜌 (y) 𝑑y

= ∫
Γ

(𝑞, 𝑤) 𝜌 (y) 𝑑y, ∀𝑤 ∈ W.

(D.10)

The discrete formulation is to find S𝑛,ℎ : Γ → 𝑉
𝑐

ℎ
and

𝐶𝑛,ℎ : Γ → 𝑊
𝑐

ℎ
such that for almost all y ∈ Γ

∫
𝐷

D−1S𝑛,ℎ ⋅ kℎ𝑑𝑥 − ∫
𝐷

𝐶𝑛,ℎ (∇ ⋅ kℎ) 𝑑𝑥

= −∫
𝜕𝐷
𝐼

𝑐𝐼,𝑛 (kℎ ⋅ n) 𝑑s, ∀kℎ ∈ 𝑉
𝑐

ℎ
,

(D.11)

∫
𝐷

[𝜙
𝐶𝑛,ℎ − 𝐶𝑛−1,ℎ

Δ𝑡𝑛

+ ∇ ⋅ S𝑛,ℎ]𝑤ℎ 𝑑𝑥

= ∫
𝐷

[−∇ ⋅ (𝐶𝑛−1,ℎu) + 𝑞𝑛−1] 𝑤ℎ 𝑑𝑥, ∀𝑤ℎ ∈ 𝑊
𝑐

ℎ
,

(D.12)

and initial condition for 𝑛 = 0

∫
𝐷

𝐶0,ℎ𝑤ℎ𝑑𝑥 = ∫
𝐷

𝑐0𝑤ℎ𝑑𝑥, ∀𝑤ℎ ∈ 𝑊
𝑐

ℎ
. (D.13)

When D = 0, (D.11) is ignored and the 𝑆𝑛,ℎ term in (D.12) is
set to 0.

Note that we handle advection terms explicitly in time to
avoid additional numerical diffusion; thus a stability (CFL)
condition on the time step Δ𝑡𝑛 is imposed. In practice, we set
Δ𝑡 to be uniform in 𝑛 but different for each realization 𝜔 or y.
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