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We propose and study parametric bootstrap (PB) tests for heteroscedastic two-factor MANOVA with nested designs. For the
problem of testing “main effects” of both factors, we develop a flexible test based on a parametric bootstrap approach. The PB
test is shown to be invariant under affine-transformations. Moreover, the PB test does not depend on the chosen weights used to
define the parameters uniquely. The proposed test is compared with the approximate Hotelling 𝑇2 (AHT) test by the simulations.
Simulation results indicate that the PB test performs satisfactorily for various cell sizes and parameter configurations and generally
outperforms the AHT test in terms of controlling the nominal size. For the heteroscedastic cases, the PB test outperforms the AHT
test in terms of power. In addition, the PB test does not lose too much power when the homogeneity assumption is actually valid.

1. Introduction

There are many situations where we record more than one
response variable from each sampling or experimental unit
and where these units are allocated to or occur in treatment
groups. Ecologists often record the abundances of many
species from each sampling or experimental unit and physiol-
ogists commonlymeasuremore than one variable (e.g., blood
pressure, heart rate, etc.) on experimental animals. With
multiple response variables, we might be more interested
in whether there are group differences on all the response
variables considered simultaneously. This is the aim of mul-
tivariate analysis of variance (MANOVA), the analogue of
univariate ANOVAwhenwe havemultiple response variables
for each experimental or sampling unit.

The simplest design is single factor MANOVA (or one-
way MANOVA) which tests the effect of a factor, having 𝑘
levels. If the cell covariance matrices are assumed to be equal,
then there are some popular tests available to test the equality
of the mean vectors. The tests that are commonly used are
the Wilks likelihood ratio (WLR), Lawley-Hotelling trace
(LHT), Bartlett-Nanda-Pillai (BNP), and Roys largest root
tests ([1], chap. 8, sec. 6). When there are some departures
from the standard assumption, that is, unequal cell covari-
ance matrices, these solutions were proposed by James [2],

Johansen [3], Gamage et al. [4], and Krishnamoorthy and Lu
[5], among others. The more complex design is multifactor
MANOVA especially when the homogeneity of the cell
covariance matrices assumption is seriously violated. There
has been a continuous interest in the heteroscedastic two-
factor MANOVA which tests in checking the significance
of the effects of two factors 𝐴 and 𝐵, each having 𝑎 and 𝑏

levels, respectively, in amultivariate factorial experimentwith
crossed designs. Recently, Harrar and Bathke [6] attacked
this problem via modifying the WLR, LHT, and BNP tests.
Their main ideas focus on modifying the degrees of freedom
of the random matrices involved in the test statistics so that
the heteroscedasticity of the cell covariance matrices is taken
into account and the WLR, LHT, and BNP tests can still be
used but with the degrees of freedom estimated from the
data via matching the first two moments; see some details
in Section 2.2 of Zhang and Xiao [7]. Zhang [8] proposed
an approximate Hotelling 𝑇2 (AHT) test. A Wald-type test
statistic is used. Its null distribution is approximated by a
Hotelling𝑇2-distributionwith one parameter estimated from
the data. Some simulation studies conducted in Zhang [8]
showed that the AHT test outperforms themodified LHT test
of Harrar and Bathke [6].

Another useful two-factor design is the nestedMANOVA
[9]. Notice that each of the testing problems associated with
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the three null hypotheses in the heteroscedastic two-way
MANOVA can be equivalently expressed in the form of
the general linear hypothesis testing (GLHT) problem as
described in Zhang [8]. The GLHT problem is very general.
It includes not only the main and interaction effect tests but
also various post hoc and contrast tests as special cases. To
construct the test for two-factor nested MANOVA, we may
use the sameWald-type test statistic as inZhang [8].However,
according to our simulation studies, the empirical sizes of the
AHT test for the two-factor nested MANOVA model may
far exceed the nominal level. On the other hand, the AHT
test needs to consider the the selected weights when the cell
sizes are unequal. Therefore, it is important to develop a test
procedure for the nesting effects and the nested effects with
satisfactory size and power regardless of number of factorial
effects and the sample sizes.

Accordingly, the present paper will develop a parametric
bootstrap (PB) test for heteroscedastic two-factor nested
MANOVA. We use standardized effects sum of squares and
a natural test statistic obtained by replacing cell covariance
matrices by the corresponding sample cell covariance matri-
ces. The PB test admits several nice properties: (1) it can be
simply conducted by a routine Monte Carlo algorithm; (2)
it is shown to be invariant under affine-transformations; (3)
The PB test does not depend on choices of the weights used
to identify the parameters; and (4) it works well. Simulation
results reported in Section 4 indicate that the PB test per-
forms satisfactorily for various cell sizes and parameter con-
figurations when the homogeneity assumption is seriously
violated and generally outperforms the AHT test in terms of
power and controlling size. The main ideas of the proposed
PB test are closely related to the work by Xu et al. [10]. The
methodologies for the PB test are presented in Sections 2
and 3. Simulation results are presented in Section 4. Some
concluding remarks are given in Section 5. Finally, some
technical proofs of themain results are given in theAppendix.

2. Tests for Nested Effects

Consider a two-factor nested designmodelwith factors𝐴 and
𝐵. Suppose that the nesting effect corresponds to the factor
𝐴 having 𝑎 factor levels, and the nested effect corresponds
to the factor 𝐵 having a total of 𝑏 = ∑

𝑎

𝑖=1
𝑏
𝑖
levels with 𝑏

𝑖

levels of 𝐵 nested within the 𝑖th level of the factor 𝐴 (𝑖 =

1, . . . , 𝑎). Suppose a 𝑟-variate random sample of size 𝑛
𝑖𝑗
is

available under (𝑖, 𝑗)th level, 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏
𝑖
. Let

Y
𝑖𝑗𝑘
, 𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏

𝑖
; 𝑘 = 1, . . . , 𝑛

𝑖𝑗
represent these

random vectors and y
𝑖𝑗𝑘

represent their observed (sample)
values. Assume that 𝑛

𝑖𝑗
> 𝑟 so that positive definite sample

covariance matrices can be computed for each cell of the
design. Suppose that Y

𝑖𝑗𝑘
satisfy the following model:

Y
𝑖𝑗𝑘
= 𝜇
𝑖𝑗
+ e
𝑖𝑗𝑘
, e
𝑖𝑗𝑘
∼ 𝑁
𝑟
(0,Σ
𝑖𝑗
) , 𝑖 = 1, . . . , 𝑎;

𝑗 = 1, . . . , 𝑏
𝑖
; 𝑘 = 1, . . . , 𝑛

𝑖𝑗
,

(1)

where 𝜇
𝑖𝑗
: 𝑟 × 1 and Σ

𝑖𝑗
: 𝑟 × 𝑟 are the cell mean vector and

cell covariance matrix of the random sample at the (𝑖, 𝑗)th
cell and e

𝑖𝑗𝑘
is an experimental error vector term. All these

samples are assumed to be independent with each other. In
the two-factor nested model, the cell mean vectors 𝜇

𝑖𝑗
are

usually decomposed into the form

𝜇
𝑖𝑗
= 𝜇
0
+ 𝛼
𝑖
+ 𝛽
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑎; 𝑗 = 1, 2, . . . , 𝑏

𝑖
, (2)

where 𝜇
0
is the grand mean vector, 𝛼

𝑖
is the effect vector of

the 𝑖th level of 𝐴 on each of the 𝑟 variables in Y
𝑖𝑗𝑘
, and 𝛽

𝑖𝑗
is

the effect due to the 𝑗th level of the factor 𝐵 nested within the
𝑖th level of the factor𝐴 so that (1) can be further written as the
following two-factor multivariate nested model with unequal
error covariance matrices:

Y
𝑖𝑗𝑘
= 𝜇
0
+ 𝛼
𝑖
+ 𝛽
𝑖𝑗
+ e
𝑖𝑗𝑘
, e
𝑖𝑗𝑘
∼ 𝑁
𝑟
(0,Σ
𝑖𝑗
) ,

𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏
𝑖
; 𝑘 = 1, . . . , 𝑛

𝑖𝑗
.

(3)

In order to have 𝜇
0
, 𝛼
𝑖
, and 𝛽

𝑖𝑗
uniquely defined, we need to

have additional constraints. Let 𝑢
1
, . . . , 𝑢

𝑎
and V
𝑖1
, . . . , V

𝑖𝑏𝑖
be

nonnegative weights such that ∑𝑎
𝑖=1

𝑢
𝑖
> 0 and ∑𝑏𝑖

𝑗=1
V
𝑖𝑗
> 0.

We consider the following constraints:

𝑎

∑

𝑖=1

𝑢
𝑖
𝛼
𝑖
= 0,

𝑏𝑖

∑

𝑗=1

V
𝑖𝑗
𝛽
𝑖𝑗
= 0, (4)

where 𝑢
1
, . . . , 𝑢

𝑎
and V
𝑖𝑗
, . . . , V

𝑖𝑏𝑖
are nonnegative weights such

that ∑𝑎
𝑖=1

𝑢
𝑖
> 0 and ∑𝑏𝑖

𝑗=1
V
𝑖𝑗
> 0 for each 𝑖.

In this section, we are interested in testing the null
hypothesis,

𝐻
0𝛽 : 𝛽𝑖𝑗 = 0; 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
, (5)

against its natural alternative hypothesis. The null hypothesis
in (5) aims to test if the nested effect corresponding to the
factor 𝐵 is statistically significant.

The sample mean vector and the sample covariance
matrix of the (𝑖, 𝑗)th cell are denoted by Y

𝑖𝑗
and S

𝑖𝑗
, respec-

tively, where

Y
𝑖𝑗
=

1

𝑛
𝑖𝑗

𝑛𝑖𝑗

∑

𝑘=1

Y
𝑖𝑗𝑘
,

S
𝑖𝑗
=

1

𝑛
𝑖𝑗
− 1

𝑛𝑖𝑗

∑

𝑘=1

(Y
𝑖𝑗𝑘
− Y
𝑖𝑗
) (Y
𝑖𝑗𝑘
− Y
𝑖𝑗
)
𝑇

,

(6)

𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏
𝑖
, andM𝑇 denotes the transpose of the

matrixM. The observed values of these random variables are
denoted as y

𝑖𝑗
and s
𝑖𝑗
, respectively, 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
.

We note that Y
𝑖𝑗
’s and S

𝑖𝑗
’s are mutually independent with

(𝑛
𝑖𝑗
− 1)S
𝑖𝑗
∼ 𝑊
𝑟
(𝑛
𝑖𝑗
− 1,Σ

𝑖𝑗
) and the model for Y

𝑖𝑗
as follows:

Y
𝑖𝑗
= 𝜇
0
+ 𝛼
𝑖
+ 𝛽
𝑖𝑗
+ e
𝑖𝑗
, e
𝑖𝑗
∼ 𝑁
𝑟
(0,

1

𝑛
𝑖𝑗

Σ
𝑖𝑗
) ,

𝑖 = 1, . . . , 𝑎; 𝑗 = 1, . . . , 𝑏
𝑖
,

(7)

where e
𝑖𝑗

= (1/𝑛
𝑖𝑗
) ∑
𝑛𝑖𝑗

𝑘=1
e
𝑖𝑗𝑘

and 𝑊
𝑟
(𝑚, Γ) denotes the

𝑟-dimensional Wishart distribution with degrees of freedom



Journal of Applied Mathematics 3

(df) = 𝑚 and scale parameter matrix Γ. Writing Y = (Y𝑇
11
,

. . . ,Y𝑇
1𝑏1
, . . . ,Y𝑇

𝑎1
, . . . ,Y𝑇

𝑎𝑏𝑎
)
𝑇 and e = (e𝑇

11
, . . . , e𝑇

1𝑏1
, . . . , e𝑇

𝑎1
,

. . . , e𝑇
𝑎𝑏𝑎
)
𝑇, the model (7) can be written as

Y = (1
𝑏
⊗ I
𝑟
)𝜇
0
+ (diag (1

𝑏1
, . . . , 1

𝑏𝑎
) ⊗ I
𝑟
)𝛼 + 𝛽 + e, (8)

where 𝛼 = (𝛼
𝑇

1
, . . . ,𝛼

𝑇

𝑎
)
𝑇, 𝛽 = (𝛽

𝑇

11
, . . . ,𝛽

𝑇

1𝑏1
, . . . ,𝛽

𝑇

𝑎1
, . . . ,

𝛽
𝑇

𝑎𝑏𝑎
)
𝑇, e ∼ 𝑁

𝑏𝑟
(0,Σ), Σ = diag((1/𝑛

11
)Σ
11
, . . . , (1/𝑛

1𝑏1
)Σ
1𝑏1
,

. . . , (1/𝑛
𝑎1
)Σ
𝑎1
, . . . , (1/𝑛

𝑎𝑏𝑎
)Σ
𝑎𝑏𝑎
), 1
𝑚
denotes the 𝑚 × 1 vec-

tor of ones, I
𝑚

is an identity matrix with order 𝑚, V ⊗

W denotes the Kronecker product of matrices V and W,
and diag(M

1
, . . . ,M

𝑚
) denotes a block-diagonal matrix with

M
1
, . . . ,M

𝑚
along the blocks.

Define the standardized sum of squares due to the factor
𝐵

𝑆𝛽 (Y11, . . . ,Y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎)

=

𝑎

∑

𝑖=1

𝑏𝑖

∑

𝑗=1

(Y
𝑖𝑗
− 𝜇̂
0
− 𝛼̂
𝑖
)
𝑇

(𝑛
𝑖𝑗
Σ
−1

𝑖𝑗
) (Y
𝑖𝑗
− 𝜇̂
0
− 𝛼̂
𝑖
) ,

(9)

where 𝜇̂
0
and 𝛼̂

𝑖
are solutions of 𝜇

0
and 𝛼

𝑖
that minimize the

quadratic equation

𝑆 (Y
11
, . . . ,Y

𝑎𝑏𝑎
;Σ
11
, . . . ,Σ

𝑎𝑏𝑎
)

=

𝑎

∑

𝑖=1

𝑏𝑖

∑

𝑗=1

(Y
𝑖𝑗
− 𝜇
0
− 𝛼
𝑖
)
𝑇

(𝑛
𝑖𝑗
Σ
−1

𝑖𝑗
) (Y
𝑖𝑗
− 𝜇
0
− 𝛼
𝑖
) ,

(10)

subject to the constraints given in (4).
In fact, denoting 𝜃 = (𝜇

𝑇

0
,𝛼
𝑇

1
, . . . ,𝛼

𝑇

𝑎
)
𝑇 and 𝜃̂ = (𝜇̂

𝑇

0
, 𝛼̂
𝑇

1
,

. . . , 𝛼̂
𝑇

𝑎
)
𝑇, it follows from Theorem 5.2.5 in Wang and Chow

[11] that

𝜃̂ = (𝜇̂
𝑇

0
, 𝛼̂
𝑇

1
, . . . , 𝛼̂

𝑇

𝑎
)
𝑇

= (X𝑇Σ−1X + L𝑇L)
−1

X𝑇Σ−1Y, (11)

where X = (1
𝑏
, diag(1

𝑏1
, . . . , 1

𝑏𝑎
)) ⊗ I

𝑟
and L = (0, 𝑢

1
, . . . ,

𝑢
𝑎
) ⊗ I
𝑟
. Then

𝑆𝛽 (Y11, . . . ,Y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎) = (Y − X𝜃̂)
𝑇

Σ
−1
(Y − X𝜃̂) .

(12)

Notice that 𝜃̂ indeed depends on L of chosen weights.
However, we can prove that the standardized sum of squares
in (9) does not depend on L. This is the followingTheorem.

Theorem 1. The standardized sum of squares 𝑆𝛽(Y11, . . . ,Y𝑎𝑏𝑎 ;
Σ
11
, . . . ,Σ

𝑎𝑏𝑎
) does not depend on L of chosen weights, and

𝑆𝛽 (Y11, . . . ,Y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎)

= Y𝑇Σ−1/2 (I
𝑏𝑟
− Σ
−1/2X(X𝑇Σ−1X)

−

X𝑇Σ−1/2)Σ−1/2Y,
(13)

whereM− denotes any generalized inverse of matrixM.

Note fromTheorem 1 that 𝑆𝛽(Y11, . . . ,Y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎)
does not depend on L. If Σ

𝑖𝑗
are known, then a natural

statistic for testing (5) is 𝑆𝛽(Y11, . . . ,Y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎). In
fact, Σ−1/2Y ∼ 𝑁

𝑏𝑟
(Σ
−1/2
𝜇, I
𝑏𝑟
), and

Δ = (I
𝑏𝑟
− Σ
−1/2X(X𝑇Σ−1X)

−

X𝑇Σ−1/2) (14)

is an idempotent matrix with rank 𝑟(𝑏 − 𝑎); we have

Y𝑇Σ−1/2ΔΣ−1/2Y ∼ 𝜒
2

𝑟(𝑏−𝑎)
(𝜇
𝑇
Σ
−1/2
ΔΣ
−1/2
𝜇) , (15)

where 𝜇 = (𝜇
𝑇

11
, . . . ,𝜇

𝑇

1𝑏1
, . . . ,𝜇

𝑇

𝑎1
, . . . ,𝜇

𝑇

𝑎𝑏𝑎
)
𝑇 and 𝜒

2

𝑚
(𝛿)

denotes a noncentral chi-square random variable with
degrees of freedom 𝑚 and noncentrality parameter 𝛿. The
noncentrality parameter 𝜇𝑇Σ−1/2ΔΣ−1/2𝜇 is equal to zero
when 𝛽

11
= ⋅ ⋅ ⋅ = 𝛽

𝑎𝑏𝑎
. Let y = (y𝑇

11
, . . . , y𝑇

1𝑏1
, . . . , y𝑇

𝑎1
, . . . ,

y𝑇
𝑎𝑏𝑎
)
𝑇 be the observed value of Y. Then, the test that rejects

𝐻
0𝛽 in (5) whenever

𝑆𝛽 (Y11, . . . ,Y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎) > 𝜒
2

𝑟(𝑏−𝑎),𝜆
(16)

is a size 𝜆 test, where 𝜒2
𝑚,𝜆

is the upper 𝜆th quantile of a chi-
square distribution with 𝑑𝑓 = 𝑚.

In general, the covariance matrices Σ
𝑖𝑗
are unknown; in

this case, a test statistic can be obtained by replacing Σ
𝑖𝑗
in

(13) by S
𝑖𝑗
, 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
and is given by

𝑆𝛽 (Y11, . . . ,Y𝑎𝑏𝑎 ; S11, . . . , S𝑎𝑏𝑎)

= Y𝑇S−1/2 (I
𝑏𝑟
− S−1/2X(X𝑇S−1X)

−

X𝑇S−1/2) S−1/2Y,
(17)

where S = diag((1/𝑛
11
)S
11
, . . . , (1/𝑛

1𝑏1
)S
1𝑏1
, . . . , (1/𝑛

𝑎1
)S
𝑎1
,

. . . , (1/𝑛
𝑎𝑏𝑎
)S
𝑎𝑏𝑎
).

As shown in Zhang [8], the testing problem associated
with the null hypothesis (5) can also be equivalently expressed
in the form of the general linear hypothesis testing (GLHT)
problem as𝐻

0𝛽 : C𝜇 = 0, where C = H𝛽A𝛽 ⊗ I
𝑟
,

H𝛽

= (

(I
𝑏1−1

, −1
𝑏1−1

) 0 0 0

0 (I
𝑏2−1

, −1
𝑏2−1

) 0 0

0 0 d 0

0 0 0 (I
𝑏𝑎−1

, −1
𝑏𝑎−1

)

) ,

A𝛽 = (

I
𝑏1
− 1
𝑏1
𝑢
1
k𝑇
1

0 0 0

0 I
𝑏2
− 1
𝑏2
𝑢
2
k𝑇
2

0 0

0 0 d 0

0 0 0 I
𝑏𝑎
− 1
𝑏𝑎
𝑢
𝑎
k𝑇
𝑎

),

(18)

and k
𝑖
= (V
𝑖1
, . . . , V

𝑖𝑏𝑖
)
𝑇, 𝑖 = 1, 2, . . . , 𝑎. Then the associated

Wald-type test statistic is given as

𝑇 = (C𝜇̂)𝑇(CSC𝑇)
−1

(C𝜇̂) , (19)

where 𝜇̂ = Y, and S is defined as in (17).
In the following, we shall describe two tests based on (17)

and (19), respectively.
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2.1. The Approximate Hotelling 𝑇
2 (AHT) Test. Similar to

Zhang [8], we proposed a test referred as the AHT test, which
is based on the test statistic

(𝑑 − 𝑞 + 1) 𝑇

𝑞𝑑

, (20)

where 𝑞 = rank(C) = 𝑟(𝑏 − 𝑎),

𝑑 =
𝑞 (𝑞 + 1)

∑
𝑎

𝑖=1
∑
𝑏𝑖

𝑗=1
(𝑛
𝑖𝑗
− 1)
−1

[tr2 (Ω̂
𝑖𝑗
) + tr (Ω̂2

𝑖𝑗
)]

, (21)

and Ω̂
𝑖𝑗
= 𝑛
−1

𝑖𝑗
Ĥ
𝑖𝑗
S
𝑖𝑗
Ĥ𝑇
𝑖𝑗
and Ĥ

𝑖𝑗
= (CSC𝑇)−1/2C

𝑖𝑗
with C =

[C
11
, . . .C

1𝑏1
, . . . ,C

𝑎1
, . . . ,C

𝑎𝑏𝑎
], and C

𝑖𝑗
: 𝑞 × 𝑟 is the (𝑖𝑗)th

block matrix of C. Zhang [8] showed that, under 𝐻
0𝛽, (𝑑 −

𝑞 + 1)𝑇/𝑞𝑑 is approximately distributed as 𝐹
𝑞,𝑑−𝑞+1

random
variable. Thus, the AHT test rejects the null hypothesis in (5)
when the critical value (𝑞𝑑/(𝑑 − 𝑞 + 1))𝐹

𝑞,𝑑−𝑞+1
(1 − 𝜆) for

the nominal significance level 𝜆 is exceeded by the observed
test statistic 𝑇 in (20). The AHT test can also be conducted
via computing the 𝑃-value based on the approximate null
distribution.

2.2.TheParametric Bootstrap (PB)Test. Theparametric boot-
strap involves sampling from the estimated models. That is,
samples or sample statistics are generated from parametric
models with the parameters replaced by their estimates.
Recall that under𝐻

0𝛽 the vector Y have the mean X𝜃, where
𝜃 = (𝜇

𝑇

0
,𝛼
𝑇

1
, . . . ,𝛼

𝑇

𝑎
)
𝑇. As the test statistic in (17) is location

invariant under the group of location transformations G =

{Y → Y + X𝜂, 𝜂 ∈ R𝑟(𝑎+1)}, without loss of generality, we
can take X𝜃 = 0. Using these facts, the parametric boot-
strap pivot variable can be developed as follows. For a given
(y
11
, . . . , y

𝑎𝑏𝑎
; s
11
, . . . , s

𝑎𝑏𝑎
), let Y

𝐵𝑖𝑗
∼ 𝑁
𝑟
(0, (1/𝑛

𝑖𝑗
)s
𝑖𝑗
) and

S
𝐵𝑖𝑗

∼ 𝑊
𝑟
(𝑛
𝑖𝑗
− 1, (1/(𝑛

𝑖𝑗
− 1))s

𝑖𝑗
), 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
.

Then the PB pivot variable based on the test statistic (17) is
given by

𝑆𝛽B (Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎)

= Y𝑇
𝐵
S−1/2
𝐵

(I
𝑏𝑟
− S−1/2
𝐵

X(X𝑇S−1
𝐵
X)
−

X𝑇S−1/2
𝐵

) S−1/2
𝐵

Y
𝐵
,

(22)

where Y
𝐵

= (Y𝑇
𝐵11
, . . . ,Y𝑇

𝐵1𝑏1
. . . ,Y𝑇
𝐵𝑎1

, . . . ,Y𝑇
𝐵𝑎𝑏𝑎

)

𝑇

and
S
𝐵
= diag((1/𝑛

11
)S
𝐵11
, . . . , (1/𝑛

1𝑏1
)S
𝐵1𝑏
, . . . , (1/𝑛

𝑎1
)S
𝐵𝑎1

, . . . ,

(1/𝑛
𝑎𝑏𝑎
)S
𝐵𝑎𝑏𝑎

). For a given level 𝜆, the PB test rejects 𝐻
0𝛽 in

(5) when

𝑃 (𝑆𝛽𝐵 (Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎) > 𝑠𝛽) < 𝜆, (23)

where

𝑠𝛽 = 𝑆𝛽 (y11, . . . , y𝑎𝑏𝑎 ; s11, . . . , s𝑎𝑏𝑎) (24)

is an observed value of 𝑆𝛽(Y11, . . . ,Y𝑎𝑏𝑎 ; S11, . . . , S𝑎𝑏𝑎) in (17).
For fixed (y

11
, . . . , y

𝑎𝑏𝑎
;s
11
, . . . , s

𝑎𝑏𝑎
), the above probability

does not depend on any unknown parameters, and so it can
be estimated using Monte Carlo simulation given in the fol-
lowing Algorithm 2.

Algorithm 2. For a given (𝑛
11
, . . . , 𝑛

𝑎𝑏𝑎
), (y
11
, . . . , y

𝑎𝑏𝑎
), and

(s
11
, . . . , s

𝑎𝑏𝑎
),

Compute 𝑆𝛽(y11, . . . , y𝑎𝑏𝑎 ; s11, . . . , s𝑎𝑏𝑎) in (17) and call
it 𝑠𝛽.
For ℎ = 1, . . . , 𝑚,
Generate Y

𝐵𝑖𝑗
∼ 𝑁
𝑟
(0, (1/𝑛

𝑖𝑗
)s
𝑖𝑗
) and S

𝐵𝑖𝑗
∼ 𝑊
𝑟
(𝑛
𝑖𝑗
−

1, (1/(𝑛
𝑖𝑗
− 1))s

𝑖𝑗
), 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
,

Compute 𝑆𝛽𝐵(Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎) using
(22).
If 𝑆𝛽𝐵(Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎) > 𝑠𝛽, set 𝑄ℎ =
1.
(End loop)
(1/𝑚)∑

𝑚

ℎ=1
𝑄
ℎ
is a Monte Carlo estimate of the 𝑃

value in (23).

2.3. Some Desirable Properties of the PB Test. The PB test (23)
has several desirable invariance properties. First of all, the
PB test is affine-invariant. That is, it is invariant under the
following affine-transformation:

Y∗
𝑖𝑗𝑘
= DY

𝑖𝑗𝑘
+ 𝜉, 𝑖 = 1, . . . , 𝑎;

𝑗 = 1, . . . , 𝑏
𝑖
; 𝑘 = 1, . . . , 𝑛

𝑖𝑗
,

(25)

where D is any nonsingular matrix and 𝜉 is any given vector.
This property is desirable since in practice, the cell responses
Y
𝑖𝑗𝑘

(1) are often recentered or rescaled before an inference
is conducted. The recentering and rescaling transformations
are special cases of (25).

Theorem 3. The PB test (23) is affine-invariant in the sense
that both the observed test statistic 𝑠𝛽 (24) and the distribution
of PB pivot variable 𝑆𝛽B (22) are affine-invariant.

Themodel (3) is identifiable when the constraints (4) are
imposed. In many situations there are no natural weights
to justify a particular test procedure. For this, we have the
following result.

Theorem 4. The PB test (23) is invariant on the different
weight choices in constraints (4).

Notice that the test statistic (17) does not depend on the
chosen weights. The conclusion in Theorem 4 is obvious.
However, we have the following property.

Theorem 5. The test statistic (17)

𝑆𝛽 (Y11, . . . ,Y𝑎𝑏𝑎 ; S11, . . . , S𝑎𝑏𝑎)

= Y𝑇S−1/2 (I
𝑏𝑟
− S−1/2X(X𝑇S−1X)

−

X𝑇S−1/2) S−1/2Y

= Y𝑇S−1/2 (I
𝑏𝑟
− S−1/2X(X𝑇S−1X + L𝑇L)

−1

X𝑇S−1/2) S−1/2Y.
(26)
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This property is desirable since in practice, in order to avoid
computation of generalized inverse of matrices and enhance the
accuracy of computation, we have taken a particular L such as
L = (0, 1/𝑎, . . . , 1/𝑎) ⊗ I

𝑟
in the simulation study.

3. Tests for the Nesting Effects

When the nested effects are present, the nesting effect 𝛼
𝑖
can

not reflect the effect of 𝐴
𝑖
because it depends on which level

of factor 𝐵 it is in. As pointed in Searle [12], Chap. 7, in the
case of 𝑟 = 1, a popular solution to the problem is not quite a
test for 𝛼

𝑖
= 0 in the presence of nested effects but rather to

test the null hypothesis

𝐻
0𝛼|𝛽 : 𝛼𝑖 + 𝛽𝑖𝑗 = 0, 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
. (27)

Wewill see that the problem of testing (27) is the same case of
the problem of comparing 𝑏 = ∑

𝑎

𝑖=1
𝑏
𝑖
normal mean vectors

when the cell covariancematrices are unknown and arbitrary
[5]. In fact, if Σ

𝑖𝑗
are known, then

𝜇̂
0
= (

𝑎

∑

𝑖=1

𝑏𝑖

∑

𝑗=1

𝑛
𝑖𝑗
Σ
−1

𝑖𝑗
)

−1
𝑎

∑

𝑖=1

𝑏𝑖

∑

𝑗=1

𝑛
𝑖𝑗
Σ
−1

𝑖𝑗
Y
𝑖𝑗

(28)

is the best linear unbiased estimator of 𝜇
0
, and a natural

statistic for testing (27) is

𝑆𝛼 (Y11, . . . ,Y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎)

=

𝑎

∑

𝑖=1

𝑏𝑖

∑

𝑗=1

(Y
𝑖𝑗
− 𝜇̂
0
)
𝑇

(𝑛
𝑖𝑗
Σ
−1

𝑖𝑗
) (Y
𝑖𝑗
− 𝜇̂
0
)

= Y𝑇Σ−1/2 (I
𝑏𝑟
− Σ
−1/2X
1
(X𝑇
1
Σ
−1X
1
)
−

X𝑇
1
Σ
−1/2

)Σ
−1/2Y,

(29)

whereX
1
= 1
𝑏
⊗I
𝑟
. Notice thatΣ−1/2Y ∼ 𝑁

𝑏𝑟
(Σ
−1/2
𝜇, I
𝑏𝑟
), and

Δ
1
= (I
𝑏𝑟
− Σ
−1/2X
1
× (X𝑇
1
Σ
−1X
1
)
−X𝑇
1
Σ
−1/2

) is an idempotent
matrix with rank 𝑟(𝑏 − 1); we have

Y𝑇Σ−1/2Δ
1
Σ
−1/2Y ∼ 𝜒

2

𝑟(𝑏−1)
(𝜇
𝑇
Σ
−1/2
Δ
1
Σ
−1/2
𝜇) . (30)

Thenoncentrality parameter𝜇󸀠Σ−1/2Δ
1
Σ
−1/2
𝜇 is equal to zero

when 𝛼
𝑖
+𝛽
𝑖𝑗
= 0, 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
.Then, the test that

rejects𝐻
0𝛼|𝛽 in (27) whenever

𝑆𝛼 (y11, . . . , y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎) > 𝜒
2

𝑟(𝑏−1),𝜆
(31)

is a size 𝜆 test. In general, the covariance matrices Σ
𝑖𝑗
are

unknown; in this case, a test statistic can be obtained by
replacing Σ

𝑖𝑗
in (29) by S

𝑖𝑗
, 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
and is

given by

𝑆𝛼 (Y11, . . . ,Y𝑎𝑏𝑎 ; S11, . . . , S𝑎𝑏𝑎)

= Y𝑇S−1/2 (I
𝑏𝑟
− S−1/2X

1
(X𝑇
1
S−1X
1
)
−

X𝑇
1
S−1/2) S−1/2Y.

(32)

In the following, we describe the PB test for𝐻
0𝛼|𝛽 in (27).

Recall that under 𝐻
0𝛼|𝛽 the vector Y have the mean X

1
𝜇
0
.

As the test statistic in (32) is location invariant under the
group of location transformations G

1
= {Y + X

1
𝜂, 𝜂 ∈ R𝑟},

without loss of generality, we can take X
1
𝜇
0
= 0. Using

these facts, the parametric bootstrap pivot variable can be
developed as follows. For a given (y

11
, . . . , y

𝑎𝑏𝑎
; s
11
, . . . , s

𝑎𝑏𝑎
),

let Y
𝐵𝑖𝑗

∼ 𝑁
𝑟
(0, (1/𝑛

𝑖𝑗
)s
𝑖𝑗
) and S

𝐵𝑖𝑗
∼ 𝑊
𝑟
(𝑛
𝑖𝑗
− 1, (1/(𝑛

𝑖𝑗
−

1))s
𝑖𝑗
), 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
. Then the PB pivot variable

based on the test statistic (32) is given by

𝑆𝛼𝐵 (Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎)

= Y𝑇
𝐵
S−1/2
𝐵

(I
𝑏𝑟
− S−1/2
𝐵

X
1
(X𝑇
1
S−1
𝐵
X)
−

X𝑇
1
S−1/2
𝐵

) S−1/2
𝐵

Y
𝐵
,

(33)

where Y
𝐵
= (Y𝑇
𝐵11
, . . . ,Y𝑇

𝐵𝑎𝑏𝑎
)
𝑇 and S

𝐵
= diag((1/𝑛

11
)S
𝐵11
,

. . . , (1/𝑛
𝑎𝑏𝑎
)S
𝐵𝑎𝑏𝑎

). For a given level 𝜆, the PB test rejects𝐻
0𝛼|𝛽

in (27) when

𝑃 (𝑆𝛼𝐵 (Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎) > 𝑠𝛼) < 𝜆, (34)

where

𝑠𝛼 = 𝑆𝛼 (y11, . . . , y𝑎𝑏𝑎 ; s11, . . . , s𝑎𝑏𝑎) (35)

is an observed value of 𝑆𝛼(Y11, . . . ,Y𝑎𝑏𝑎 ; S11, . . . , S𝑎𝑏𝑎) in (32).
For fixed (y

11
, . . . , y

𝑎𝑏𝑎
; s
11
, . . . , s

𝑎𝑏𝑎
), the above probability

does not depend on any unknown parameters, and so it
can be estimated using Monte Carlo simulation given in the
following Algorithm 6.

Algorithm 6. For a given (𝑛
11
, . . . , 𝑛

𝑎𝑏𝑎
), (y
11
, . . . , y

𝑎𝑏𝑎
), and

(s
11
, . . . , s

𝑎𝑏𝑎
),

Compute 𝑆𝛼(y11, . . . , y𝑎𝑏𝑎 ; s11, . . . , s𝑎𝑏𝑎) in (32) and call
it 𝑠𝛼.
For ℎ = 1, . . . , 𝑚,
Generate Y

𝐵𝑖𝑗
∼ 𝑁
𝑟
(0, (1/𝑛

𝑖𝑗
)s
𝑖𝑗
) and S

𝐵𝑖𝑗
∼ 𝑊
𝑟
(𝑛
𝑖𝑗
−

1, (1/(𝑛
𝑖𝑗
− 1))s

𝑖𝑗
),

𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏
𝑖
,

Compute 𝑆𝛼𝐵(Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎) using
(33).
If 𝑆𝛼𝐵(Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎) > 𝑠𝛼, set 𝑄ℎ =
1.
(End loop)
(1/𝑚)∑

𝑚

ℎ=1
𝑄
ℎ
is a Monte Carlo estimate of the 𝑃

value in (34).

Note that the PB test provided in this section has the same
invariance properties as in Section 2.

4. Monte Carlo Studies

In this section, we need to compare the PB test with the
AHT test via comparing their empirical sizes (Type I error
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rates) and powers for two-factor nested MANOVA models
via simulations. As pointed out in Section 3, the problem of
testing (27) is the same case of the problem of comparing
𝑏 = ∑

𝑎

𝑖=1
𝑏
𝑖
normal mean vectors when the cell covariance

matrices are unknown and arbitrary. Due to this reason, we
will look only at the nested effects for comparisons.

Let the two factors be 𝐴 and 𝐵, respectively. Suppose that
the nesting effect of the factor 𝐴 has 𝑎 factor levels, and the
nested effect of the factor𝐵has a total of 𝑏 = ∑𝑎

𝑖=1
𝑏
𝑖
levelswith

𝑏
𝑖
levels of B nested within the 𝑖th level of the factor𝐴. Let n =

[𝑛
11
, 𝑛
12
, . . . , 𝑛

𝑎𝑏𝑎
] denote the vector of cell sizes. For given n

and covariance matrices Σ
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑎, 𝑗 = 1, 2, . . . , 𝑏

𝑖
, we

first generate ∑𝑎
𝑖=1

∑
𝑏𝑖

𝑗=1
𝑛
𝑖𝑗
multivariate samples as

y
𝑖𝑗𝑘
= 𝜇
𝑖𝑗
+ Σ
1/2

𝑖𝑗
e
𝑖𝑗𝑘
, 𝑘 = 1, 2, . . . , 𝑛

𝑖𝑗
, (36)

where the cell mean vectors 𝜇
𝑖𝑗
= 𝜇
11
+ 𝑖𝑗𝛿h/𝑏 with 𝜇

11
being

the first cell mean vector, h a constant unit vector specify-
ing the direction of the cell mean differences, and 𝛿 a tun-
ing parameter controlling the amount of the cell mean dif-
ferences. We independently generate the 𝑟 entries of the
error terms e

𝑖𝑗𝑘
from the 𝑁(0, 1) distribution so that we

always have E(e
𝑖𝑗𝑘
) = 0 and Cov(e

𝑖𝑗𝑘
) = I

𝑟
. This means

that (36) will generate the (𝑖𝑗)th multivariate normal sample
y
𝑖𝑗𝑘
, 𝑘 = 1, 2, . . . , 𝑛

𝑖𝑗
with the given mean vector 𝜇

𝑖𝑗
and

covariance matrix Σ
𝑖𝑗
. Without loss of generality, we specify

𝜇
11

as 0 and h as h
0
/‖h
0
‖ where h

0
= [1, 2, . . . , 𝑟]

𝑇 for
any given dimension 𝑟 and ‖h

0
‖ denotes the usual 𝐿2-norm

of h
0
. To estimate the sizes and powers of the AHT test,

we used simulation consisting of 10,000 runs and recorded
corresponding 𝑃 values. Notice that two nested “do loops”
are required to estimate the sizes and powers of the PB test,
we used 2500 runs for outer “do loops” (for generating the
data) and 5000 runs for inner “do loops” for estimating the
bootstrap 𝑃 values. The empirical sizes (when 𝛿 = 0) and
powers (when 𝛿 > 0) of the two tests are the proportions
of rejecting the null hypothesis, that is, when their 𝑃 values
are less than the nominal significance level 𝜆. In all the
simulations conducted, we used 𝜆 = 5% for simplicity.

Notice that the PB test does not depend on chosen
weights. Here we report only the comparative studies for
the equal-weight method to specify the weights of the AHT
test so that the AHT test in Zhang [8] may be used for
showing properties of the PB test. The empirical sizes and
powers of the two tests for nested effect tests, together with
the associated tuning parameters, are presented in Tables 1–
3, in the columns labeled with AHT and PB under “𝛿 = 0”
and “𝛿 > 0”, respectively. As seen from the three tables, three
sets of the tuning parameters for the cell covariance matrices
are examined, with the first set specifying the homogeneous
cases; four sets of the cell sizes are specified, with the first
two sets specifying the balanced cell size cases. To measure
the overall performance of a test in terms of maintaining the
nominal size 𝜆, we use the average relative error defined in
Zhang [8] as ARE = 𝑀

−1
∑
𝑀

𝑚=1
|𝜆̂
𝑚
− 𝜆|/𝜆 × 100 where 𝜆̂

𝑚

denotes the 𝑚th empirical size for 𝑚 = 1, 2, . . . ,𝑀, 𝜆 =

0.05, and 𝑀 is the number of empirical sizes under consid-
eration. The smaller ARE value indicates the better overall

performance of the associated test. Usually, when ARE ≤ 10,
the test performs very well; when 10 < ARE ≤ 20, the test
performs reasonably well; and when ARE > 20, the test does
not performwell since its empirical sizes are either too liberal
or too conservative and hence may be unacceptable. Notice
that for a good test, the larger the cell sizes, the smaller the
ARE values. The ARE values of the two tests under the two
error schemes are also presented in these three tables. Notice
that for simplicity, in the specification of the covariance and
size tuning parameters, we often use (u

𝑡
) to denote “u repeats

𝑡 times.” Table 1 shows the empirical sizes and powers of the
two tests for a bivariate case with 𝑎 = 2 and 𝑏

1
= 16, 𝑏

2
= 20.

With 𝑏 = 𝑏
1
+ 𝑏
2
= 36, one may be able to check how the

two tests behave when one of the factors has a large number
of levels. Tables 2 and 3 show the empirical sizes and powers
of the two tests for a three-variate case with 𝑎 = 3 and
𝑏
1
= 8, 𝑏

2
= 10, 𝑏

3
= 12, and a 10-variate case with 𝑎 = 3

and 𝑏
1
= 3, 𝑏

2
= 5, 𝑏

3
= 7, respectively. These two tables

allow us to compare the two tests for higher-dimensional
data.

In the following, let us compare the AHT and PB tests
via examining their empirical sizes and powers. It is seen
from the three tables that for all the cases, the PB test
generally outperforms the AHT test for all the cases under
consideration as shown by their empirical sizes and the
associated ARE values presented in the three tables. The
AHT test performs reasonably well only for 10-dimensional
data. In the homogeneous cases, the AHT test appears to
be more powerful than the PB tests because of its inflated
empirical sizes exceeding the nominal level considerably. For
the heteroscedastic cases, we once again observe from Tables
2 and 3 that the PB test performs superior to the AHT test in
terms of controlling nominal level and powers.

We conclude this simulation section via summarizing
all the simulation studies conducted. In terms of size, the
overall conclusion is that the PB test is a flexible procedure
that performs satisfactorily, regardless of the cell sizes, values
of the cell covariance matrices, and the number of effects
being compared. In terms of power, the PB test generally
outperforms the AHT test for most heteroscedastic cases
under consideration. Thus, one may recommend to use the
PB test as a good alternative in practical applications because
of its simplicity and accuracy.

5. Concluding Remarks

The available classical tests for the two-factor MANOVA
model with crossed designs and heteroscedastic cell covari-
ance matrices have serious Type I error problems that have
been overlooked. To address this serious problem, Zhang [8]
proposed the AHT test. In this paper, we proposed and stud-
ied the PB test and the AHT test for the two-factorMANOVA
model with nested designs and heteroscedastic cell covari-
ance matrices. We showed that the PB test is invariant under
affine-transformations and different choices of weights used
to define the parameters uniquely. We demonstrated via
intensive simulations that the PB test generally performs well
and outperforms the AHT test in terms of size and power for
most cell sizes and parameter configurations.
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Table 1: Empirical sizes and powers of the two tests for nested effects for bivariate two-factor multivariate nested designs [𝑎 = 2, 𝑏
1
= 16, 𝑏

2
=

20, (Σ
11
,Σ
12
, . . . ,Σ

𝑎𝑏𝑎
) = 1𝑇
18
⊗ (I
2
, diag (𝜆))].

𝜆 n 𝛿 = 0 𝛿 = 1 𝛿 = 2 𝛿 = 3

AHT PB AHT PB AHT PB AHT PB

𝜆
1

n
1

0.056 0.046 0.210 0.162 0.831 0.793 0.999 0.999
n
2

0.057 0.050 0.394 0.372 0.995 0.994 1.000 1.000
n
3

0.070 0.052 0.295 0.232 0.957 0.930 1.000 1.000
n
4

0.057 0.054 0.926 0.923 1.000 1.000 1.000 1.000

𝜆
2

n
1

0.058 0.055 0.108 0.124 0.379 0.551 0.826 0.964
n
2

0.068 0.044 0.173 0.232 0.718 0.930 0.995 1.000
n
3

0.071 0.053 0.152 0.150 0.549 0.717 0.958 0.995
n
4

0.059 0.051 0.475 0.776 0.999 1.000 1.000 1.000

𝜆
3

n
1

0.056 0.045 0.093 0.114 0.301 0.507 0.722 0.943
n
2

0.058 0.046 0.151 0.204 0.614 0.878 0.977 0.999
n
3

0.070 0.048 0.131 0.145 0.458 0.654 0.903 0.990
n
4

0.061 0.055 0.397 0.755 0.994 1.000 1.000 1.000
ARE 24.03 6.83

𝜆1 = (1, 1), 𝜆2 = (1, 5), and 𝜆3 = (1, 10). n1 = (7, 7)20, n2 = (10, 10)20, n3 = (7, 10)20, and n4 = (30, 15)20.

Table 2: Empirical sizes and powers of the two tests for nested effects for 3-variate two-factor multivariate nested designs [𝑎 = 3, 𝑏
1
= 8, 𝑏
2
=

10, 𝑏
3
= 12, (Σ

11
,Σ
12
, . . . ,Σ

𝑎𝑏𝑎
) = 1𝑇
10
⊗ (I
3
, diag (𝜆), (1 − 𝜌)I

3
+ 𝜌1
3
1𝑇
3
)].

(𝜆, 𝜌) n 𝛿 = 0 𝛿 = 0.6 𝛿 = 1.2 𝛿 = 1.8

AHT PB AHT PB AHT PB AHT PB

(𝜆
1
, 𝜌
1
)

n
1

0.052 0.054 0.099 0.103 0.369 0.353 0.840 0.815
n
2

0.056 0.041 0.164 0.152 0.705 0.691 0.994 0.991
n
3

0.092 0.041 0.302 0.194 0.944 0.891 1.000 1.000
n
4

0.096 0.044 0.288 0.185 0.927 0.847 1.000 1.000

(𝜆
2
, 𝜌
2
)

n
1

0.054 0.049 0.181 0.213 0.756 0.860 0.997 1.000
n
2

0.055 0.048 0.335 0.422 0.985 0.997 1.000 1.000
n
3

0.090 0.050 0.629 0.519 1.000 1.000 1.000 1.000
n
4

0.089 0.061 0.522 0.545 0.999 1.000 1.000 1.000

(𝜆
3
, 𝜌
3
)

n
1

0.049 0.050 0.271 0.194 0.727 0.852 0.995 1.000
n
2

0.052 0.056 0.308 0.427 0.978 0.998 1.000 1.000
n
3

0.094 0.060 0.593 0.519 1.000 0.999 1.000 1.000
n
4

0.098 0.057 0.486 0.551 0.999 1.000 1.000 1.000
ARE 46.67 10.83

(𝜆1, 𝜌1) = (13, 0), (𝜆2, 𝜌2) = (1, 15, 0.1, 0.1), and (𝜆3, 𝜌3) = (1, 10, 0.1, 0.5). n1 = (10, 10, 10)10, n2 = (15, 15, 15)10, n3 = (10, 20, 40)10, and n4 = (40, 20, 10)10.

Appendix

Proof of Theorem 1. When 𝐻
0𝛽 is true, the model (8) can be

written as the following reduced model:

Y = X𝜃 + e, e ∼ 𝑁
𝑏𝑟
(0,Σ) . (A.1)

Premultiplying Σ−1/2 in model (A.1), we have the following
transformed model:

Σ
−1/2Y = Σ

−1/2X𝜃 + Σ−1/2e, Σ−1/2e ∼ 𝑁
𝑏𝑟
(0, I) . (A.2)

Under the constraint L𝜃 = 0, the model (A.2) becomes

Σ
−1/2Y = Σ

−1/2X𝜃 + Σ−1/2e, Σ−1/2e ∼ 𝑁
𝑏𝑟
(0, I) ,

L𝜃 = 0.
(A.3)

In view of Theorem 5.2.5 in Wang and Chow [11], P. 177, we
shall prove that L𝜃 = 0 is a side condition on the matrix
Σ
−1/2X; that is, L satisfies conditions

R((Σ
−1/2X)

𝑇

) ∩R (L𝑇) = {0} ,

rank(Σ
−1/2X
L ) = (𝑎 + 1) 𝑟,

(A.4)

where R(M) denotes the subspace spanned by the column
of matrix M. Denote X

0
= [1
𝑏
, diag(1

𝑏1
, . . . , 1

𝑏𝑎
)] and L

0
=

(0, 𝑢
1
, ⋅ ⋅ ⋅ , 𝑢

𝑎
), respectively. Then X = X

0
⊗ I
𝑟
, and L =

L
0
⊗I
𝑟
. Note that 𝑢

1
, . . . , 𝑢

𝑎
are nonnegative weights such that
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Table 3: Empirical sizes and powers of the two tests for nested effects for 10-variate two-factor multivariate nested designs [𝑎 = 3, 𝑏
1
= 3, 𝑏
2
=

5, 𝑏
3
= 7, (Σ

11
,Σ
12
, . . . ,Σ

𝑎𝑏𝑎
) = 1𝑇
10
⊗ (I
3
, diag(𝜆), diag(𝜂))].

(𝜆, 𝜂) n 𝛿 = 0 𝛿 = 1 𝛿 = 2 𝛿 = 3

AHT PB AHT PB AHT PB AHT PB

(𝜆
1
, 𝜂
1
)

n
1

0.046 0.042 0.438 0.415 0.999 0.998 1.000 1.000
n
2

0.052 0.050 0.937 0.932 1.000 1.000 1.000 1.000
n
3

0.062 0.046 0.788 0.762 1.000 1.000 1.000 1.000
n
4

0.058 0.056 0.871 0.846 1.000 1.000 1.000 1.000

(𝜆
2
, 𝜂
2
)

n
1

0.052 0.044 0.842 0.635 1.000 1.000 1.000 1.000
n
2

0.052 0.047 1.000 0.996 1.000 1.000 1.000 1.000
n
3

0.067 0.049 0.995 0.965 1.000 1.000 1.000 1.000
n
4

0.059 0.046 0.999 0.972 1.000 1.000 1.000 1.000

(𝜆
3
, 𝜂
3
)

n
1

0.049 0.042 0.066 0.101 0.115 0.401 0.235 0.877
n
2

0.050 0.054 0.090 0.236 0.255 0.930 0.660 1.000
n
3

0.071 0.045 0.089 0.145 0.183 0.622 0.442 0.982
n
4

0.055 0.047 0.095 0.236 0.260 0.961 0.662 1.000
ARE 13.78 8.67

𝜆1 = (110)5, 𝜂1 = (110)5; 𝜆2 = (123, 13, 243, 1)5, 𝜂2 = (13, 0.13, 22, 24, 21)5; and 𝜆3 = (13, 33, 93, 20)5, 𝜂3 = (53, 153, 453, 100)5. n1 = (253)5, n2 = (503)5,
n3 = (25, 35, 50)5, and n4 = (70, 40, 35)5.

∑
𝑎

𝑖=1
𝑢
𝑖
> 0.Then it can be easily verified thatX

0
andL
0
satisfy

the following conditions:

R (X𝑇
0
) ∩R (L𝑇

0
) = {0} ,

rank(X0L
0

) = 𝑎 + 1.

(A.5)

Assume that d ∈ R(X𝑇) ∩ R(L𝑇). Then there exist two
vectors g and h such that

d = X𝑇g = L𝑇h. (A.6)

Denote

X𝑇
0
= (

𝑥
11

⋅ ⋅ ⋅ 𝑥
1𝑏

... ⋅ ⋅ ⋅
...

𝑥
𝑎+1,1

⋅ ⋅ ⋅ 𝑥
𝑎+1,𝑏

), L𝑇
0
= (

𝑙
11

...
𝑙
𝑎+1,1

), (A.7)

and g = (g𝑇
1
, g𝑇
2
, . . . , g𝑇

𝑏
)
𝑇, where g

𝑖
= (𝑔
𝑖1
, . . . , 𝑔

𝑖𝑟
)
𝑇 and h =

(ℎ
1
, . . . , ℎ

𝑟
)
𝑇 are 𝑟 × 1 vectors, respectively, 𝑖 = 1, 2, . . . , 𝑏.

Then (A.6) may be rewritten as

X𝑇g = (
𝑥
11
g
1
+ ⋅ ⋅ ⋅ + 𝑥

1𝑏
g
𝑏

...
𝑥
𝑎+1,1

g
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑎+1,𝑏
g
𝑏

) = (

𝑙
11
h
...

𝑙
𝑎+1,1

h
) = L𝑇h,

(A.8)

which is equivalent to X𝑇
0
g∗
𝑘
= L𝑇
0
ℎ
𝑘
, where g∗

𝑘
= (𝑔
1𝑘
, 𝑔
2𝑘
,

. . . , 𝑔
𝑏𝑘
)
𝑇, 𝑘 = 1, . . . , 𝑟. It follows from (A.5) that

X𝑇
0
g∗
𝑘
= L𝑇
0
ℎ
𝑘
, 𝑘 = 1, . . . , 𝑟, (A.9)

and hence

d = X𝑇g = (
𝑥
11
g
1
+ ⋅ ⋅ ⋅ + 𝑥

1𝑏
g
𝑏

...
𝑥
𝑎+1,1

g
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑎+1,𝑏
g
𝑏

) = (

𝑙
11
h
...

𝑙
𝑎+1,1

h
)

= L𝑇h = 0.
(A.10)

This means that

R (X𝑇) ∩R (L𝑇) = {0} . (A.11)

It follows fromR(X𝑇) = R(X𝑇Σ−1/2) that

R((Σ
−1/2X)

𝑇

) ∩R (L𝑇) = {0} . (A.12)

On the other hand,

rank(XL) = rank((X0L
0

) ⊗ I
𝑟
)

= rank(X0L
0

) × rank (I
𝑟
) = (𝑎 + 1) 𝑟.

(A.13)

The second equation of (A.13) may be derived easily from
Theorem 2.2.1 in Wang and Chow [11]. It follows from (A.13)
that

rank(Σ
−1/2X
L ) = rank((Σ

−1/2 0
0 I)(

X
L))

= rank(XL) = (𝑎 + 1) 𝑟.

(A.14)

Combining (A.12) with (A.14), we obtain that L𝜃 = 0 is a side
condition on the matrix Σ−1/2X. Thus it follows from Lemma
5.2.2 in Wang and Chow [11] that

X𝑇Σ−1X(X𝑇Σ−1X + L𝑇L)
−1

X𝑇Σ−1/2 = X𝑇Σ−1/2. (A.15)
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Thus, we obtain that X𝑇Σ−1X(X𝑇Σ−1X + L𝑇L)−1X𝑇Σ−1X =

X𝑇Σ−1X. This imply that (X𝑇Σ−1X + L𝑇L)−1 is a generalized
inverse of X𝑇Σ−1X. Notice from Corollary 2.2.3 in Wang
and Chow [11] that Σ−1/2X(X𝑇Σ−1X)−X𝑇Σ−1/2 is invariant
with respect to the choice of the involved generalized
(X𝑇Σ−1X)−, which leads to Σ−1/2X(X𝑇Σ−1X)−X𝑇Σ−1/2 =

Σ
−1/2X(X𝑇Σ−1X + L𝑇L)−1X𝑇Σ−1/2. Therefore, It follows that

X𝜃̂ = X(X𝑇Σ−1X + L𝑇L)
−1

X𝑇Σ−1Y

= Σ
1/2
Σ
−1/2X(X𝑇Σ−1X + L𝑇L)

−1

X𝑇Σ−1/2Σ−1/2Y

= Σ
1/2
Σ
−1/2X(X𝑇Σ−1X)

−

X𝑇Σ−1/2Σ−1/2Y

= X(X𝑇Σ−1X)
−

X𝑇Σ−1Y.

(A.16)

Then we have

𝑆𝛽 (Y11, . . . ,Y𝑎𝑏𝑎 ;Σ11, . . . ,Σ𝑎𝑏𝑎)

= (Y − X𝜃̂)
𝑇

Σ
−1
(Y − X𝜃̂)

= Y𝑇Σ−1/2 (I
𝑏𝑟
− Σ
−1/2X(X𝑇Σ−1X)

−

X𝑇Σ−1/2)Σ−1/2Y,
(A.17)

as desired. Theorem 1 is proved.

Proof of Theorem 3. Since the observed values of Y
𝑖𝑗𝑘
, 𝑘 =

1, 2, . . . , 𝑛
𝑖𝑗
, are denoted as y

𝑖𝑗𝑘
, we let y∗

𝑖𝑗𝑘
denote the observed

values of the affine-transformed cell responses Y∗
𝑖𝑗𝑘
, 𝑘 =

1, 2, . . . , 𝑛
𝑖𝑗
, given by (25). Then we have y∗

𝑖𝑗𝑘
= Dy∗
𝑖𝑗𝑘
+ 𝜉. On

the other hand,we obtain that the samplemean vector and the
sample covariance matrix of the (𝑖, 𝑗)th affine-transformed
cell are Y∗

𝑖𝑗
= DY

𝑖𝑗
+ 𝜉 and S∗

𝑖𝑗
= DS

𝑖𝑗
D𝑇, respectively. The

observed values of these random variables are y∗
𝑖𝑗
= Dy
𝑖𝑗
+ 𝜉

and s∗
𝑖𝑗
= Ds
𝑖𝑗
D𝑇, respectively, 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏

𝑖
. Let

Y∗ = (Y∗𝑇
11
, . . . ,Y∗𝑇

1𝑏1
, . . . ,Y∗𝑇

𝑎1
, . . . ,Y∗𝑇

𝑎𝑏𝑎
)
𝑇 and y∗ = (y∗𝑇

11
, . . . ,

y∗𝑇
1𝑏1
, . . . , y∗𝑇

𝑎1
, . . . , y∗𝑇

𝑎𝑏𝑎
)
𝑇; from the reduced model (A.1), we

have the following affine-transformed reduced model:

Y∗ − 𝜉
𝑏
= D
𝑏
X𝜃 +D

𝑏
e, D

𝑏
e ∼ 𝑁

𝑏𝑟
(0,D
𝑏
ΣD𝑇
𝑏
) , (A.18)

whereD
𝑏
= I
𝑏
⊗D, 𝜉

𝑏
= 1
𝑏
⊗ 𝜉.

Denote s∗ = diag((1/𝑛
11
)s∗
11
, . . . , (1/𝑛

1𝑏1
)s∗
1𝑏1
, . . . , (1/

𝑛
𝑎1
)s∗
𝑎1
, . . . , (1/𝑛

𝑎𝑏𝑎
)s∗
𝑎𝑏𝑎
). Let 𝑠

∗

𝛽 be affine-transformed
observed test statistic of 𝑠𝛽 (24). Then, by direct calculations,
we have

𝑠
∗

𝛽 = 𝑆𝛽 (y
∗

11
− 𝜉, . . . , y∗

𝑎𝑏𝑎
− 𝜉; s∗
11
, . . . , s∗

𝑎𝑏𝑎
)

= (y∗ − 𝜉
𝑏
)
𝑇s∗−1/2 (I

𝑏𝑟
− s∗−1/2D

𝑏
X(X𝑇D𝑇

𝑏
s∗−1D

𝑏
X)
−

× X𝑇D𝑇
𝑏
s∗−1/2) s∗−1/2 (y∗ − 𝜉

𝑏
)

= y𝑇s−1/2 (I
𝑏𝑟
− s−1/2X(X𝑇s−1X)

−

X𝑇s−1/2) s−1/2y = 𝑠𝛽,
(A.19)

where s = diag((1/𝑛
11
)s
11
, . . . , (1/𝑛

1𝑏1
)s
1𝑏1
, . . . , (1/𝑛

𝑎1
)s
𝑎1
, . . . ,

(1/𝑛
𝑎𝑏𝑎
)s
𝑎𝑏𝑎
) is the observed values of S. The affine-invariance

of the observed test statistic 𝑠𝛽 (24) then follows.
Let

Y∗
𝐵𝑖𝑗

∼ 𝑁
𝑟
(0,

1

𝑛
𝑖𝑗

s∗
𝑖𝑗
) , S∗

𝐵𝑖𝑗
∼ 𝑊
𝑟
(𝑛
𝑖𝑗
− 1,

1

𝑛
𝑖𝑗
− 1

s∗
𝑖𝑗
)

(A.20)

be mutually independent, 𝑖 = 1, . . . , 𝑎, 𝑗 = 1, . . . , 𝑏
𝑖
. Then

Y∗
𝐵𝑖𝑗

𝑑

= DY
𝐵𝑖𝑗

and S∗
𝐵𝑖𝑗

𝑑

= DS
𝐵𝑖𝑗
D𝑇, where H 𝑑= G means that

H and G have the same distribution. Using these facts, the
affine-transformed parametric bootstrap pivot variable can
be given by

𝑆
∗

𝛽𝐵 (Y
∗

𝐵11
, . . . ,Y∗

𝐵𝑎𝑏𝑎
; S∗
𝐵11
, . . . , S∗

𝐵𝑎𝑏𝑎
)

= Y∗𝑇
𝐵
S∗−1/2
𝐵

(I
𝑏𝑟
− S∗−1/2
𝐵

D
𝑏
X(X𝑇D𝑇

𝑏
S∗−1
𝐵

D
𝑏
X)
−

×X𝑇D𝑇
𝑏
S∗−1/2
𝐵

) S∗−1/2
𝐵

Y∗
𝐵

𝑑

= Y𝑇
𝐵
D𝑇
𝑏
(D
𝑏
S
𝐵
D𝑇
𝑏
)
−1/2

(I
𝑏𝑟
− (D
𝑏
S
𝐵
D𝑇
𝑏
)
−1/2

D
𝑏
X

× (X𝑇D𝑇
𝑏
(D
𝑏
S
𝐵
D𝑇
𝑏
)
−1

D
𝑏
X)
−

×X𝑇D𝑇
𝑏
(D
𝑏
S
𝐵
D𝑇
𝑏
)
−1/2

)

× (D
𝑏
S
𝐵
D𝑇
𝑏
)
−1/2

D
𝑏
Y
𝐵

= Y𝑇
𝐵
S−1/2
𝐵

(I
𝑏𝑟
− S−1/2
𝐵

X(X𝑇S−1
𝐵
X)
−

X𝑇S−1/2
𝐵

) S−1/2
𝐵

Y
𝐵

= 𝑆𝛽𝐵 (Y𝐵11, . . . ,Y𝐵𝑎𝑏𝑎 ; S𝐵11, . . . , S𝐵𝑎𝑏𝑎) ,
(A.21)

where Y∗
𝐵

= (Y∗𝑇
𝐵11
, . . . ,Y∗𝑇

𝐵1𝑏1
. . . ,Y∗𝑇
𝐵𝑎1

, . . . ,Y∗𝑇
𝐵𝑎𝑏𝑎

)
𝑇 and

S∗
𝐵
= diag((1/𝑛

11
)S∗
𝐵11
, . . . , (1/𝑛

1𝑏1
)S∗
𝐵1𝑏1

, . . . , (1/𝑛
𝑎1
)S∗
𝐵𝑎1

, . . . ,

(1/𝑛
𝑎𝑏𝑎
)S∗
𝐵𝑎𝑏𝑎

). The affine-invariance of the distribution of PB
pivot variable 𝑆𝛽𝐵 (22) follows.Theorem 3 is then proved.

Proof of Theorem 4. The proof of Theorem 4 is obvious and
hence omitted here.

Proof of Theorem 5. Using the same proof as that ofTheorem
1, it follows that L𝜃 = 0 is a side condition on the matrix
S−1/2X; that is, L satisfies conditions

R((S−1/2X)
𝑇

) ∩R (L𝑇) = {0} , a.e.,

rank(S
−1/2X
L ) = (𝑎 + 1) 𝑟, a.e.,

(A.22)

where a.e. denotes “almost everywhere.” Thus it follows from
the similar proof of Theorem 1 that

X(X𝑇S−1X + L𝑇L)
−1

X𝑇S−1/2 = X(X𝑇S−1X)
−

X𝑇S−1/2, a.e.
(A.23)
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Then we obtain from (A.23) that the test statistic (17)

𝑆𝛽 (Y11, . . . ,Y𝑎𝑏𝑎 ; S11, . . . , S𝑎𝑏𝑎)

= Y𝑇S−1/2 (I
𝑏𝑟
− S−1/2X(X𝑇S−1X)

−

X𝑇S−1/2) S−1/2Y

= Y𝑇S−1/2 (I
𝑏𝑟
− S−1/2X(X𝑇S−1X + L𝑇L)

−1

X𝑇S−1/2) S−1/2Y
(A.24)

as desired. Theorem 5 is proved.
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