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Based on the ideas of the classical Benson proper efficiency, a new kind of unified proper efficiency named S-Benson proper
efficiency is introduced by using Assumption (B) proposed by Flores-Bazán and Hernández, which unifies some known exact
and approximate proper efficiency including (𝐶, 𝜀)-proper efficiency and E-Benson proper efficiency in vector optimization.
Furthermore, a characterization of S-Benson proper efficiency is established via a kind of nonlinear scalarization functions
introduced by Göpfert et al.

1. Introduction

It is well known that approximate solutions have been
playing an important role in vector optimization. Since
Kutateladze initially introduced the concept of approximate
solutions in [1], a lot of research achievements of approxi-
mate solutions have been obtained for vector optimization
problems. Loridan proposed 𝜀-efficient solutions of vector
optimization problems and gave some properties in [2]. In
a general topological vector space, Rong and Wu proposed
𝜀-weak efficient solutions of vector optimization problems
with set-valued maps and obtained some linear scalarization
theorems, Lagrangian multipliers theorems, saddle point
theorems, and duality theorems in [3]. Recently, Gutiérrez
et al. introduced the concept of coradiant set and proposed
(𝐶, 𝜀)-efficient solutionswhich extend and unify some known
different notions of approximate solutions in [4]. Gao et
al. proposed the concept of properly approximate efficient
solutions by means of coradiant set and established some
linear and nonlinear scalarization results in [5]. Furthermore,
Gutiérrez et al. obtained some characterizations of this kind
of approximate solutions in terms of linear scalarization in
[6].

Moreover, Debreu introduced the concept of free disposal
sets to deal with mathematical economic problems in [7].
In a finite dimensional space, Chicco et al. introduced
the concepts of improvement sets and 𝐸-efficient solutions

and obtained some characterizations in [8]. Improvement
sets are close to free disposal sets and can be applied to
study vector optimization problems as an important tool.
In particular, Zhao and Yang obtained a unified stability
result with perturbations by means of improvement sets in
[9]. Furthermore, Gutiérrez et al. generalized the concepts
of improvement sets and 𝐸-efficient solutions to a general
real locally convex Hausdorff topological vector space and
studied some linear scalarization results in [10]. Zhao and
Yang proposed 𝐸-weak efficient solutions of vector optimiza-
tion problems with set-valued maps and established some
linear scalarization theorems, Lagrange multiplier theorems,
saddle point criteria, and duality in [11]. Zhao and Yang
introduced the concept of 𝐸-Benson proper efficiency which
unifies some proper efficiency and obtained some linear
scalarization theorems and Lagrange multiplier theorems
of this kind of proper efficiency in [12]. Flores-Bazán and
Hernández proposed Assumption (B) and obtained some
complete scalarizations of solution sets of a class of unified
vector optimization problems via nonlinear scalarization in
[13]. In addition, Flores-Bazán andHernández obtained some
optimality conditions of a class of unified vector optimization
problems under Assumption (B) in [14].

Motivated by the works of [4, 5, 12, 13], we present
a new kind of unified proper efficiency named 𝑆-Benson
proper efficiency by using Assumption (B) proposed by
Flores-Bazán and Hernández. This kind of proper efficiency
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unifies some known exact and approximate proper efficiency
including (𝐶, 𝜀)-proper efficiency and 𝐸-Benson proper effi-
ciency in vector optimization. Furthermore, we also give a
characterization of 𝑆-Benson proper efficiency via nonlinear
scalarization.

2. Preliminaries

Let𝑋 be a linear space and 𝑌 a real Hausdorff locally convex
topological linear space. For a subset 𝐴 of 𝑌, we denote the
topological interior, the topological closure, the boundary,
and the complement of 𝐴 by int𝐴, cl𝐴, 𝜕𝐴, and 𝑌 \ 𝐴,
respectively. A set 𝐴 is solid if int𝐴 ̸= 0 and is proper if 𝐴 is
nonempty and 𝐴 ̸=𝑌. The cone generated by 𝐴 is defined as

cone𝐴 = {𝛼𝑎 | 𝛼 ≥ 0, 𝑎 ∈ 𝐴} . (1)

Let 𝑌∗ denote the topological dual space of 𝑌. The positive
dual cone of a subset 𝐴 ⊂ 𝑌 is defined as

𝐴
+

= {𝑦
∗

∈ 𝑌
∗

| ⟨𝑦
∗

, 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐴} . (2)

Let 𝐾 be a closed convex pointed cone in 𝑌 with nonempty
topological interior. For any 𝑥, 𝑦 ∈ 𝑌, we define

𝑥≤
𝐾
𝑦 ⇐⇒ 𝑦 − 𝑥 ∈ 𝐾. (3)

In this paper, we consider the following vector optimization
problem:

min 𝑓 (𝑥)
s.t. 𝑥 ∈ 𝐷, (VP)

where 𝑓 : 𝑋 → 𝑌 and 0 ̸=𝐷 ⊂ 𝑋.
We say that 𝐴 is a coradiant set if 𝐴 satisfies 𝛼𝑑 ∈ 𝐴 for

every 𝑑 ∈ 𝐴, 𝛼 > 1. Let 𝐶 ⊂ 𝑌 be a proper solid coradiant set
and define

𝐶 (𝜀) = 𝜀𝐶, ∀𝜀 > 0, 𝐶 (0) = ⋃
𝜀>0

𝐶 (𝜀) . (4)

Lemma 1 (see [5]). Let 𝐶 be a proper solid convex coradiant
set. Then,

(i) 𝐶(0) + 𝐶(𝜀) ⊂ 𝐶(𝜀), ∀𝜀 ≥ 0;
(ii) int(cl𝐶(𝜀)) = int𝐶(𝜀), ∀𝜀 > 0.

Definition 2 (see [5]). Let 𝜀 ≥ 0. A feasible point 𝑥 ∈ 𝐷 is said
to be a (𝐶, 𝜀)-proper efficient solution of (VP) if

cl cone (𝑓 (𝐷) + 𝐶 (𝜀) − 𝑓 (𝑥)) ∩ (−𝐶 (0)) ⊂ {0} . (5)

Definition 3 (see [10]). A nonempty set 𝐸 ⊂ 𝑌 is said to be an
improvement set with respect to𝐾 if 0 ∉ 𝐸 and 𝐸 + 𝐾 = 𝐸.

Lemma 4 (see [10]). Let 𝐸 ⊂ 𝑌 be a nonempty set. If 𝐸 is an
improvement set with respect to𝐾, then𝐸+ ⊂ 𝐾+. Additionally,
if 𝐸 ⊂ 𝐾, then 𝐸+ = 𝐾+.

Definition 5 (see [12]). Let 𝐸 ⊂ 𝑌 be an improvement set with
respect to𝐾. A feasible point 𝑥 ∈ 𝐷 is said to be an 𝐸-Benson
proper efficient solution of (VP) if

cl (cone (𝑓 (𝐷) + 𝐸 − 𝑓 (𝑥))) ∩ (−𝐾) = {0} . (6)

Flores-Bazán and Hernández introduced Assumption B as
follows.

Assumption B (see [13]). Consider that 0 ̸= 𝑞 ∈ 𝑌 and 𝑆 ⊂ 𝑌
is a proper (not necessary closed) set such that 0 ∈ 𝜕𝑆 and
cl(𝑌 \ (−𝑆)) +R

++
𝑞 ⊂ int(𝑌 \ (−𝑆)).

Remark 6. From Assumption B, we have the equivalence

cl (𝑌 \ (−𝑆)) +R
++
𝑞 ⊂ int (𝑌 \ (−𝑆))

⇐⇒ cl 𝑆 +R
++
𝑞 ⊂ int 𝑆.

(7)

Lemma 7 (see [15]). Let 𝑆 ⊂ 𝑌 be any nonempty subset. Then,
cl(cone 𝑆) = cl(cone(cl 𝑆)).

3. A Kind of Unified Proper Efficiency

In this section, we propose a kind of unified proper efficiency
of (VP) by means of Assumption B by using the idea of the
classical Benson proper efficiency and discuss some relations
with other proper efficiency.

Definition 8. Let 𝑞 and 𝑆 satisfy Assumption B. One says that
𝑥 ∈ 𝐷 is a 𝑆-Benson proper efficient solution of (VP) if

cl (cone (𝑓 (𝐷)+𝑆 − 𝑓 (𝑥))) ∩ (− cl (cone (conv (𝑆))))={0} .
(8)

Denote by PAE(𝑓, 𝑆) the set of 𝑆-Benson proper efficient
solutions of (VP).

Example 9. Let 𝑌 = R2, 𝑞 = (0, 1), 𝑓(𝑥) = 𝑥, 𝐷 = {(𝑥
1
, 𝑥
2
) |

𝑥
1
≤ 0, 𝑥

2
≥ 0}, and

𝑆 = {(𝑥
1
, 𝑥
2
) | 𝑥
1
− 𝑥
2
≤ 0, 𝑥

1
∈ R, 𝑥

2
> 0}

∪ {(𝑥
1
, 𝑥
2
) | −1 ≤ 𝑥

1
≤ 0, 𝑥

2
= 0} .

(9)

Since

cl 𝑆+R
++
𝑞 = {(𝑥

1
, 𝑥
2
) | 𝑥
1
−𝑥
2
< 0, 𝑥

1
∈ R, 𝑥

2
> 0} = int 𝑆,

(10)

then, from Remark 6, it follows that 𝑞 and 𝑆 satisfy Assump-
tion B. Let 𝑥 = (0, 0) ∈ 𝐷. Since

cl (cone (𝑓 (𝐷) + 𝑆 − 𝑓 (𝑥)))

= cl (cone (conv (𝑆)))

= {(𝑥
1
, 𝑥
2
) | 𝑥
1
− 𝑥
2
≤ 0, 𝑥

1
∈ R, 𝑥

2
≥ 0} ,

(11)

then

cl (cone (𝑓 (𝐷)+𝑆−𝑓 (𝑥))) ∩ (− cl (cone (conv (𝑆)))) = {0} .
(12)

Therefore, 𝑥 ∈ PAE(𝑓, 𝑆).

In the following, we discuss some relations between 𝑆-
Benson proper efficiency and some other proper efficiency.
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Theorem 10. Let 𝐾 ⊂ 𝑌 be a pointed closed convex cone, 𝑆 =
int𝐾, and 𝑞 ∈ int𝐾. Then, 𝑆-Benson proper efficiency reduces
to the Benson proper efficiency.

Proof. Since 𝐾 is a convex cone, then we have int𝐾 + 𝐾 =
int𝐾 and hence, by 0 ∉ 𝑆, we can obtain that 𝑆 is an
improvement set with respect to 𝐾. Then, it follows from
Remark 3.2 in [12] that

cl (𝑌 \ (−𝑆)) +R
++
𝑞 ⊂ int (𝑌 \ (−𝑆)) . (13)

For 0 ∈ 𝜕𝑆, 𝑞 and 𝑆 satisfy Assumption B. Assume that 𝑥 is
a 𝑆-Benson proper efficient solution of (VP) and then, from
Proposition 4.1 in [16], we have

cl (cone (𝑓 (𝐷) + 𝐾 − 𝑓 (𝑥))) ∩ (−𝐾)

= cl (cone (𝑓 (𝐷) + int𝐾 − 𝑓 (𝑥))) ∩ (−𝐾)

= cl (cone (𝑓 (𝐷) + 𝑆 − 𝑓 (𝑥))) ∩ (− cl (cone (conv (𝑆))))

= {0} ,

(14)

which implies that 𝑥 is a Benson proper efficient solution of
(VP).

Theorem 11. Let 𝐾 ⊂ 𝑌 be a pointed closed convex set and
𝑞 ∈ int𝐾. If 𝑆 = 𝐸 ⊂ 𝐾 is an improvement set with respect to
𝐾 and 0 ∈ 𝜕𝑆, then 𝑆-Benson proper efficiency reduces to the
𝐸-Benson proper efficiency.

Proof. From Remark 3.2 in [12], we know that 𝑞 and 𝑆 satisfy
Assumption B. Assume that 𝑥 is 𝑆-Benson proper efficient
solution of (VP). We first point out that

cl (cone (conv 𝑆)) = 𝐾. (15)

In fact, since 𝑆 ⊂ 𝐾, then we only need to prove

𝐾 ⊂ cl (cone (conv 𝑆)) . (16)

Suppose that there exists 𝑘
0
∈ 𝐾 such that 𝑘

0
∉

cl (cone (conv 𝑆)). By applying separation theorem for convex
sets, it follows that there exists 𝜆 ∈ 𝑌∗ \ {0

𝑌
∗} such that

⟨𝜆, 𝑘
0
⟩ > ⟨𝜆, 𝑒⟩ , ∀𝑒 ∈ cl (cone (conv𝑆)) . (17)

Let 𝑒 = 0; we have

⟨𝜆, 𝑘
0
⟩ > 0. (18)

Furthermore, we can show that −𝜆 ∈ (cl(cone(conv𝑆)))+ =
𝑆+. Since 𝑆 is an improvement set with respect to 𝐾 and by
Lemma 4, we can obtain

−𝜆 ∈ 𝐸
+

= 𝐾
+

, (19)

which implies ⟨𝜆, 𝑘
0
⟩ ≤ 0. This contradicts (18) and then (15)

holds. Hence,

cl (cone (𝑓 (𝐷) + 𝐸 − 𝑓 (𝑥))) ∩ (−𝐾)

= cl (cone (𝑓 (𝐷) + 𝑆 − 𝑓 (𝑥)))

∩ (− cl (cone (conv𝑆))) = {0} .

(20)

This means that 𝑥 is an 𝐸-Benson proper efficient solution of
(VP).

Theorem 12. Let 𝐶 be a proper solid convex coradiant set, 𝑞 ∈
int𝐶(0), 𝜀 ≥ 0, 𝑆 = 𝐶(𝜀), and 0 ∈ 𝜕𝑆. Then, 𝑆-Benson proper
efficiency reduces to (𝐶, 𝜀)-proper efficiency.

Proof. From the convexity of 𝑆 and Lemma 1(i), we have

cl 𝑆 + cl𝐶 (0) = cl𝐶 (𝜀)+cl𝐶 (0) ⊂ cl (𝐶 (𝜀)+𝐶 (0)) ⊂ cl𝐶 (𝜀)

= cl 𝑆,
(21)

and so, from 0 ∈ cl𝐶(0), it follows that

cl 𝑆 + cl𝐶 (0) = cl 𝑆. (22)

We first point out that 𝑞 and 𝑆 satisfy Assumption B. In fact,
we only need to prove

𝑌 \ (− int 𝑆) +R
++
𝑞 ⊂ 𝑌 \ (− cl 𝑆) . (23)

For any 𝑥 ∈ 𝑌 \ (− int 𝑆) + R
++
𝑞, we only need to prove 𝑥 ∉

− cl 𝑆. On the contrary, suppose that −𝑥 ∈ cl 𝑆. Since 𝑥 ∈ 𝑌 \
(− int 𝑆) +R

++
𝑞, then there exist

𝑥
1
∈ 𝑌 \ (− int 𝑆) , 𝑥

2
∈ R
++
𝑞 (24)

such that 𝑥 = 𝑥
1
+ 𝑥
2
; that is, −𝑥

1
= −𝑥 + 𝑥

2
. Hence, from

Lemma 1(ii) and (22), we have

−𝑥
1
∈ cl 𝑆 +R

++
𝑞 ⊂ cl 𝑆 + int𝐶 (0)

⊂ int (cl 𝑆 + 𝐶 (0)) ⊂ int (cl 𝑆 + cl𝐶 (0))

= int (cl 𝑆) = int 𝑆,

(25)

which contradicts 𝑥
1
∈ 𝑌 \ (− int 𝑆) and so 𝑞 and 𝑆 satisfy

Assumption B. Furthermore, from 𝑆 ⊂ 𝐶(0) and by means of
(22), similar with the proof of (15), we have

cl (cone (conv (cl 𝑆))) = cl𝐶 (0) . (26)

From Lemma 7, it follows that

cl (cone (conv𝑆)) = cl (cone 𝑆) = cl (cone (cl 𝑆))

= cl (cone (conv (cl 𝑆))) = cl𝐶 (0) .
(27)

If 𝑥 is 𝑆-Benson proper efficient solution of (VP), then

cl (cone (𝑓 (𝐷) + 𝐶 (𝜀) − 𝑓 (𝑥))) ∩ (− cl𝐶 (0))

= cl (cone (𝑓 (𝐷) + 𝑆 − 𝑓 (𝑥))) ∩ (− cl (cone (conv𝑆)))

= {0} .

(28)

It follows that

cl (cone (𝑓 (𝐷) + 𝐶 (𝜀) − 𝑓 (𝑥))) ∩ (−𝐶 (0)) ⊂ {0} , (29)

which implies that 𝑥 is a (𝐶, 𝜀)-proper efficient solution of
(VP).
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4. A Characterization via Nonlinear
Scalarization

In this section, we give a characterization of 𝑆-Benson proper
efficiency of (VP) via a kind of nonlinear scalarization
function proposed by Göpfert et al.

Definition 13. Let 𝜉
𝑞,𝑆
: 𝑌 → R ∪ {±∞} be defined by

𝜉
𝑞,𝑆
(𝑦) = inf {𝑡 ∈ R | 𝑦 ∈ 𝑡𝑞 − 𝑆} , 𝑦 ∈ 𝑌, (30)

with inf 0 = +∞.

Flores-Bazán and Hernández obtained the following
nonconvex separation theorem.

Lemma 14 (see [13]). Let 𝑞 and 𝑆 satisfy Assumption B. Then,

{𝑦 ∈ 𝑌 | 𝜉
𝑞,𝑆
(𝑦) < 𝑐} = 𝑐𝑞 − int 𝑆, ∀𝑐 ∈ R,

{𝑦 ∈ 𝑌 | 𝜉
𝑞,𝑆
(𝑦) = 𝑐} = 𝑐𝑞 − 𝜕𝑆, ∀𝑐 ∈ R,

𝜉
𝑞,𝑆
(−𝑆) ≤ 0, 𝜉

𝑞,𝑆
(−𝜕𝑆) = 0.

(31)

We consider the following scalar optimization problem

(𝑃
𝑞,𝑦
)min
𝑥∈𝐷

𝜉
𝑞,𝑆
(𝑓 (𝑥) − 𝑦) , (32)

where 𝑦 ∈ 𝑌 and 𝑞 ∈ 𝑌. Denote 𝜉
𝑞,𝑆
(𝑓(𝑥)−𝑦) by (𝜉

𝑞,𝑆,𝑦
∘𝑓)(𝑥).

Let 𝜖 ≥ 0 and 𝑥 ∈ 𝐷. If

(𝜉
𝑞,𝑆,𝑦
∘ 𝑓) (𝑥) ≥ (𝜉

𝑞,𝑆,𝑦
∘ 𝑓) (𝑥) − 𝜖, ∀𝑥 ∈ 𝐷, (33)

then 𝑥 is called an 𝜖-minimal solution of (𝑃
𝑞,𝑦
). Denote the set

of 𝜖-minimal solutions of (𝑃
𝑞,𝑦
) by 𝐴𝑀𝑖𝑛(𝜉

𝑞,𝑆,𝑦
∘ 𝑓, 𝜖).

Theorem 15. Let 𝑞 ∈ int 𝑆 and 𝑆 satisfy Assumption B and
𝛽 = inf{𝑡 ∈ R

+
| 𝑡𝑞 ∈ 𝑆}. Then,

𝑥 ∈ 𝑃𝐴𝐸 (𝑓, 𝑆) 󳨐⇒ 𝑥 ∈ 𝐴𝑀𝑖𝑛 (𝜉
𝑞,𝑆,𝑓(𝑥)

∘ 𝑓, 𝛽) . (34)

Proof. Since 𝑥 ∈ PAE(𝑓, 𝑆), then
cl (cone (𝑓 (𝐷) + 𝑆 − 𝑓 (𝑥))) ∩ (− cl (cone (conv𝑆))) = {0} ,

(35)

and it follows that
(𝑓 (𝐷) + 𝑆 − 𝑓 (𝑥)) ∩ (− int (cl (cone (conv𝑆)))) = 0. (36)

Therefore,
(𝑓 (𝑥) − (𝑆 + int (cl (cone (conv𝑆))))) ∩ 𝑓 (𝐷) = 0. (37)

Furthermore, we can verify that
int 𝑆 ⊂ 𝑆 + int (cl (cone (conv𝑆))) . (38)

In fact, from Lemma 2.5 in [17], we have
int 𝑆 ⊂ int (𝑆 + cl (cone (conv𝑆)))

⊂ int (cl 𝑆 + cl (cone (conv𝑆)))

⊂ int (cl (𝑆 + cone (conv𝑆)))

= 𝑆 + int (cone (conv𝑆))

= 𝑆 + int (cl (cone (conv𝑆))) .

(39)

Hence, from (37), we deduce that

(𝑓 (𝐷) − 𝑓 (𝑥)) ∩ (− int 𝑆) = 0. (40)

From Lemma 14, we can obtain that, for all 𝑐 ∈ R,

{𝑦 ∈ 𝑌 | 𝜉
𝑞,𝑆
(𝑦) < 𝑐} = 𝑐𝑞 − int 𝑆. (41)

Let 𝑐 = 0 in (41); then we have

{𝑦 ∈ 𝑌 | 𝜉
𝑞,𝑆
(𝑦) < 0} = − int 𝑆. (42)

It follows from (40) that

(𝑓 (𝐷) − 𝑓 (𝑥)) ∩ {𝑦 ∈ 𝑌 | 𝜉
𝑞,𝑆
(𝑦) < 0} = 0. (43)

Therefore,

(𝜉
𝑞,𝑆,𝑓(𝑥)

∘ 𝑓) (𝑥) = 𝜉
𝑞,𝑆
(𝑓 (𝑥) − 𝑓 (𝑥)) ≥ 0, ∀𝑥 ∈ 𝐷.

(44)

Now, we calculate (𝜉
𝑞,𝑆,𝑓(𝑥)

∘ 𝑓)(𝑥). In fact,

(𝜉
𝑞,𝑆,𝑓(𝑥)

∘ 𝑓) (𝑥) = 𝜉
𝑞,𝑆
(𝑓 (𝑥) − 𝑓 (𝑥))

= 𝜉
𝑞,𝑆
(0)

= inf {𝑡 ∈ R | 0 ∈ 𝑡𝑞 − 𝑆}

= inf {𝑡 ∈ R | 𝑡𝑞 ∈ 𝑆}

≤ inf {𝑡 ∈ R
+
| 𝑡𝑞 ∈ 𝑆} = 𝛽.

(45)

Hence, from (44), we have

(𝜉
𝑞,𝑆,𝑓(𝑥)

∘ 𝑓) (𝑥) ≥ (𝜉
𝑞,𝑆,𝑓(𝑥)

∘ 𝑓) (𝑥) − 𝛽, ∀𝑥 ∈ 𝐷, (46)

which means that

𝑥 ∈ AMin (𝜉
𝑞,𝑆,𝑓(𝑥)

∘ 𝑓, 𝛽) . (47)
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