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A class of neural networks system with neutral delays is investigated. The existence and uniqueness of almost periodic solution for
the system are obtained by using fixed point theorem; we extend some results in the references.

1. Introduction

In recent years, neural networks have been deeply inves-
tigated due to their applicability in solving some image
processing, signal processing, and pattern recognition prob-
lems. And neural networks have been applied in artificial
intelligence and automatic control engineering because of
their good abilities of information memory and information
association ([1, 2]).

Cellular neural networks (for short CNN) have been
introduced by Chua and Yang [3] in 1988. Usually, in
the electronic implementations of analog neural networks,
time delays will inevitably occur in the communication
and response of neurons because of the unavoidable finite
switching speed of amplifiers ([4-9]). Due to the complicated
dynamic properties of the neural cells in the real world,
some complicated dynamic properties have been described
by delayed cellular neural networks (DCNNs) ([10-13]).

Bai [10] proposed a neural networks model which takes
the following form:

X () =—O)x )+ Y a; 0 f;(x;(t -7, )
=1
) J )
+ by (0 9;(x (£ - 05 0)) + L),
j=1

wherei = 1,2, ...,n, with initial condition

xi (5) = q)i (S) > s€ [_T) 0] >

(2)
= (%"Pzw-»%)T e C' ([-7,0],R").

By using fixed point theorem, Bai studied the global stability
of almost periodic solutions for the above neural networks.

Since neural networks with neutral delays contain some
very important information about the derivative of the past
state, it is very important for us to study such compli-
cated system. Some authors studied some more complicated
neutral neural networks and several important results have
been obtained in ([14-20]). For example, Pinto and Robledo
[14] studied an impulsive neural network of n-units and
distributed delays as follows:
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where (ky; = x)(t) = [ Zk;(r)x,(t - dr, x,(r}) =
lims ,px;(t. + 8), i = 1,2,...,n, k = 1,2,... By
using spectral radius theorem they obtained a result on the
existence and stability of an almost periodic solution for the
system (3).

Feng et al. [17] considered delayed neural network as
follows:

u; (t) = —qu; (t) + Zwijgj (uj (t)) + Zaijgj (uj (t - ‘r))
=1

j=1
n

+ Zle J_OO k]- (t-s)g; (uj (s)) ds

=1

+ Zd,ju; (t-1)+0;
=1

u; (1) = ¢; (1)

—-00<t<0,i=12,...,n,

(4)

and obtained the system (4) having a unique equilibrium
point, which is globally asymptotically stable.

Wang and Zhu [19] were concerned with the following
generalized neutral-type neural networks with delays:

(Ax) (t) = —a; (t) x; (1)
w3 60 fi (x;0)
=1

+dy; (6) g; (x; (¢ -7, 0))] + L ®)

x;(t)=¢;(t), te[-r0],i=12,...,n

©)

where A; is a difference defined by (Ax;)(t) = x;(t) -
Z;':l c,-j(t)xi(t - Sij(t)). By using fixed point theorem, Lya-
punov function method, and comparison theorem, the
authors studied the existence, global asymptotic stability,
and exponential stability of almost periodic solution for the
system (5).

Motivated by the above papers, in this paper, we consider
the neural networks with neutral delays

X (8) = —a; (6) %, () + Y by (1) f; (x; (1))
j=1

n

+ 260 f; (x; (1 -7 1))

J=1

Y0 [ k-9 £ (x,9) ds ©
=i ~oo

+ e (0 g;(x; (t =05 0)) + L0,
j=1

i=12,...,n,
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with initial condition

x(s)=y;(s), se[-1,0],i=12,...,m, 7)
where W = (V/p 1//2)- . -:Wn)T € Cl([_Tr O],Rn)> T =
Max,; jc, {SUp;epij(t), SUp,poy ()} > 0,4, > 0, 7;; > 0,
0;; 2 0, b, ;> dyj, €;j, and I; are almost periodic functions,
i, j=1,2,...,n, with ecological meaning are as follows:

x;(t): the potential (or voltage) of cell i at time t;

a;(t): represents the rate with which the ith unit will
reset its potentialto the resting state in isolation when
disconnected from the networkand external inputs at
time £;

b,»j(t), cij(t), d,-j(t), el-j(t): represent some strengths of
connectivity and neutraldelayed strengths of connec-
tivity between cell i and j at time ¢;

fj» gj> k;: the activation functions and k; is a scalar
integrable function defined in [0, +00);

I,(t): an external input on the ith unit at time ¢;

T;j» 0;j: correspond to the transmission delays of the
ith unit along the axon of the jth unit at time .

The aim of this paper is to obtain sufficient conditions
for the existence and uniqueness of almost periodic solutions
to system (6), by using fixed point theorem and differential
inequality theory and the analysis technique.

The remaining part of this paper is organized as follows.
In Section 2, we will state several definitions and lemmas
which will be useful in proving the main results. In Section 3,
by using fixed point theorem and differential inequality
techniques, the existence of almost periodic solution for
system (6) is obtained. In Section 4, globally exponential
stability of almost periodic solution for system (6) is obtained;
thus the uniqueness of almost periodic solution for system (6)
is obtained.

2. Preliminaries

For the sake of convenience, we introduce the following
notations:

- _ + _
a =infla, (], & = sup la; )],
b = sup e (1)
j =supl; 0], dj = supld; (1),

+
e;; = sup |e,-j (t)| ,
teR

I =sup|L; (1),
teR

N a.Jr
H= max{max{%]> , max {I:r (1 + —’_)H» ,
1<i<n al 1<i<n al
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t
B (8) = <I ehawar g

t : T
J el Gdur (s) ds) .
(8)

For system (6), we introduce the following assumptions.
(H,)f;(0) = 0, g;(0) = 0, f;, g; : R — Rare Lipschitz

continuous with Lipschitz constants L’;. and L? , respectively,

Ifiw) - f;(n)] < L’;.|u —v|and |g;(u) - g;(v)| < L‘j’.Iu - v, for
allu,v e R:

[Sttraan )|

< 1.

)

(H) J-0+oo
about f.

In this paper, we will denote ||m|, = max{||m|, [m'l,},
where [m|, = max, ., sup,glm; )], Imll, = max{|ml],
Im'l}, where lImll = maxg,lm@l 1Ml =
SUP e jxj=1/Mx], where M is matrix. Define the space
Xas X = {p | ¢ = ($,t),0,08),....,(t)", where
¢; : R — R is continuously differentiable almost periodic
function}; then X is a Banach space with the norm defined

by

k j(s)ds = land k(t) is a decreasing function

o = max{ligl, ']}
(10)
= max {maxsup ¢ ()], maxsup |¢>1' (t)|} .

1<i<n, ;

We introduce some useful definitions and lemmas, which
are important to establish our results.

Definition I (see [21,22]). Let f : R — R" be continuous in
t, f(¢) is said to be almost periodic on R if, for any € > 0, the
setT(f,e) ={r:|f(t+7)— f(t)| < & forallt € R} is relatively
dense; that is, for Ve > 0, it is possible to find a real number
I = I(e) > 0, for any interval with length I(e), there exists a
number 7 = 7(¢) in this interval such that || f (t+7)— f(t)]| < &,
for Vt € R.

Definition 2 (see [21, 22]). Let x € R" and Q(t) bean x n
continuous matrix defined on R. The linear system

X)) =Qt)x(t) (1)

is said to admit an exponential dichotomy on R”, if there exist
positive constants k, «, projection P and the fundamental
solution matrix X(t) of (11) satisfying

"X (t)PX* (s)" <ke ™) fort>s,
(12)
|x &)@ -P)X7" (s)| < ke, fort<s.
Definition 3 (see [10]). Let x™(¢) = (xf(t),x;‘(t),...,xZ(t))T

be a continuously differentiable almost periodic solution of
system (6) with initial value ¢* = (¢ (t), @5 (£),..., ¢, )T e
CY([-7,0]; R"). If there exist constants A > 0 and M > 1 such
that for every solution x(t) = (x; (), x5(f), ..., xn(t))T of sys-
tem (6) with any initial value ¢ = (¢, (t), @, (t),... ,gon(t))T €
C!([-7,0; R"),

*/

(@) = x|, = max{|

}

t

<Mlp-g'l,e™, >0,

(13)

where [|x(¢) — x*(t)]| = max;;,|x;(t) —
said to be globally exponential stable.

x; (t)]. Then x*(t) is

Lemma 4 (see [21, 22]). If the linear system (11) admits an
exponential dichotomy, then almost periodic system

XM=Q)xt)+g(t), (14)

has a unique almost periodic solution x(t), and

() = Jt X (0) PX1(s) g (5) ds
- (15)
- J X (t)(I-P) X" (s) g (s)ds.

Lemma 5 (see [21, 22]). Let ¢(t) be an almost periodic
function on R" and

) 1 t+T )
]= lim —J ¢(s)ds>0, i=12,...,n. (16)
t

T — +00
Then the linear system

x' (t) = diag (—¢, (t), —¢, (t) ..., ¢, (£)) x (t) (17)

admits an exponential dichotomy on R".

3. Existence of Almost Periodic Solution

Theorem 6. Assume that (H,)-(Hs) hold; then there exists a
unique continuously differentiable almost periodic solution of
system (6) in the region X, = {¢p | ¢ € X, | — ¢yl < OH/(1-
0)}.



Proof. For V¢ € X, we consider the almost periodic solution
x?(t) of nonlinear almost periodic differential equations

xl{ (t) = —a;x; () + Zbijfj (¢] (t))
=

+y6ifi (¢ (-7 0))
2
J (18)
n t

ey | k-9 £(40)ds
oo

+Ye;g; (¢ (t-0y)) + L),
=1

wherei=1,2,...,n.
From g,(t) > 0, we have

1 t+T
M [a;] = lim ?J; a(s)ds>0, i=12,....,n. (19)

T — +0co

From Lemmas 4 and 5, system (6) has a unique almost
periodic solution x(t) which can be expressed as follows:

x* (t)

= (20, L), w)

_ < Jt e J: a; (u)du
X !Zbljfj (‘/’] (5))
j=1
+ 00 (8 (s-7,;9))
=

Y JOO K, (s —u) £, (¢; () du
-

e, (8- 0)) 1 <s>] "

x [szjf i(¢59)
j=1

+26if(9;(s-;09))
j=1
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n

+Yd, Joo K, (s =) £, (¢; () du

j=1

+Zezjgj (¢7(s—0y)) + 1 (s)} ds, ...,
J R e
X [gbnjfj (¢;)
* j_ilcnff (95 (s—149)
+ idnj Jm ki (s—u) f;(¢; W) du

+ Ze,,jgj (; (s - 0))
j=1

+1,(s)) ] ds>.

Define an operator: T : X — X by setting

(20)

(Tp) (1) = x* (1), V¢ e X. (21)

By the definition of | - |, one has

I6ol.
= max {| ¢l |40

t g
J L(s)e [ aitdu g o
00

b

maxsup HI,- () - J_too I (s)a; (t) e [} a,'(u)dudS‘} }

1<i<n, teR
+ +
Ii + + Ii
<max ymaxq{—r,max+I; +a;, — =H.
1<i<n ai 1<i<n ai

Hence, for V¢ € Xy ={¢p | ¢ € X, ¢ — ¢yll,, < O0H/(1 - 0)},
one has

= max 1 maxsup {

1<i<n, teR

(22)

0H N
-0

H
H=—. 23
1 1-0 ()

1l < 11¢ = oll.. + 1ol <

Now we prove that T maps the set X, into itself.
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Obviously, for all ¢ € X, it follows from (H,)-(H;) that

17¢ = olly

Jt e J': a;(u)du
—00

= maxsup {
ISISn,tER
x [Zb,-jfj (¢;)
s
+ 2.6/ (9 (s 7 9))
=

+Yd, J k; (s —u) £, (¢; () du
1 oo

t t
< maxsup J ¢ s atwdu
1<i<n, teR —00

S
+ 2ol 50y~ )
2kl 150,
ST
< maxsup { fm o [l atdu
x{g%ﬁwm
+§@4Mh+§@qwm
Sente |
B maxsup { foo o It

n
f oot f
x { (b1 + i + df L) + 1Y)
j=1

x ||¢||x] dS}

t
—(t—s)a;
< maxsup J e 9% g
1<i<n, teR —00

n

x 1 (b;Lf + cijL’; + d,.*jLJ;. +efL?) ||¢>||x}
J

USCperf, arf s
== {a_z (65T + L) + dgL; + i) 1 [

1 j=1

(24)

Moreover, we get

[(T¢ - o),

= 1m(axsup <| Zbljf] ((pj (t))
SISH, teR j=1
+ 2.5 (95 (t -7 ®))
j=1

t
+ ) d; Lo ki(t=s) f;(¢;(s))ds

x lzbijfj (¢, )
j=1
XACACEEAO))
j=
+Yd, j K, (s —u) £, (¢; 0)) du
e

|

e %.»] s
j=1

sgg{;@qMM+;@@wm

n n
« 2Ll + Xesrilel,
j= Jj=
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t t
+ a;’ J e j; a;(u)du
—00

x(f;(¢; )
~fi(9; ))) du

S5l + Zeu A4l S /

|: ] i + ;eij (gj (‘/5; (5 - Gij))

+Z%ﬂf”¢"o Zdu J||¢||0] } —gj(¢§(s—oij)))]ds

Jt e I: a;(u)du
-0

< maxsup
1<i<n, teR

n
XZ (b;LJJ[ + CULJJ( +d' L +e Lg) ||q5||x]> )

= M x [Z|bij|'fj (¢;9) - £ (9, ®)|
(25) =
Thus, by (23), (24), (25), and (H,), one has N IACCEEAO))
=
”T¢ - ¢0“x ’ —fj ((Pj (S = Tjj (5)))|
= max {79 - ¢oll | (T - ¢0) | } :
. +Zl|dif||fj ()= £(9,)]
Smax{(max{i_,l+a—i_}) "
1<i<n a; a;
* Z e |91 7;)
n
x | Y (oL + it v dynh + eULij’)] } I,
=1
] ~0; (9 (s = 0))| } ds}
0H
~olgl, < 2L |
(26) < lmaxsup { J e _[; a;(u)du
which implies that T¢p € X,. So, the operator T is a self- A
operator from X, to X,.
Next, we prove that T' is a contraction operator of the X,. Z bt lé- ol
In fact, in view of (H;)-(H3), for all ¢, ¢ € x,,, we have U Pl
|76 - Tg|
' + Zc,]Lf ¢ = ¢l

= maxsup { Jt ¢ I atwdu

1<i<n, 4eR —0o

+Zd1] ]“‘p (PHO
< B0 -1t

Salo- M }
+ 2% (f; (¢ (s-7))

j= < maxsup {Jt ¢ JL awd
1<i<n, > teR —00
~fi (9 (s =7 9)))

n s X
+ Zdij J_OO kj (s —u)

Jj=1

™=

+1f f +1f g
l(b”L’ + gL+ diL +e,]L])]
j
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< ool s}

t .
< maxsup {J e 9% g
(oe)

1<i<n teR

n
+rf f +rf g
Z (leLJ +CIJLJ +duL1 +e’JLJ)

j=1
<1o-ol.]
1 f f f
< max {a—]_zl (b,jL] + oL +diL + ele?)}
<|l¢ -9,
<0l¢-9l,
|T¢-To) '],

Db (£;(8;0) = £;(9;®))

j=1

+ Zn:%’ (f; (¢ (t-7,0))

j=1

~fi (e (t- 7 ®)))
Yy [ k-9
% (£;(¢;9)) = £ (95 () ds
DIACICAGEN)

~fi(9; w))) du
z (9;(¢) (s~ 03))

s <s—a,»,~>>>]ds

n
f f f 9
fgixz (8L + cjLj + diL + €jL5)

x |6 - ol
t t
+ maxsup J a’e [ aodu
1<i<n, teR —00
n
x|y (b;L? + ¢ LJJ(
j

1

+dif 1 et Lg) ] ds

i T i
X||¢—s0||x}

7 B T
x| - ol
<0)¢ - ¢l,-
Thus,

I7¢ - Tol, < 6]¢ - ol

|

(27)

(28)

In view of (H,), we have 0 < 1; it means that the T is a
contraction operator. By Banach fixed point theorem, there
exists a fixed point z € X such that Tz = z, which implies

system (6) has an almost periodic solution.

4. Uniqueness of Almost Periodic Solution

O

Theorem 7. Assume that (H,)-(H,) hold; then system (6) has
a unique continuously differentiable almost periodic solution

z(t) which is globally exponentially stable.



Proof. It follows from Theorem6 that system (6)
has at least one almost periodic solution z(t) =
(z,(t), 2y(t), ..., 2,(t))" € X, with initial value u(t) =
(e (0, (O, (D) Let x(0) = (x,(8), %, (0), ..., 3, ()"
be an arbitrary solution of system (6) with initial value
I//*(t) = (ly[/ik (t)> 1//2* (t)) R )1//; (t))T Let yl(t) = xl(t) - Zi(t))
vi(t) =y (t) — (), i = 1,2,...,n. Then

i () +ay; ()

Mx

b; [f; (5 () +2;9) = £; (2 9))]

.
I
—_

n

+ Zcij [fj (J’j (5 -
j=1

~fi(z (s~

+ idij J_s kj (s—u)

=

Tjj (s))+z (S—T (s)))

o)

(29)

[ (7 @) +2; @) - £ (z; )] du
+ ]Z;e,] [g, (yJ (S - f) + Z;' (S - Gij))
-9, (7 (s - 0))]

wherei = 1,2,...,n. Let F,(-) and G;(-) be defined by

_ +rf f
Fi(’/li)_ai _ni_Z(bIJLJ+Csz]
i
f g
+d L’ + e/ L ,
i j J) (30)
Gi(&)=a; —&—(a] +a;)

Zl(bULJ; +e L+ diL] + efL%) e,

where ;, &; € [0,00), i=1,2,...,n From (H,), we have

F0)=a - Y (biL) +¢iLl +dfL] +¢fL%) > o,
j=1
G;(0)=a; —(a +a;)
©)

n
+rf foogtrf g
xZ(bl]L] + L +diL + efL) > 0,

j=1
i=1,2,...,n

Since F;(-) and G;(+) are continuous on [0, co) and F;(;),
G,(g) — —coasm;, g — 00, there exist 7, & > 0 such
that Fi(n;) = Gi(¢f) = 0 and F(y;) > 0 for n; € (0,%)),
Gi(g) > 0 forg € (0,¢). It is easy to check that & =
min{y;, 15,1, €& ... €, }. We obtain

E (=20, G&)=0 i=12...,n (32)
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So, we can choose a positive constant 0 < A <
min{¢,a;,a,,...,a,} such that F;(A) > 0, G;(A) > 0, which
implies that

+rf 47 f +1f L 479
> (b,]LJ + ;L) +djL +e1]LJ)

a;—-A

<1,

+ n
f f f g
__A)Z(bl]L]+clJLJ+leLJ+el]LJ) <1

j=1
(33)
By (29), we have
i (t)
—y(0)e Jo ()

+ Jt e J': a;(u)du

0

X ‘|ibij [£; (70 +2;9)) - £; (2, 9)]
j=1

26 [ (0 (s=19) +2; (s - 79))
j=1
~fi (2 (s ))]
+ Zdij r kj (s —u)
i e

x[f; (v @) + 2, ) = £; (2 )] du

+ Zleij [g,- (J’; (5 - cr,,-) +Z; (5 - "if))
e

0 (&5 0) } -

(34)
Let M =a; | Y0, (L) + ¢ LY + dj L, + e LY).
By (H,) we have M > 1 and
@l = Ivl, < Mlyl,e ™, ¥ e[-r.0l, 150, (9
We claim that
ol < Mlyl,e™, £50 06)

To prove (36), we first prove for any p > 1, the following
inequality holds:

ly®l, < pMlyl,e™, ¢>o. (37)
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Otherwise, there must be some t; > 0 and some i €
{1,2,...,n}, such that

ly @, = max {ly &y )]}

= max {max |yj (t)' max |yJ (t)|}

I<j<n 1<j<n

= max {|y; (t,)]. |y (&)} (38)

= pMllyl,e™

t

< PM”‘/’HF_A , Vtel[-t.4].

By (33), (34), (38), (H,), and (Hj), we have

|yi (t1)|

< e

+ Jtl e J.stl a;(u)du
0
[Z%#V@ﬂ
CIJLJJC 'yJ ST (5))'

+ Zn:dij [OO kj(s—u) LJ; lyj (u)| du

j=1

+zeu ]|yJ $—0, )|]d$

<yl

t t
+ J e L a;(u)du
0

x [ZbJprM lyl e
+ ZC,]L’,[PMHI//"l Mooy
+ Zdij I ki (s —u) L?pMHt//"le*M”)du
i oo

+ Zelj JPM lvl,e e Uij)] ds

h - '[tl a;(u)du A(t,—s)
+ J e s 7 e
0

| Bant S

+Zdijj kj(s—u)LJ;.du
e

n
+Zei+jL?eM"f :| ds}

j=1

t
+ j ! e—(tl—s)aie/\(tl—s)

[Z%# Yajife'

=1

+Zdijj k]-(s—u)LJ;du
A1 e

+ZelJL?e’wf] }

< pMy],e™

« {L et
M

+ ! (l—e(A_“")t‘)

a; — 1

x Z (b,jLJ; + cIJLf
=1

vy | k(=9 Ldu

+€,JL‘3) }
< pMly| e

1 -
« {_ gA-at
M
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+ ! (1—e

(A-a)t
a; —1 ’ 1)

x Zn:(bleJ;+cl]L];
j=1

+d. LS+ e Lg) }

i B T
< oM TS
< pM|y] e
+rf 47 f o +79
y 1 z (bIJLJ + C’JLJ +d’JLJ +e’JLJ)
M a-A
% e(/\—ﬂi)tl

U el
a,—A

Y (bl + 6L+ dyL + ef L) }
+

< pMly| e

wrf o arf R
Xz V(B + gL+ dL) + el 1) €

a-A

< pMllyf e

Direct differentiation of (34) gives

¥ (8)
=4 (t) V/i (0) e Jgt a;(u)du

- J t a;(t)e J;
0
. {zbu 103y 0) £ (5, 9)]
=1
+ 26 [fi (i (s -7 9)
j=1

+zj(s—rij(s)))
- (2 (s -7 9))]
+idijr kj(s—u)
j=1 e

)

(39)

x [ f; (v @) + 2, 0) £ ; (2 )] du

+ Zleij [gj (J’J’ (5 - "ij) + Z; (5 - Gij))
e

Abstract and Applied Analysis

. o,m}ds

n

+ 2.0 (£ (79 +2;9) = £; (2 9))]

j=1
XAGICACEMOIREACEEAC))
j=1
~£i(z(s - )]
+ idij f kj (s —u)

=

x [ f; (v ) +2; W) = £;(2; )] du

+Yealor (56~
(=) -9y (5 (-]

Thus, from (33), (40), and (H, ), we obtain

|in (tl)'

<afvl,e
) (tl) e J:l a;(u)du

t
+J "
0

{ 1 3y )

- _|'0[l a;(u)du

+ Zdij JS kj (s—u) L? |yj (u)| du
1o

7; (1))

u) LJ; |yj (u)'du

(40)



Abstract and Applied Analysis

<afvle

'
ZbJLf pM]y e
j=
+ YLyl
j=
+ jidij [m ki(s—u) L?pM||1//||le_)‘(”)du
+Zeu <pMily], e | ds
+ Zb;Lf pM[y], e
' Zcupranul Moo
+ idij r k;(t, - u) LJ;pM”v/Hle—A(u)du
25 ),

+Zeu JPM“‘/’"1 Mhmey)

= pMly],e™
y ie()t—a,-)tl
pM

ty t
+ J ai-i—e L a,-(u)due)t(t1 s)
0

| S+ Sauie

+Zdijj kj(s—u)LJ;du
e

ijj i
j=1 J=
n tl f
+Zdijj Ky (t, —u) L du
e
- A
+ 19,10
+ZeijLJe

11
< pMly| e
% { ie(/\_ai)tl
M
f f
+<Z%% S

+Zdijj kj(s—u)LJ;du
e

S

oy [ awydu A(t,-s)
><J a e s 4 e ds
0

n
+rf f
+.zl(b’JLJ +C1]L]

=

f
+d, Lo Ky (ty —u) Ldu+ 19 ) e ) }

= pMly| e

+rf . +7f f g
) L_z V(B + i+ dyL) 4+ ef1) e
M a;—A

x a;'e(/\—ﬂi)ﬁ

+| 1+ o
a; —A

n
f f f g
XZ{ (szLJ +cl]LJ + d,JLJ + elJL])
=

- a;
<ol (10 )

1

<Y (L ] vyl L) e

My
(41)

Therefore, in view of (39) and (41), we have
Iyl = max{ly; (1)) [y (2]} < pM I yle™, (42)
which contradicts (38); that is, the inequality (37) holds. Let-
ting p — 1, then the inequality (36) holds. Hence, the almost

periodic solution of system (6) is globally exponentially
stable; that is, the almost periodic solution is unique. O

Here we would like to give some remarks.
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Remark 8. 1fb; = 0 and dj; = 0, the system (6) reduces to the
system (1) in [10], and we improve the corresponding results
of [10].

Remark 9. When g j(x) = X, the system (6) can be reduced to
the system (3) in [17]. The methods and results in this paper
are different from [17]. We use Banach fixed point theorem to
study the existence and uniqueness of almost periodic solu-
tion for the system (6). Linear matrix inequalities and delay-
dependent conditions are given to guarantee the considered
delayed neural network to have a unique equilibrium point,
which is globally asymptotically stable in [17].

5. An Example

In this section, we give an example to illustrate the effective-
ness of our results.

Example 10. Consider the neural networks with neutral
delays:

2
Xy (8) = —ay (1) x, (1) + Y by; () f (x; ()
j=1

2

+ a0 f;(x;(t -1, 0))
=i
2

+Ydy; J_OO ki(t=s) f;(x; () ds

=

2
+ Zeugj (x; (t —0yj (t))) +1, (1),
j=1
2
Xy (1) = —a, (1) %, () + Y by, (8) £, (x; (1))
=

2
a0 f(x;(t -1 1))

=

2

e Yy | k(=91 (3 0) ds

j=1

2
+ )0 (%) (=00 ) + L (1),
j=1

(43)
where
a, (t) = % + écost,
a,(t) = g + gcost,
b,=0b,= % - é cos 3t,
b, =by, = % - é cos 3t,
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1 5
qr=¢C2 = Esm t,

1 2,
=y, = —cos’t,
Q1= 12
[
dyy=dy = 158 (\/7t),
I .
dyy = dy, = —sin (V7t),

1
e =€, = = sin [50¢],

1
€ =€y = e cos |50¢],

I, = cos (2t), I, =sin(2¢t),

ky (8) = kpy () = kyy () = kyy (£) = €7,

fi) = 6= 5 Ixl,
1 .
g1 (x) =g, (x) = 2 sin x,
T, =Tp =1+ %sin(\/ft),
1
Ty =Ty =1+ Ecos(\/ft),

1
0y =0, = 1_4_1COS V8t,

1
0y =0y =1- 3 cos V8t.

(44)
By simple calculation, we have
1 1
L, =L,=—, L =1=—,
1 27 55 1=h =58
_ 1 _ 5
al = E, az = g)
a = E a+ = E
1 6, 2 2)
2 7
+ + + +
bu = blz = 5’ b21 = bzz = E> (45)
+ o+ 1 + o+
1 =62 = 12’ Q1 =% = 12
1 1
+ + + +
du = d12 = 12 d21 = dzz = 12’
+ _ o+ L + + 1

e, =e,=—,
21 27 5,
0=0.284<1.

Clearly, (H,;)-(H;) hold. From Theorems 6 and 7, system
(6) has a unique continuously differentiable almost periodic
solution, which is globally exponentially stable.
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6. Conclusion

In this work, we are concerned with a neural network model
with neutral delays. The existence and uniqueness of almost
periodic solution for the system are explored by means of
Banach fixed point theorem. Our result is in good agreement
with some related results in the literature.
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