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We study the asymptotic behavior of the sequence 𝑆
𝑛
= ∑

𝑛−1

𝑖=0
𝐾(𝑛

𝛼

𝑆
𝐻1

𝑖
)(𝑆

𝐻2

𝑖+1
− 𝑆

𝐻2

𝑖
), as 𝑛 tends to infinity, where 𝑆𝐻1 and 𝑆𝐻2 are

two independent subfractional Brownian motions with indices𝐻
1
and𝐻

2
, respectively. 𝐾 is a kernel function and the bandwidth

parameter 𝛼 satisfies some hypotheses in terms of 𝐻
1
and 𝐻

2
. Its limiting distribution is a mixed normal law involving the local

time of the sub-fractional Brownian motion 𝑆𝐻1 . We mainly use the techniques of Malliavin calculus with respect to sub-fractional
Brownian motion.

1. Introduction

The asymptotic theory of nonlinear regression plays a central
role in econometrics, underlying models as diverse as simul-
taneous equations systems and discrete choice. Two examples
in econometrics are GMM estimation and nonlinear coin-
tegration. GMM limit theory was originally developed for
ergodic and strictly stationary time series (Hansen [1]) for
which all measurable functions are stationary and ergodic, so
that applications of strong laws and central limit theory are
straightforward. Although some attempts have been made to
extend the theory to models with deterministically trending
data (e.g., Andrewa and McDermott [2] and Wooldridge
[3]), traditional CLT approaches have still been used and no
significant progress has been made. Nonlinear cointegrating
models also seem important in a range of applications (e.g.,
Granger [4]) and models with nonlinear attractor sets have
been popular in economics for many years.

Themotivation of this paper comes from the econometric
theory. Consider a nonlinear structural model of cointegra-
tion

𝑦
𝑡
= 𝑓 (𝑥

𝑡
) + 𝑢

𝑡
, 𝑡 = 1, 2, . . . , 𝑛, (1)

where 𝑢
𝑡
is a stationary equilibrium error process, 𝑥

𝑡
is

a jointly dependent nonstationary regressor, and 𝑓 is an
unknown function to be estimated with the observed data
{𝑦

𝑡
, 𝑥

𝑡
}

𝑛

𝑡=1
. Let 𝐾(𝑥) be a nonnegative real function and set

𝐾
ℎ
(𝑠) = (1/ℎ)𝐾(𝑠/ℎ), where the bandwidth parameter ℎ ≡

ℎ
𝑛
→ 0. The conventional kernel estimate of 𝑓(𝑥) in model

(1) is given by

𝑓 (𝑥) =
∑

𝑛

𝑡=1
𝑦

𝑡
𝐾

ℎ
(𝑥

𝑡
− 𝑥)

∑
𝑛

𝑡=1
𝐾

ℎ
(𝑥

𝑡
− 𝑥)

. (2)

The limit behavior of 𝑓(𝑥) has recently been investigated in
Karlsen et al. [5] in the situation where 𝑥

𝑡
is a recurrent

Markov chain. The main theorem in Karlsen et al. ([5],
Theorem 3.1) relies on the asymptotic theory developed in
Karlsen et al. [5] involving the conditions on the invariant
measure associated with a recurrent Markov chain. These
conditions are not always easy to check in practice and do not
include some cases of econometric interest such as fractional
processes. Wang and Phillips [6] provided an alternative
approach to nonparametric cointegration in developing the
asymptotics. In particular, instead of the recurrent Markov
chain in Karlsen et al. [5]), they worked with partial sum
representations of the type 𝑥

𝑡
= ∑

𝑡

𝑗=1
𝜉

𝑗
, where 𝜉

𝑗
is a

Gaussian process or a general linear process, and obtained
the limit behavior for kernel functions of this process. This
specification corresponds to the conventional formulation of
unit root and cointegration models, and the limit theory has
links to traditional nonparametric asymptotics for stationary
models even though rates of convergence are different. This
approach also allows them to work with cases where the
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regressor 𝑥
𝑡
is a non-stationary long memory time series.

An important assumption in the main part of the above
references is the fact that the error process 𝑢

𝑡
is a martingale

difference sequence and there is no contemporaneous corre-
lation between 𝑥

𝑡
and 𝑢

𝑡
.

The estimation error in the kernel estimator (2) has the
usual decomposition

𝑓 (𝑥) − 𝑓 (𝑥) =
∑

𝑛

𝑡=1
𝑢

𝑡
𝐾

ℎ
(𝑥

𝑡
− 𝑥)

∑
𝑛

𝑡=1
𝐾

ℎ
(𝑥

𝑡
− 𝑥)

+
∑

𝑛

𝑡=1
[𝑓 (𝑥

𝑡
) − 𝑓 (𝑥)]𝐾

ℎ
(𝑥

𝑡
− 𝑥)

∑
𝑛

𝑡=1
𝐾

ℎ
(𝑥

𝑡
− 𝑥)

.

(3)

The second term of (3) affects bias, and, at least when
this is of smaller order, it is the first term that determines
the asymptotic distribution. The asymptotic behavior of the
estimator 𝑓(𝑥) is usually related to the behavior of the
sequence

𝑀
𝑛
=

𝑛

∑

𝑡=1

𝑢
𝑡
𝐾

ℎ
(𝑥

𝑡
− 𝑥) . (4)

The limit in distribution as 𝑛 → ∞ of the sequence 𝑀
𝑛

has been widely studied in the literature in various situations.
Inspired by Bourguin and Tudor [7], we will consider the
following situation: we assume that the regressor 𝑥

𝑡
= 𝑆

𝐻
1

𝑡
is a

subfractional Brownian motion with Hurst index𝐻
1
∈ (0, 1)

and the error is 𝑢
𝑡
= 𝑆

𝐻
2

𝑡+1
− 𝑆

𝐻
2

𝑡
, where 𝑆𝐻

2

𝑡
is a sub-fractional

Brownian motion with 𝐻
2
∈ (0, 1) which is independent

of 𝑆𝐻
1

𝑡
. In this case, our error process is no semimartingale

property. We will set ℎ
𝑛
= 𝑛

−𝛼 with 𝛼 > 0. A supplementary
assumption on 𝐾 will be imposed later in terms of the Hurst
parameters𝐻

1
and𝐻

2
. The sequence𝑀

𝑛
can be now written

as

𝑆
𝑛
(𝑥) =

𝑛

∑

𝑡=1

𝐾(𝑛
−𝛼

(𝑆
𝐻
1

𝑡
− 𝑥)) (𝑆

𝐻
2

𝑡+1
− 𝑆

𝐻
2

𝑡
) . (5)

Our purpose is to give an approach based on stochastic
calculus for this asymptotic theory. Recently, the stochastic
integration with respect to the sub-fractional Brownian
motion has been widely studied (see Yan et al. [8, 9] and
references therein). Various types of stochastic integrals,
based onMalliavin calculus, has been introduced and change
of variables formulas have been derived. We will use all
these different techniques in our work. The general idea is as
follows. Suppose that 𝑥 = 0. We will first observe that the
asymptotic behavior of the sequence 𝑆

𝑛
will be given by the

sum

𝑁
𝑛
=

𝑛

∑

𝑗,𝑘=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
)

× 𝐸 ((𝑆
𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
) (𝑆

𝐻
2

𝑘+1
− 𝑆

𝐻
2

𝑘
)) .

(6)

This is easy to understand since the conditional distribution
of 𝑆

𝑛
given 𝑆𝐻

1 is given by√𝑁
𝑛
𝑍, where 𝑍 is a standard nor-

mal randomvariable.The double sum𝑁
𝑛
can be decomposed

into two parts: a “diagonal” part and a “nondiagonal” part.We
will restrict ourselves to the situation where the diagonal part
is dominant (in a sense that will be defined later) with respect
to the non-diagonal part.Thiswill imply a certain assumption
on the bandwidth parameter𝐾 in terms of𝐻

1
and𝐻

2
.Wewill

therefore need to study the asymptotic behavior of

⟨𝑆⟩
𝑛
=

𝑛

∑

𝑗=1

𝐾
2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
) . (7)

In the case 𝐻
2
= 1/2 this is actually the bracket of 𝑆

𝑛
which

is a martingale; this motivates our choice of notation.We will
assume that the kernel𝐾 is the standard Gaussian kernel

𝐾 (𝑥) =
1

√2𝜋
𝑒

−𝑥
2
/2

. (8)

This choice is motivated by the fact that 𝐾2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
) can be

decomposed into an orthogonal sum of multiple Wiener-Itô
integrals and the Malliavin calculus can be used to treat the
convergence of (7). Its limit in distribution will be after nor-
malization of the local time of the sub-fractional Brownian
motion denoted by 𝑐L𝐻

1(1, 0), where 𝑐 is positive constant.
Consequently, we will find that the (renormalized) sequence
𝑆

𝑛
converges in law to a mixed normal random variable

𝑐𝑊L𝐻1 (1,0)
, where 𝑊 is a Brownian motion independent of

𝑆
𝐻
1 and 𝑐 is a positive constant.
We also mention that, although the error process 𝑆𝐻

2

does not appear in the limit of (5), it governs the behavior
of this sequence. Indeed, the parameter 𝐻

2
is involved in

the renormalization of (5) and the stochastic calculus with
respect to 𝑆𝐻

2 is crucial in the proof of our main results.
We have organized our paper as follows. Section 2

contains the notations, definitions, and results from the
stochastic calculus that will be needed throughout our paper.
In Section 3 we will find the renormalization order of the
sequence (5), while Section 4 contains the result of the
convergence of the “bracket” (7). In Section 5 we will prove
the limit theorem in distribution for 𝑆

𝑛
(0).

2. Preliminaries and Notations

In this section we describe the elements from stochastic
calculus that we will need in the paper. Let 𝑆𝐻

= {𝑆
𝐻

𝑡
, 𝑡 ∈

[0, 𝑇]} be a standard subfractional Brownianmotion (subfBm
for short) with parameter 𝐻 ∈ (0, 1). It is well known that
this process is a centered Gaussian process with the following
covariance function:

𝐶
𝐻
(𝑠, 𝑡) ≡ 𝐸 [𝑆

𝐻

𝑡
𝑆

𝐻

𝑠
]

= 𝑠
2𝐻

+ 𝑡
2𝐻

−
1

2
[(𝑠 + 𝑡)

2𝐻

+ |𝑡 − 𝑠|
2𝐻

] ,

(9)

for all 𝑠, 𝑡 ≥ 0. For 𝐻 = 1/2, 𝑆𝐻 coincides with the standard
Brownian motion 𝐵. 𝑆𝐻 is neither a semimartingale nor a
Markov process unless 𝐻 = 1/2, so many of the powerful
techniques from stochastic analysis are not available when
dealing with 𝑆𝐻. The subfBm has properties analogous to
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those of fBm (self-similarity, long-range dependence, and
Hölder paths) and satisfies the following estimates:

(2 − 2
2𝐻−1

) (𝑡 − 𝑠)
2𝐻

≤ 𝐸 [(𝑆
𝐻

𝑡
− 𝑆

𝐻

𝑠
)

2

] ≤ (𝑡 − 𝑠)
2𝐻

,

if 𝐻 >
1

2
,

(𝑡 − 𝑠)
2𝐻

≤ 𝐸 [(𝑆
𝐻

𝑡
− 𝑆

𝐻

𝑠
)

2

] ≤ (2 − 2
2𝐻−1

) (𝑡 − 𝑠)
2𝐻

,

if 𝐻 <
1

2
.

(10)

But its increments are not stationary; more works for sub-
fractional Brownian motion can be found in Bojdecki et al.
[10–12], Liu et al. [13, 14], Tudor [15], and Yan et al. [8, 9].

Consider H
𝐻

a real separable Hilbert space and
{𝑆

𝐻

(𝜑), 𝜑 ∈H
𝐻
} an isonormalGaussian process defined on a

complete probability space (Ω,B, 𝑃), that is, centered Gaus-
sian family of random variables such that 𝐸(𝑆𝐻

(𝜑)𝑆
𝐻

(𝜓)) =

⟨𝜑, 𝜓⟩H
𝐻

. In this case for sub-fractional Brownian motion,
the space H

𝐻
is the canonical Hilbert space of the sub-

fractional Brownian motion which is defined as the closure
of the linear space generated by the indicator functions
{1

[0,𝑡]
, 𝑡 ∈ [0, 𝑇]} with respect to the scalar product

⟨1
[0,𝑡]
, 1

[0,𝑠]
⟩
H
𝐻

= 𝐶
𝐻
(𝑠, 𝑡) , 𝑠, 𝑡 ∈ [0, 𝑇] . (11)

Denote by 𝐼
𝑛
(𝑓

𝑛
) the multiple Itô stochastic integral of a

symmetric kernel 𝑓
𝑛
∈ 𝐿

2

([0, 𝑇]
𝑛

), with respect to 𝑆𝐻. This 𝐼
𝑛

is actually an isometry between the HilbertH⊙𝑛

𝐻
(symmetric

tensor product) equipped with the norm (1/√𝑛!)‖ ⋅ ‖H⊗𝑛
𝐻

and the 𝑛th Wiener chaos which is defined as the closed
linear span of the random variables 𝐻

𝑛
(𝑆

𝐻

(𝜑)), where 𝜑 ∈

H
𝐻
, ‖𝜑‖H

𝐻

= 1, and𝐻
𝑛
is the Hermite polynomial of degree

𝑛 ≥ 1 defined for 𝑛 ≥ 1 by

𝐻
𝑛
(𝑥) =

(−1)
𝑛

𝑛!
exp(𝑥

2

2
)
𝑑

𝑛

𝑑𝑥𝑛
(exp(−𝑥

2

2
)) , 𝑥 ∈ R,

(12)

and 𝐻
0
(𝑥) = 1. The isometry of multiple integrals can be

written as follows for positive integers𝑚, 𝑛,

𝐸 (𝐼
𝑚
(𝑓) 𝐼

𝑛
(𝑔)) = {

𝑛!⟨𝑓, 𝑔⟩
H⊗𝑛
𝐻

, if 𝑚 = 𝑛,

0, if 𝑚 ̸= 𝑛.
(13)

It also holds that

𝐼
𝑛
(𝑓) = 𝐼

𝑛
(𝑓) , (14)

where 𝑓 denotes the symmetrization of 𝑓 defined by

𝑓 (𝑡
1
, . . . , 𝑡

𝑛
) =

1

𝑛!
∑

𝜎∈S
𝑛

𝑓 (𝑡
𝜎(1)
, . . . , 𝑡

𝜎(𝑛)
) . (15)

Recall that the Wiener chaos expansion of a square
integrable Brownian random variable 𝐹 is given by

𝐹 =

∞

∑

𝑛=0

𝐼
𝑛
(𝑓

𝑛
) , (16)

where 𝑓
𝑛
∈H⊗𝑛

𝐻
are symmetric functions and 𝐼

0
(𝑓

0
) = 𝐸[𝐹].

Let L be the Ornstein-Uhlenbeck operator

L𝐹 = −
∞

∑

𝑛=0

𝑛𝐼
𝑛
(𝑓

𝑛
) , (17)

where 𝐹 is given by (16). If 𝑝 ∈ (1,∞) and 𝛼 ∈ R, we define
the Sobolev-Watanabe spaces D𝛼,𝑝 as the closure of the set of
polynomial random variables with respect to the norm

‖𝐹‖
𝛼,𝑝
= ‖(Id − L)‖

𝐿
𝑝

(Ω)
, (18)

where Id stands for the identity mapping.
Let us denote by S the set of smooth functionals of the

form

𝐹 = 𝑓 (𝑆
𝐻

(𝜑
1
) , 𝑆

𝐻

(𝜑
2
) , . . . , 𝑆

𝐻

(𝜑
𝑛
)) , (19)

where 𝑓 ∈ 𝐶∞

𝑏
(R𝑛

) and 𝜑
𝑖
∈ H. The Malliavin derivative 𝐷

of a functional 𝐹 as above is given by

𝐷𝐹 =

𝑛

∑

𝑗=1

𝜕𝑓

𝜕𝑥
𝑗

(𝑆
𝐻

(𝜑
1
) , 𝑆

𝐻

(𝜑
2
) , . . . , 𝑆

𝐻

(𝜑
𝑛
)) 𝜑

𝑗
. (20)

The derivative operator𝐷 is then a closable operator from
𝐿

2

(Ω) into 𝐿2

(Ω;H
𝐻
). We denote by D1,2 the closure of S

with respect to the norm

‖𝐹‖
1,2
:= √𝐸|𝐹|

2

+ 𝐸‖𝐷𝐹‖
2

H
𝐻

. (21)

The divergence integral 𝛿𝐻 is the adjoint operator of 𝐷. That
is, we say that a random variable 𝑢 in 𝐿2

(Ω;H
𝐻
) belongs

to the domain of the divergence operator 𝛿𝐻, denoted by
Dom(𝛿𝐻

), if

𝐸
󵄨󵄨󵄨󵄨󵄨
⟨𝐷𝐹, 𝑢⟩H

𝐻

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐‖𝐹‖

𝐿
2
(Ω)
, (22)

for every 𝐹 ∈ S. In this case 𝛿𝐻

(𝑢) is defined by the duality
relationship

𝐸 [𝐹𝛿
𝐻

(𝑢)] = 𝐸⟨𝐷𝐹, 𝑢⟩H
𝐻

, (23)

for any 𝑢 ∈ D1,2. We have D1,2

⊂ Dom(𝛿𝐻

). We will use the
notation

𝛿
𝐻

(𝑢) = ∫

𝑇

0

𝑢
𝑠
𝑑𝑆

𝐻

𝑠
(24)

to express the Skorohod integral of a process 𝑢 with respect
to 𝑆𝐻.

Let 𝑢 be a stochastic process having the chaotic decompo-
sition 𝑢

𝑡
= ∑

𝑛≥0
𝐼

𝑛
(𝑓

𝑛
(⋅, 𝑡)), where 𝑓

𝑛
(⋅, 𝑡) ∈ H⊗𝑛

𝐻
for every 𝑠.

One can prove that 𝑢 ∈ Dom(𝛿𝐻

) if and only if 𝑓
𝑛
∈H

⊗(𝑛+1)

𝐻

for every 𝑛 ≥ 0, and∑
𝑛≥0
𝐼

𝑛+1
(𝑓

𝑛
) converges in 𝐿2

(Ω). In this
case,

𝛿
𝐻

(𝑢) = ∑

𝑛≥0

𝐼
𝑛+1
(𝑓

𝑛
) ,

𝐸(𝛿
𝐻

(𝑢))
2

= ∑

𝑛≥1

(𝑛 + 1)!
󵄩󵄩󵄩󵄩󵄩
𝑓

𝑛

󵄩󵄩󵄩󵄩󵄩

2

H
⊗(𝑛+1)

𝐻

.

(25)



4 Abstract and Applied Analysis

We denote by 𝐷 the derivative operator, defined on mul-
tiple integrals as

𝐷
𝑡
𝐼

𝑛
(𝑓

𝑛
) = 𝑛𝐼

𝑛−1
(𝑓

𝑛
(⋅, 𝑡)) . (26)

This operator is continuous fromD𝛼,𝑝 intoD𝛼−1,𝑝

(𝐿
2

([0, 𝑇])).
It is known that a random variable 𝐹 belongs to D𝛼,2, if and
only if its chaotic decomposition∑∞

𝑛=0
𝐼

𝑛
(𝑓

𝑛
) satisfies

∞

∑

𝑛=0

(1 + 𝑛)
𝛼󵄩󵄩󵄩󵄩𝐼𝑛 (𝑓𝑛

)
󵄩󵄩󵄩󵄩

2

2
< ∞. (27)

SetD∞,2

= ⋂
𝛼∈R D𝛼,2. The Stroock formula that gives the

Wiener chaos decomposition of a functional 𝐹 ∈ D∞,2 is

𝐹 =

∞

∑

𝑛=0

1

𝑛!
𝐼

𝑛
(E (𝐷

𝑛

𝐹)) . (28)

For a complete survey of these materials we refer the reader
to the book by Nualart [16].

3. Renormalization of the Sequence 𝑆
𝑛

We will assume throughout the paper that 𝑥 = 0 in (5); then

𝑆
𝑛
:= 𝑆

𝑛
(0) =

𝑛−1

∑

𝑗=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
) (𝑆

𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
) . (29)

We compute in this part the 𝐿2-norm of 𝑆
𝑛
in order to

renormalize it. We have

𝐸 (𝑆
2

𝑛
) = 𝐸(

𝑛−1

∑

𝑗,𝑘=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
) (𝑆

𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
)

× (𝑆
𝐻
2

𝑘+1
− 𝑆

𝐻
2

𝑘
))

= 𝐸(

𝑛−1

∑

𝑗=0

𝐾
2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
) (𝑆

𝐻
2

𝑘+1
− 𝑆

𝐻
2

𝑘
)

2

)

+ 𝐸(

𝑛−1

∑

𝑗 ̸= 𝑘

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
) (𝑆

𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
)

× (𝑆
𝐻
2

𝑘+1
− 𝑆

𝐻
2

𝑘
))

:= 𝐴 + 𝐵.

(30)

The summand 𝐴 will be called the “diagonal” term while the
summand 𝐵 will be called the “non-diagonal” term. We will
analyze each of them separately.

Let 𝐶
𝐻
(𝑠, 𝑡) be the covariance function of the subfBm 𝑆

𝐻,
and set

𝑄
𝐻
(𝑧)
{

{

{

𝐶
𝐻
(1, 𝑧)

𝑧𝐻
, if 𝑧 ∈ (0, 1] ,

0, if 𝑧 = 0.
(31)

In the following we will denote that 𝛽
𝐻
= 2 − 2

2𝐻−1 and
𝛽

𝐻
𝑖

= 2 − 2
2𝐻
𝑖
−1, 𝑖 = 1, 2. The following lemma is due to (68)

in Yan and Shen [8].

Lemma 1. For all 𝑠, 𝑡 ∈ [0, 𝑇], 𝑠 < 𝑡, and 0 < 𝐻 < 1, then one
has

(1 − 2
𝐻−1

)
2

(𝑡 − 𝑠)
2𝐻

𝑠
2𝐻

≤ 𝛽
2

𝐻
𝑠

2𝐻

𝑡
2𝐻

− 𝜇
2

≤ 2 (2 + 2
𝐻

) (𝑡 − 𝑠)
2𝐻

𝑠
2𝐻

,

(32)

where 𝜇 = 𝐸(𝑆𝐻

𝑠
𝑆

𝐻

𝑡
).

Lemma 2. Let 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇; one has

0 ≤ 𝐶
𝐻
(𝑡, 𝑠) ≤

1

2
𝛽

𝐻
[𝑡

2𝐻

+ 𝑠
2𝐻

− |𝑡 − 𝑠|
2𝐻

] , (33)

for 1/2 < 𝐻 < 1.

Proof. Make the change of variable 𝑠 = 𝑡𝑥 with 0 ≤ 𝑥 ≤ 1.
One can easily show that the function

𝑓 (𝑥) := 1 + 𝑥
2𝐻

−
1

2
[(1 + 𝑥)

2𝐻

+ (1 − 𝑥)
2𝐻

]

−
1

2
(2 − 2

2𝐻−1

) [1 + 𝑥
2𝐻

− (1 − 𝑥)
2𝐻

]

(34)

is nonpositive by convexity. This completes the proof.

The following lemma, which will be needed in the sequel,
studies the properties of the function𝑄

𝐻
(⋅) and the behavior

of ∫1

0

𝑄
𝐻
(𝑧)

𝑛

𝑧
−𝐻

𝑑𝑧 when 𝑛 goes to infinity.

Lemma 3. There exists a constant 𝐶
𝐻
, independent of 𝑛, such

that

∫

1

0

1 + 𝑥
2𝐻

− (1 − 𝑥)
2𝐻

2𝑛𝑥𝐻(𝑛+1)

𝑑𝑥 ≤ 𝐶
𝐻
𝑛

−1/2𝐻

, (35)

for all integers 𝑛 ≥ 1, where 𝐾
𝐻
is positive constant depending

only on𝐻.

Combining Lemmas 2 and 3, we can easily check the
following estimate:

∫

1

0

𝑄
𝐻
(𝑧)

𝑛

𝑧
−𝐻

𝑑𝑧 ≤ 𝐶
𝐻
𝑛

−1/2𝐻

. (36)

Concerning the term 𝐴 in (30) we have the following.

Proposition 4. As 𝑛 tends to infinity,

[𝛽
𝐻
2

∧ 1]

2𝜋√2𝛽
𝐻
1

(1 − 𝐻
1
)

≤ lim
𝑛 → ∞

𝑛
𝛼+𝐻
1
−1

𝐴 ≤

[𝛽
𝐻
2

∨ 1]

2𝜋√2𝛽
𝐻
1

(1 − 𝐻
1
)

.

(37)

Proof. Due to the independence of 𝑆𝐻
1 and 𝑆𝐻

2 , we have that

𝐴 = (

𝑛−1

∑

𝑖=0

𝐸 (𝐾
2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
)) 𝐸(𝑆

𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
)

2

) . (38)
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Wedenote that𝐴
1
= ∑

𝑛−1

𝑗=0
𝐸(𝐾

2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
)) for convenience.

Then

𝐴
1
=

𝑛−1

∑

𝑗=0

𝐸(𝐾
2

(𝑛
𝛼

√𝛽
𝐻
1

𝑗
𝐻

𝜉))

=

𝑛−1

∑

𝑗=0

𝐸(
1

2𝜋
𝑒

−𝑛
2𝛼

𝛽
𝐻1

𝑗
2𝐻1

𝜉
2

) ,

(39)

where 𝜉 is a standard normal random variable. Recall that, if
𝜉 is a standard normal random variable and if 1 + 2𝑐 > 0,

𝐸(𝑒
−𝑐𝜉
2

) =
1

√1 + 2𝑐
. (40)

Consequently

𝐴
1
=

𝑛−1

∑

𝑗=0

1

2𝜋

1

√1 + 2𝑛2𝛼𝛽
𝐻
1

𝑗2𝐻
1

. (41)

Then

𝐴 = (

𝑛−1

∑

𝑖=0

𝐸 (𝐾
2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
)) 𝐸(𝑆

𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
)

2

)

=

𝑛−1

∑

𝑗=0

(2𝑗)
2𝐻
2

2𝜋

1

√1 + 2𝑛2𝛼𝛽
𝐻
1

𝑗2𝐻
1

× [(1 +
1

2𝑗
)

2𝐻
2

−
1

2
(1 +

1

𝑗
)

2𝐻
2

−
1

2
+ (

1

2𝑗
)

2𝐻
2

]

=

𝑛−1

∑

𝑗=0

(2𝑗)
2𝐻
2

2𝜋

1

√1 + 2𝑛2𝛼𝛽
𝐻
1

𝑗2𝐻
1

× [−
𝐻

2
(2𝐻

2
− 1)

4

1

𝑗2
+

1

(2𝑗)
2𝐻
2

+ 𝑜 (𝑗
−2

)] .

(42)

As 𝑛 tends to infinity, the term 𝐴 behaves as such

𝑛−1

∑

𝑗=0

1

2𝜋

1

√1 + 2𝑛2𝛼𝛽
𝐻
1

𝑗2𝐻
1

∼
𝑛

−𝛼

2𝜋√2𝛽
𝐻
1

𝑛−1

∑

𝑗=0

𝑗
−𝐻
1

∼
𝑛

1−𝛼−𝐻
1

2𝜋√2𝛽
𝐻
1

1

𝑛

𝑛−1

∑

𝑖=0

(
𝑖

𝑛
)

−𝐻
1

∼
𝑛

1−𝛼−𝐻
1

2𝜋√2𝛽
𝐻
1

∫

1

0

𝑥
−𝐻
1 𝑑𝑥

∼
𝑛

1−𝛼−𝐻
1

2𝜋√2𝛽
𝐻
1

(1 − 𝐻
1
)

,

(43)

where the sign “∼” means that the left-hand side and the
right-hand side have the same limit as 𝑛 tends to infinity. We
will use this sign throughout this paper. Hence

lim
𝑛 → ∞

𝑛
𝛼+𝐻
1
−1

𝐴 exists. (44)

Since

𝛽
𝐻
2

∧ 1 ≤ 𝐸(𝑆
𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
)

2

≤ 𝛽
𝐻
2

∨ 1, (45)

so

[𝛽
𝐻
2

∧ 1] 𝐸 (𝐾
2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
))

≤ 𝐴 ≤

𝑛−1

∑

𝑗=0

𝐸 (𝐾
2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
)) [𝛽

𝐻
2

∨ 1] .

(46)

Thus, according to expression (47), the proof is complete.

We now compute the term 𝐵.

Proposition 5. Suppose

𝛼 − 4𝐻
2
+ 𝐻

1
+ 4 > 0. (47)

Then, as 𝑛 tends to infinity,

lim
𝑛 → ∞

𝑛
𝛼+𝐻
1
−1

𝐵 = 0. (48)

Proof. Using again the independence of 𝑆𝐻
1 and 𝑆𝐻

2 ,

𝐵 =

𝑛−1

∑

𝑗 ̸= 𝑘

𝐸 (𝐾 (𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
))

× 𝐸 (𝑆
𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
) (𝑆

𝐻
2

𝑘+1
− 𝑆

𝐻
2

𝑘
)

=

𝑛−1

∑

𝑗 ̸= 𝑘

𝐸 (𝐾 (𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
)) 𝑓

𝐻
2

(𝑗, 𝑘) ,

(49)

where

𝑓
𝐻
2

(𝑗, 𝑘) =
1

2
[2(𝑗 + 𝑘 + 1)

2𝐻
2

+ (𝑘 + 1 − 𝑗)
2𝐻
2

+ (𝑘 − 1 − 𝑗)
2𝐻
2

− (𝑘 + 𝑗 + 2)
2𝐻
2

− 2(𝑘 − 𝑗)
2𝐻
2

− (𝑘 + 𝑗)
2𝐻
2

] .

(50)

We need to evaluate the expectation 𝐸(𝐾(𝑛𝛼

𝑆
𝐻
1

𝑗
)𝐾(𝑛

𝛼

𝑆
𝐻
1

𝑘
)).

Let Ξ be the covariance matrix of (𝑆𝐻
1

𝑗
, 𝑆

𝐻
1

𝑘
) given by

Ξ = (
𝛽

𝐻
1

𝑗
2𝐻
1 𝐶

𝐻
1

(𝑗, 𝑘)

𝐶
𝐻
1

(𝑗, 𝑘) 𝛽
𝐻
1

𝑘
2𝐻
1
) . (51)
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We have |Ξ| = 𝛽2

𝐻
1

(𝑗𝑘)
2𝐻
1 − 𝐶

2

𝐻
1

(𝑗, 𝑘) and

Ξ
−1

=
1

|Ξ|
(
𝛽

𝐻
1

𝑘
2𝐻
1 −𝐶

𝐻
1

(𝑗, 𝑘)

−𝐶
𝐻
1

(𝑗, 𝑘) 𝛽
𝐻
1

𝑗
2𝐻
1
) . (52)

The density of (𝑆𝐻
1

𝑗
, 𝑆

𝐻
1

𝑘
) is then

𝑔 (𝑥, 𝑦)

=
1

2𝜋√|Ξ|
exp{− 1

2 |Ξ|
(𝛽

𝐻
1

𝑘
2𝐻
1𝑥

2

− 2𝐶
𝐻
1

(𝑗, 𝑘) 𝑥𝑦

+𝛽
𝐻
1

𝑗
2𝐻
1𝑦

2

) } .

(53)

We obtain

𝐸 (𝐾 (𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
))

=
1

(2𝜋)
2

|Ξ|
1/2

∫
R2
𝑒

−(𝑛
2𝛼

𝑥
2
/2)

𝑒
−(𝑛
2𝛼

𝑦
2
/2)

𝑔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=
1

(2𝜋)
2

|Ξ|
1/2

∫
R

𝑒
−(𝑛
2𝛼

𝑦
2
/2)

𝑒
−(𝛽
𝐻1

𝑗
2𝐻1

𝑦
2
/2|Ξ|)

∫
R

𝑒
−(𝑛
2𝛼

𝑥
2
/2)

𝑒
−(1/2|Ξ|)(𝛽

𝐻1
𝑘
2𝐻1

𝑥
2
−2𝐶
𝐻1

(𝑗,𝑘)𝑥𝑦)

𝑑𝑥 𝑑𝑦

=
1

(2𝜋)
2

|Ξ|
1/2

∫
R

𝑒
−(𝑦
2
/2)(𝑛
2𝛼

+𝛽
𝐻1

𝑗
2𝐻1

/|Ξ|)

∫
R

𝑒
−1/2

[𝑥
2

(𝑛
2𝛼

+
𝛽

𝐻
1

𝑘
2𝐻
1

|Ξ|
) −

2𝐶
𝐻
1

(𝑗, 𝑘)

|Ξ|
] 𝑑𝑥 𝑑𝑦

=
1

(2𝜋)
2

|Ξ|
1/2

∫
R

𝑒
−(𝑦
2
/2)(𝑛
2𝛼

+𝛽
𝐻1

𝑗
2𝐻1

/|Ξ|)

𝑒
−((𝑛
2𝛼

+𝛽
𝐻1

𝑘
2𝐻1

/|Ξ|)/2)⋅(𝐶
2

𝐻1
(𝑗,𝑘)𝑦

2
/(𝑛
2𝛼

+𝛽
𝐻1

𝑘
2𝐻1

/|Ξ|)

2

|Ξ|
2
)

⋅ ∫
R

𝑒
−((𝑛
2𝛼

+𝛽
𝐻1

𝑘
2𝐻1

/|Ξ|)/2)(𝑥−𝐶
𝐻1

(𝑗,𝑘)𝑦/𝑛
2𝛼

|Ξ|+𝛽
𝐻1

𝑘
2𝐻1

)

2

𝑑𝑥 𝑑𝑦

=
1

(2𝜋)
3/2

|Ξ|
1/2

⋅
1

√𝑛2𝛼 + 𝛽
𝐻
1

𝑘2𝐻
1/ |Ξ|

∫
R

𝑒
−(𝑦
2
/2)(((|Ξ|𝑛

2𝛼
+𝛽
𝐻1

𝑗
2𝐻1

)(|Ξ|𝑛
2𝛼

+𝛽
𝐻1

𝑘
2𝐻1

)−𝐶
2

𝐻1
(𝑗,𝑘))/|Ξ|(|Ξ|𝑛

2𝛼
+𝛽
𝐻1

𝑘
2𝐻1

))

𝑑𝑦

=
1

2𝜋|Ξ|
1/2

⋅
1

√𝑛2𝛼 + 𝛽
𝐻
1

𝑘2𝐻
1/ |Ξ|

(

(|Ξ| 𝑛
2𝛼

+ 𝛽
𝐻
1

𝑗
2𝐻
1) (|Ξ| 𝑛

2𝛼

+ 𝛽
𝐻
1

𝑘
2𝐻
1) − 𝐶

2

𝐻
1

(𝑗, 𝑘)

|Ξ| (|Ξ| 𝑛2𝛼 + 𝛽
𝐻
1

𝑘2𝐻
1)

)

−1/2

.

(54)

Thus

𝐸 (𝐾 (𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
))

=
√|Ξ|

2𝜋

⋅
1

√(|Ξ| 𝑛2𝛼 + 𝛽
𝐻
1

𝑗2𝐻
1) (|Ξ| 𝑛2𝛼 + 𝛽

𝐻
1

𝑘2𝐻
1) − 𝐶

2

𝐻
1

(𝑗, 𝑘)

=
1

2𝜋

1

√𝑛4𝛼 |Ξ| + 𝛽
𝐻
1

𝑛2𝛼 (𝑗2𝐻
1 + 𝑘2𝐻

1) + 1

.

(55)

Suppose 𝑗 > 𝑘; we use Lemma 1 to bound |Ξ| = 𝛽2

𝐻
1

(𝑗𝑘)
2𝐻
1 −

𝐶
2

𝐻
1

(𝑗, 𝑘) from below; therefore

𝐸 (𝐾 (𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
))

≤
1

2𝜋√𝑛4𝛼𝐶
𝐻
1

(𝑗 − 𝑘)
2𝐻
1

𝑘2𝐻
1 + 𝛽

𝐻
1

𝑛2𝛼 (𝑗2𝐻
1 + 𝑘2𝐻

1)

.

(56)

By virtue of classical inequality 𝑎2

+ 𝑏
2

≥ 2𝑎𝑏 with 𝑎2

=

𝑛
4𝛼

𝐶
𝐻
1

(𝑗 − 𝑘)
2𝐻
1𝑘

2𝐻
1 and 𝑏2

= 𝛽
𝐻
1

𝑛
2𝛼

(𝑗
2𝐻
1 + 𝑘

2𝐻
1),

𝐸 (𝐾 (𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
))

≤
𝑛

−(3/2)𝛼

2𝜋23/4(𝐶
𝐻
1

𝛽
𝐻
1

)
1/4

(𝑗 − 𝑘)
𝐻
1
/2

𝑗𝐻
1
/4𝑘3𝐻

1
/4

.

(57)

For the function 𝑓
𝐻
2

(𝑗, 𝑘), according to [17], we can rewrite it
as follows:

𝑓
𝐻
2

(𝑗, 𝑘) = 𝐻
2
(2𝐻

2
− 1) (2 − 2𝐻

2
)

× ∫

1

0

∫

1

0

∫

𝑘+1

−𝑘

(𝑗 − 1 + 𝑥 + 𝑦 + 𝑧)
2𝐻
2
−3

𝑑𝑥 𝑑𝑦𝑑𝑧,

(58)
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and thus

∑

𝑗>𝑘

∫

1

0

∫

1

0

∫

𝑘+1

−𝑘

(𝑗 − 1 + 𝑥 + 𝑦 + 𝑧)
2𝐻
2
−3

𝑑𝑥 𝑑𝑦𝑑𝑧

= ∫

1

0

∫

1

0

∫

𝑘+1

−𝑘

∑

𝑗>𝑘

(𝑗 − 1 + 𝑥 + 𝑦 + 𝑧)
2𝐻
2
−3

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ ∑

𝑗>𝑘

𝐶(𝑗 − 𝑘)
3−2𝐻

2

.

(59)

So

𝐵 ≤ 𝐶

𝑛−1

∑

𝑗>𝑘

𝑛
−(3/2)𝛼

2𝜋23/4(𝐶
𝐻
1

𝛽
𝐻
1

)
1/4

(𝑗 − 𝑘)
𝐻
1
/2

𝑗𝐻
1
/4𝑘3𝐻

1
/4

,

× (𝑗 − 𝑘)
3−2𝐻

2

,

(60)

and consequently

𝐵 ≤
𝐶𝑛

−(3/2)𝛼−(3/2)𝐻
1
+2𝐻
2
−1

2𝜋23/4(𝐶
𝐻
1

𝛽
𝐻
1

)
1/4

×

𝑛−1

∑

𝑗>𝑘

1

𝑛2

((𝑗 − 𝑘) /𝑛)
−(𝐻
1
/2)+2𝐻

2
−3

(𝑗/𝑛)
𝐻
1
/4

(𝑘/𝑛)
3𝐻
1
/4

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

→ 𝐶(𝐻1 ,𝐻2)>0 as 𝑛 → ∞

≲
𝐶 (𝐻

1
, 𝐻

2
)

2𝜋23/4(𝐶
𝐻
1

𝛽
𝐻
1

)
1/4

𝑛
−(3/2)𝛼−(3/2)𝐻

1
+2𝐻
2
−1

.

(61)

It follows that, under condition (47), 𝑛𝛼+𝐻
1
−1

𝐵 converges to
zero as 𝑛 tends to infinity.

As a consequence of Propositions 4 and 5 we obtain the
following 𝐿2-norm estimate for 𝑆

𝑛
.

Theorem 6. Suppose condition (47) holds; then, as 𝑛 tends to
infinity,

[𝛽
𝐻
2

∧ 1]

2𝜋√2𝛽
𝐻
2

(1 − 𝐻
1
)

≤ lim
𝑛 → ∞

𝑛
𝛼+𝐻
1
−1

𝐸(𝑆
𝑛
)

2

≤

[𝛽
𝐻
2

∨ 1]

2𝜋√2𝛽
𝐻
2

(1 − 𝐻
1
)

.

(62)

4. Limit Distribution of ⟨𝑆⟩
𝑛

Theorem 6 implies that the diagonal part of 𝑆2

𝑛
is dominant

in relation to the non-diagonal part, in the sense that this
diagonal part is responsible for the renormalization order of
𝑆

2

𝑛
which is 𝑛𝛼+𝐻

1
−1. As a consequence we need to investigate

the limit distribution of

𝑛
𝛼+H
1
−1

⟨𝑆⟩
𝑛
= 𝑛

𝛼+𝐻
1
−1

𝑛−1

∑

𝑗=0

𝐾
2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
) . (63)

Using the self-similarity of sub-fractional Brownian motion,
we have

𝑛
𝛼+𝐻
1
−1

𝑛−1

∑

𝑗=0

𝐾
2

(𝑛
𝛼

𝑆
𝐻
1

𝑗
)

= 𝑛
𝛼+𝐻
1
−1

𝑛−1

∑

𝑗=0

𝐾
2

(𝑛
𝛼+𝐻
1𝑆

𝐻
1

𝑗/𝑛
) .

(64)

The limit of sequence (64) is linked to the local time of the
sub-fractional Brownian motion 𝑆𝐻

1 . From Geman-Horwitz
one can find that the sub-fractional Brownianmotion 𝑆𝐻

1 has
a local timeL𝐻

1(𝑡, 𝑥) continuous in (𝑡, 𝑥) ∈ [0,∞)×Rwhich
satisfies the occupation formula

∫

𝑡

0

𝜙 (𝑆
𝐻
1

𝑠
, 𝑠) 𝑑𝑠 = ∫

R

𝑑𝑥𝜙 (𝑠, 𝑥)L
𝐻
1 (𝑑𝑠, 𝑥) , (65)

for every continuous and bounded function 𝜙(𝑡, 𝑥) : [0,∞)×
R 󳨃→ R and such that

L
𝐻
1 (𝑡, 𝑥) = ∫

𝑡

0

𝛿 (𝑆
𝐻
1

𝑠
− 𝑥) 𝑑𝑠

= lim
𝜀↓0

𝜆 (𝑠 ∈ [0, 𝑡] ,
󵄨󵄨󵄨󵄨󵄨
𝑆

𝐻

𝑠
− 𝑥
󵄨󵄨󵄨󵄨󵄨
< 𝜀) ,

(66)

where 𝜆 denotes the Lebesgue measure and 𝛿(𝑥) is the Dirac
delta function.

Next we will give an important convergence result that
will be necessary in proving the main result of this section.

Proposition 7. The following convergence in distribution
result holds:

lim
𝑛 → ∞

𝑛
𝛼+𝐻
1 (

1

𝑛

𝑛−1

∑

𝑗=0

𝐾
2

(𝑛
𝛼+𝐻
1𝑆

𝐻
1

𝑗/𝑛
)

−∫

𝑡

0

𝐾
2

(𝑛
𝛼+𝐻
1𝑆

𝐻
1

𝑠
) 𝑑𝑠) = 0.

(67)

Proof. For fixed 𝜀 > 0, denote by 𝑝
𝜀
(𝑥) the Gaussian kernel

with variance 𝜀 > 0 given by 𝑝
𝜀
(𝑥) = (1/√2𝜋𝜀)𝑒

−𝑥
2
/2𝜀. Note

that for every 𝑠 > 0

√𝜋𝑛
𝛼+𝐻
1𝐾

2

(𝑛
𝛼+𝐻
1𝑆

𝐻
1

𝑠
) =

1

2
𝑝

1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑠
) . (68)
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Using (68) we can rewrite the left-hand side of (67) as

√𝜋𝑛
𝛼+𝐻
1 (∫

1

0

𝐾
2

(𝑛
𝛼+𝐻
1𝑆

𝐻
1

𝑠
) 𝑑𝑠 −

1

𝑛

𝑛−1

∑

𝑗=0

𝐾
2

(𝑛
𝛼+𝐻
1𝑆

𝐻
1

𝑗/𝑛
))

=
1

2

[

[

∫

1

0

𝑝
1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑠
) 𝑑𝑠 −

1

𝑛

𝑛−1

∑

𝑗=0

𝑝
1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑗/𝑛
)]

]

=
1

2

𝑛−1

∑

𝑗=0

[∫

(𝑗+1)/𝑛

𝑗/𝑛

(𝑝
1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑠
)

−𝑝
1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑗/𝑛
)) 𝑑𝑠]

=
1

2

𝑛−1

∑

𝑗=0

∫

(𝑗+1)/𝑛

𝑗/𝑛

(𝑝
1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑠
) − 𝑝

𝜀
(𝑆

𝐻
1

𝑠
)) 𝑑𝑠

+
1

2

𝑛−1

∑

𝑗=0

∫

(𝑗+1)/𝑛

𝑗/𝑛

(𝑝
𝜀
(𝑆

𝐻
1

𝑠
) − 𝑝

𝜀
(𝑆

𝐻
1

𝑗/𝑛
)) 𝑑𝑠

+
1

2

𝑛−1

∑

𝑗=0

∫

(𝑗+1)/𝑛

𝑗/𝑛

(𝑝
𝜀
(𝑆

𝐻
1

𝑗/𝑛
) − 𝑝

1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑗/𝑛
)) 𝑑𝑠

=
1

2
(𝐼

1

𝑛
+ 𝐼

2

𝑛
+ 𝐼

3

𝑛
) .

(69)

We will show that each of 𝐼𝑖

𝑛
, 𝑖 = 1, 2, 3, converges to zero (in

some sense). Let us first consider the term 𝐼
1

𝑛
. We have

𝐼
1

𝑛
= ∫

1

0

(𝑝
1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑠
) − 𝑝

𝜀
(𝑆

𝐻
1

𝑠
)) 𝑑𝑠. (70)

It follows from Yan et al. [9] that

lim
𝜀↓0

∫

1

0

𝑝
𝜀
(𝑆

𝐻
1

𝑠
) 𝑑𝑠 = ∫

1

0

𝛿 (𝑆
𝐻
1

𝑠
) 𝑑𝑠 =L

𝐻
1 (1, 0) , (71)

in 𝐿2 and almost surely, where L𝐻
1(1, 0) is the local time

of sub-fractional Brownian motion. Then 𝐼1

𝑛
tends to zero as

𝜀 → 0 and 𝑛 → ∞. For the second term 𝐼
2

𝑛
one can express

it as follows:

𝐼
2

𝑛
= −

1

𝑛

𝑛−1

∑

𝑗=0

𝑝
𝜀
(𝑆

𝐻
1

𝑗/𝑛
) + ∫

1

0

𝑝
𝜀
(𝑆

𝐻
1

𝑠
) 𝑑𝑠, (72)

and for every 𝜀 > 0 it converges almost surely to zero as
𝑛 tends to infinity using the convergence of Riemann sum
convergence. Let us now handle the term 𝐼

3

𝑛
given by

𝐼
3

𝑛
=
1

𝑛

𝑛−1

∑

𝑗=0

(𝑝
𝜀
(𝑆

𝐻
1

𝑗/𝑛
) − 𝑝

1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑗/𝑛
)) . (73)

We will treat 𝐼3

𝑛
by using the chaos decomposition of the

Gaussian kernel applied to random variables in the first

Wiener chaos. Recall that for every 𝜑 ∈ H
𝐻
1

(which is the
canonical Hilbert space associated with the sub-fractional
Brownian motion 𝑆𝐻

1)

𝑝
𝜀
(𝑆

𝐻
1 (𝜑)) = ∑

𝑚≥0

𝐶
𝑚
𝐼

2𝑚
(𝜑

⊗2𝑚

)
1

(
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩H
𝐻1

+ 𝜀)
𝑚+1/2

, (74)

where 𝐶
𝑚
= (−1)

𝑚

/√2𝜋2
𝑚

𝑚!. Using the chaos decomposi-
tion we can write 𝑝

𝜀
(𝑆

𝐻
1

𝑗/𝑛
) − 𝑝

1/2𝑛
2(𝛼+𝐻1)(𝑆

𝐻
1

𝑗/𝑛
) almost surely as

follows:

𝑝
𝜀
(𝑆

𝐻
1

𝑗/𝑛
) − 𝑝

1/2𝑛
2(𝛼+𝐻1) (𝑆

𝐻
1

𝑗/𝑛
)

= ∑

𝑚≥0

𝐶
𝑚
𝐼

2𝑚
(1

⊗2𝑚

[0,𝑗/𝑛]
)

× (
1

(𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 𝜀)
𝑚+1/2

−
1

(𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 1/2𝑛2(𝛼+𝐻
1
))

𝑚+1/2

)

= ∑

𝑚≥0

𝐶
𝑚
𝐼

2𝑚
(1

⊗2𝑚

[0,𝑗/𝑛]
) (
𝑗

𝑛
)

−2𝐻
1
(𝑚+1/2)

× 𝛽
−(𝑚+1/2)

𝑑
𝑗,𝜀,𝑛,𝑚

,

(75)

where

𝑑
𝑗,𝜀,𝑛,𝑚

= (
𝛽

𝐻
1

(𝑗/𝑛)
2𝐻
1

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 𝜀

)

𝑚+1/2

− (
𝛽

𝐻
1

(𝑗/𝑛)
2𝐻
1

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 1/2𝑛2(𝛼+𝐻
1
)

)

𝑚+1/2

.

(76)

We will show that 𝐼3

𝑛
converges to zero in 𝐿2 as 𝑛 tends

to infinity and 𝜀 tends to zero. From (73) we can easily
see that the diagonal part of 𝐼3

𝑛
converges to zero. We can

also see, from the expression of 𝐼3

𝑛
, that the summands with

𝑗 = 0 vanish. Then, by using the orthogonality of multiple
stochastic integral, we obtain

𝐸(𝐼
3

𝑛
)

2

=
1

𝑛2
∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!

×

𝑛−1

∑

𝑗,𝑘≥1,𝑗 ̸= 𝑘

⟨1
[0,𝑗/𝑛]

, 1
[0,𝑘/𝑛]

⟩
2𝑚

H
𝐻1

𝛽
−(2𝑚+1)

𝐻
1

⋅ (
𝑗

𝑛
⋅
𝑘

𝑛
)

−2𝐻
1
(𝑚+1/2)

𝑑
𝑗,𝜀,𝑛,𝑚

𝑑
𝑘,𝜀,𝑛,𝑚

.

(77)
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We can also write

𝐸(𝐼
3

𝑛
)

2

∼
1

𝑛2
∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!

×

𝑛−1

∑

𝑗,𝑘≥1,𝑗 ̸= 𝑘

𝐶
2𝑚

𝐻
1

(
𝑗

𝑛
,
𝑘

𝑛
)𝛽

−(2𝑚+1)

𝐻
1

⋅ (
𝑗

𝑛
⋅
𝑘

𝑛
)

−2𝐻
1
(𝑚+1/2)

𝑑
𝑗,𝜀,𝑛,𝑚

𝑑
𝑘,𝜀,𝑛,𝑚

:≡ ∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!𝐷

𝑚
(𝜀, 𝑛) ,

(78)

where

𝐷
𝑚
(𝜀, 𝑛) =

1

𝑛2

𝑛−1

∑

𝑗,𝑘≥1,𝑗 ̸= 𝑘

𝐶
2𝑚

𝐻
1

(
𝑗

𝑛
,
𝑘

𝑛
)𝛽

−(2𝑚+1)

𝐻
1

⋅ (
𝑗

𝑛
⋅
𝑘

𝑛
)

−2𝐻
1
(𝑚+1/2)

𝑑
𝑗,𝜀,𝑛,𝑚

𝑑
𝑘,𝜀,𝑛,𝑚

.

(79)

We now claim that, for every fixed𝑚 ≥ 1,

lim
𝜀 → 0

lim
𝑛 → ∞

𝐷
𝑚
(𝜀, 𝑛) = 0. (80)

In fact, for every𝑚 ≥ 0, we get

󵄨󵄨󵄨󵄨󵄨
𝑑

𝑗,𝜀,𝑛,𝑚

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝛽

𝐻
1

(𝑗/𝑛)
2𝐻
1

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 𝜀

)

𝑚+1/2

− 1

+1 − (
𝛽

𝐻
1

(𝑗/𝑛)
2𝐻
1

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 1/2𝑛2(𝛼+𝐻
1
)

)

𝑚+1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − (
𝛽

𝐻
1

(𝑗/𝑛)
2𝐻
1

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 𝜀

)

𝑚+1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − (
𝛽

𝐻
1

(𝑗/𝑛)
2𝐻
1

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 1/2𝑛2(𝛼+𝐻
1
)

)

𝑚+1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − (
𝛽

𝐻
1

(𝑗/𝑛)
2𝐻
1

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 𝜀

)

𝑚+1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − (
𝛽

𝐻
1

(𝑗/𝑛)
2𝐻
1

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 1/2𝑛2(𝛼+𝐻
1
)

)

𝑚+1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑐
𝑚
(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝜀

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 𝜀

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
1/2𝑛

2(𝛼+𝐻
1
)

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 1/2𝑛2(𝛼+𝐻
1
)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) .

(81)

Now for every 𝑗, 𝑛,𝑚we have lim
𝜀 → 0

|frac 𝜀𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1 +𝜀| =

0 for every 𝑗 ≥ 1 and

1/2𝑛
2(𝛼+𝐻

1
)

𝛽
𝐻
1

(𝑗/𝑛)
2𝐻
1

+ 1/2𝑛2(𝛼+𝐻
1
)

≤
1/2𝑛

2(𝛼+𝐻
1
)

𝛽
𝐻
1
(1/𝑛)

2𝐻
1 + 1/2𝑛2(𝛼+𝐻

1
)

󳨀→ 0,

(82)

as 𝑛 tends to infinity because of 𝛼 > 0.
Furthermore, we have that

1

𝑛2

𝑛−1

∑

𝑗,𝑘≥1

𝐶
2𝑚

𝐻
1

(
𝑗

𝑛
,
𝑘

𝑛
)𝛽

−(2𝑚+1)

𝐻
1

⋅ (
𝑗

𝑛
⋅
𝑘

𝑛
)

−2𝐻
1
(𝑚+1/2)

(83)

converges to

𝛽
−(2𝑚+1)

𝐻
1

∫

1

0

∫

1

0

𝐶
2𝑚

𝐻
1

(𝑢, V) (𝑢V)−2𝐻
1
(𝑚+1/2)

, (84)

as 𝑛 tends to infinity. Since the quantity is finite, it implies
(80).

We will now prove

∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝜀,𝑛

󵄨󵄨󵄨󵄨𝐷𝑚
(𝜀, 𝑛)

󵄨󵄨󵄨󵄨 < ∞. (85)

Equalities (80) and (85) will imply the convergence of 𝐼3

𝑛
to

zero in 𝐿2. Furthermore one can easily check

󵄨󵄨󵄨󵄨󵄨
𝑑

𝑗,𝜀,𝑛,𝑚

󵄨󵄨󵄨󵄨󵄨
≤ 1,

󵄨󵄨󵄨󵄨𝑑𝑘,𝜀,𝑛,𝑚

󵄨󵄨󵄨󵄨 ≤ 1. (86)

By bounding from above the terms |𝑑
𝑗,𝜀,𝑛,𝑚

| and |𝑑
𝑘,𝜀,𝑛,𝑚

| by 1
in ∑

𝑚≥0
𝐶

2

𝑚
(2𝑚)!sup

𝜀,𝑛
|𝐷

𝑚
(𝜀, 𝑛)|, we obtain that

∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝜀,𝑛

󵄨󵄨󵄨󵄨𝐷𝑚
(𝜀, 𝑛)

󵄨󵄨󵄨󵄨

≤ ∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2

⋅

𝑛−1

∑

𝑗,𝑘≥1,𝑗 ̸= 𝑘

𝐶
2𝑚

𝐻
1

(
𝑗

𝑛
,
𝑘

𝑛
)𝛽

−(2𝑚+1)

𝐻
1

⋅ (
𝑗

𝑛
⋅
𝑘

𝑛
)

−2𝐻
1
(𝑚+1/2)

= ∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2
𝐶

2𝑚

𝐻
1

(1,
𝑘

𝑗
)

× 𝛽
−(2𝑚+1)

𝐻
1

(
𝑘

𝑗
)

−2𝑚𝐻
1

(
𝑗

𝑛
⋅
𝑘

𝑛
)

−𝐻
1

.

(87)
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Let us focus on the case where𝐻 < 1/2 first. For the function
𝑄

𝐻
1

(𝑧)defined by (31), due toYan and Shen [8], one can check
𝑄

𝐻
1

(𝑧) ≤ 𝛽
𝐻
1

𝑧
𝐻
1 . It follows that

∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝜀,𝑛

󵄨󵄨󵄨󵄨𝐷𝑚
(𝜀, 𝑛)

󵄨󵄨󵄨󵄨

≤ 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2

×

𝑛−1

∑

𝑗,𝑘≥0,𝑗>𝑘

(
𝑘

𝑗
)

2𝑚𝐻
1

𝛽
−1

𝐻
1

(
𝑗

𝑛
⋅
𝑘

𝑛
)

−𝐻
1

≤ 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2

×

𝑛−1

∑

𝑗,𝑘≥1,𝑗>𝑘

𝛽
−1

𝐻
1

(
𝑘

𝑛
)

𝐻
1
(2𝑚−1)

(
𝑗

𝑛
)

−𝐻
1
(2𝑚+1)

≤ 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2−2𝐻
1

×

𝑛−1

∑

𝑗=0

𝑗
−𝐻
1
(2𝑚+1)

𝛽
−1

𝐻
1

×

𝑗−1

∑

𝑘=0

∫

𝑘+1

𝑘

𝑘
𝐻
1
(2𝑚−1)

𝑑𝑥

≤ 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2−2𝐻
1

×

𝑛−1

∑

𝑗=0

𝑗
−𝐻
1
(2𝑚+1)

𝛽
−1

𝐻
1

∫

𝑗

0

𝑥
𝐻
1
(2𝑚−1)

𝑑𝑥

≤ 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2−2𝐻
1

×

𝛽
−1

𝐻
1

𝐻
1
(2𝑚 − 1) + 1

𝑛−1

∑

𝑗=0

𝑗
1−2𝐻

1

≤ 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2−2𝐻
1

×

𝛽
−1

𝐻
1

𝐻
1
(2𝑚 − 1) + 1

𝑛−1

∑

𝑗=0

𝑛
1−2𝐻

1

= 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

𝛽
−1

𝐻
1

𝐻
1
(2𝑚 − 1) + 1

.

(88)

Given that, by using Stirling’s formula, the coefficient
𝐶

2

𝑚
(2𝑚)! behaves as 1/√𝑚, we obtain that the above sum is

finite. Thus we obtain the convergence of 𝐼3

𝑛
to zero in 𝐿2 for

𝐻
1
< 1/2.
Let us now treat the case 𝐻

1
> 1/2. We can easily check

that the function 𝑄
𝐻
1

defined by (31) is increasing on [0, 1].

Since 𝑘/𝑗 ≤ (𝑗 − 1)/𝑗 = 1 − 1/𝑗, it holds that 𝑄
𝐻
1

(𝑘/𝑗) ≤

𝑄
𝐻
1

(1 − 1/𝑗). Then

∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝜀,𝑛

󵄨󵄨󵄨󵄨𝐷𝑚
(𝜀, 𝑛)

󵄨󵄨󵄨󵄨

≤ 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝑛

1

𝑛2

×

𝑛−1

∑

𝑗=0

𝑄
𝐻
1

(1 −
1

𝑗
)

𝑗−1

∑

𝑘=0

(
𝑗

𝑛
⋅
𝑘

𝑛
)

−𝐻
1

𝛽
−(2𝑚+1)

𝐻
1

≤ 2∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!𝛽

−(2𝑚+1)

𝐻
1

sup
𝑛

1

𝑛

×

𝑛−1

∑

𝑗=0

𝑄
𝐻
1

(1 −
1

𝑗
) (

𝑗

𝑛
)

−𝐻
1

𝑗−1

∑

𝑘=0

∫

𝑘/𝑛

(𝑘−1)/𝑛

𝑥
−𝐻
1 𝑑𝑥

≤ 𝐶
𝐻
∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!𝛽

−(2𝑚+1)

𝐻
1

sup
𝑛

1

𝑛

×

𝑛−1

∑

𝑗=0

𝑄
𝐻
1

(1 −
1

𝑗
) (

𝑗

𝑛
)

−𝐻
1

(
𝑗 − 1

𝑛
)

1−𝐻
1

∼ 𝐶
𝐻
∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!𝛽

−(2𝑚+1)

𝐻
1

sup
𝑛

1

𝑛

×

𝑛−1

∑

𝑗=0

𝑄
𝐻
1

(1 −
1

𝑗
) (

𝑗

𝑛
)

1−2𝐻
1

.

(89)

We know that 𝐶
𝐻
1

(1, 𝑧) ≤ 𝛽
𝐻
1

𝑅
𝐻
1

(1, 𝑧); by adapting
Lemma 2 in [18], we can prove that

1

𝑛
𝐶

2𝑚

𝐻
1

(1,
𝑘

𝑗
) 𝛽

−(2𝑚+1)

𝐻
1

(
𝑘

𝑗
)

−2𝑚𝐻
1

(
𝑗

𝑛
⋅
𝑘

𝑛
)

−𝐻
1

≤
1

𝑛
𝑅

2𝑚

𝐻
1

(1,
𝑘

𝑗
) 𝛽

−1

𝐻
1

(
𝑘

𝑗
)

−2𝑚𝐻
1

(
𝑗

𝑛
⋅
𝑘

𝑛
)

−𝐻
1

≤ 𝐶
𝐻
1

𝛽
−1

𝐻
1

𝑚1/2𝐻
1

(90)

with 𝐶
𝐻
1

depending only on𝐻
1
. As a consequence

∑

𝑚≥0

𝐶
2

𝑚
(2𝑚)!sup

𝜀,𝑛

󵄨󵄨󵄨󵄨𝐷𝑚
(𝜀, 𝑛)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝐻
1

𝐶
2

𝑚
(2𝑚)!

𝛽
−1

𝐻
1

𝑚1/2𝐻
1

. (91)

The Stirling formula implies again that the above series is
convergent.

Theorem 8. Let ⟨𝑆⟩
𝑛
be defined by (63); then as 𝑛 tends to

infinity, one has the convergence in distribution of

lim
𝑛 → ∞

𝑛
𝛼+𝐻
1
−1

⟨𝑆⟩
𝑛
= ∫

R

𝐾
2

(𝑦) 𝑑𝑦L
𝐻
1 (1, 0) , (92)

where L𝐻
1(1, 0) is the local time of sub-fractional Brownian

motion 𝑆𝐻
1 .
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Proof. Using Proposition 7, it suffices to check that

𝑛
𝛼+𝐻
1 ∫

1

0

𝐾
2

(𝑛
𝛼+𝐻
1𝑆

𝐻
1

𝑠
) 𝑑𝑠 󳨀→ ∫

R

𝐾
2

(𝑦) 𝑑𝑦L
𝐻
1 (1, 0) ,

(93)

as 𝑛 tends to infinity. Using the occupation time formula, one
can obtain

𝑛
𝛼+𝐻
1 ∫

1

0

𝐾
2

(𝑛
𝛼+𝐻
1𝑆

𝐻
1

𝑠
) 𝑑𝑠

= 𝑛
𝛼+𝐻
1 ∫

R

𝐾
2

(𝑛
𝛼+𝐻
1𝑥)L

𝐻
1 (1, 𝑑𝑥)

= ∫
R

𝐾
2

(𝑦)L
𝐻
1 (1, 𝑦𝑛

−𝛼−𝐻
1) 𝑑𝑦,

(94)

which converges to ∫
R
𝐾

2

(𝑦)𝑑𝑦L𝐻
1(1, 0) as 𝑛 tends to infin-

ity by using the continuity of the local timeL𝐻
1(𝑡, 𝑥).

5. Limit Distribution of 𝑆
𝑛

In this section, we will investigate the limit in distribution of

𝑆
𝑛
=

𝑛−1

∑

𝑗=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
) (𝑆

𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
) . (95)

Let us consider the Gaussian vector

𝑋
𝐻
2 = (𝑋

𝐻
2

1
, . . . , 𝑋

𝐻
2

𝑛
) = (𝑆

𝐻
2

1
− 𝑆

𝐻
2

0
, . . . , 𝑆

𝐻
2

𝑛
− 𝑆

𝐻
2

𝑛−1
) . (96)

From the above definition, one can obtain

𝑆
𝑛
=

𝑛−1

∑

𝑗=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
) (𝑆

𝐻
2

𝑗+1
− 𝑆

𝐻
2

𝑗
)

=

𝑛−1

∑

𝑗=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝑋

𝐻
2

𝑗+1
.

(97)

Theorem 9. Let 𝑆
𝑛
be given by (95) and assume that

𝛼 < 1 − 𝐻
1
. (98)

Then one has the convergence in law

𝑛
𝛼+𝐻
1
−1

𝑆
𝑛
󳨀→ ∫

R

𝐾
2

(𝑦) 𝑑𝑦𝑊L𝐻1 (𝑡,0)
, (99)

where L𝐻
1(𝑡, 0) is the local time of 𝑆𝐻

1 and𝑊 is a Brownian
motion independent of 𝑆𝐻

1 .

Proof. We will study the characteristic function of
𝑛

(𝛼+𝐻
1
−1)/2

𝑆
𝑛
. Let 𝑖 be the imaginary unit and 𝜆

𝑛
given

by

𝜆
𝑛
= 𝜆𝑛

(𝛼+𝐻
1
−1)/2

, 𝜆 ∈ R. (100)

Because of the independence of the two sub-fractional Brow-
nian motions and computing the conditional expectation of
𝑒

𝑖𝜆
𝑛𝑆

𝑛
given 𝑆𝐻

1 we obtain

𝐸 (𝑒
𝑖𝜆
𝑛
𝑆
𝑛) = 𝐸 (𝑒

−(1/2) ∑
𝑛−1

𝑗,𝑘=0
𝜆
2

𝑛
𝐾(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝐾(𝑛
𝛼

𝑆
𝐻1

𝑘
)𝑓
𝐻2

(𝑗,𝑘)

) . (101)

It follows that, with 𝑔
𝐻
2

(𝑗, 𝑘),

𝐸 (𝑒
𝑖𝜆
𝑛
𝑆
𝑛) = 𝐸 (𝑒

−(1/2)𝜆
2

𝑛
∑
𝑛−1

𝑗=0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝑓
𝐻2

(𝑗,𝑗)

𝑒
−(1/2) ∑

𝑛−1

𝑗 ̸= 𝑘=0
𝜆
2

𝑛
𝐾(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝐾(𝑛
𝛼

𝑆
𝐻1

𝑘
)𝑓
𝐻2

(𝑗,𝑘)

)

= 𝐸 (𝑒
−(1/2)𝜆

2

𝑛
∑
𝑛−1

𝑗=0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝑓
𝐻2

(𝑗,𝑗)

𝑒
− ∑
𝑛−1

𝑗=0
∑
𝑗−1

𝑘=0
𝜆
2

𝑛
𝐾(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝐾(𝑛
𝛼

𝑆
𝐻1

𝑘
)𝑓
𝐻2

(𝑗,𝑘)

)

= 𝐸 (𝑒
−(1/2)𝜆

2

𝑛
∑
𝑛−1

𝑗=0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝑓
𝐻2

(𝑗,𝑗)

𝑒
−(1/2) ∑

𝑛−1

𝑗=0
∑
𝑗−1

𝑘=0
𝜆
2

𝑛
𝐾(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝐾(𝑛
𝛼

𝑆
𝐻1

𝑘
)

⋅𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1) ∫

𝑗+1

𝑗
∫

𝑘+1

𝑘
[(𝑠−𝑢)

2𝐻2−2
−(𝑠+𝑢)

2𝐻2−2
]𝑑𝑢 𝑑𝑠

)

= 𝐸(𝑒
−(1/2)𝜆

2

𝑛
∑
𝑛−1

𝑗=0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝑓
𝐻2

(𝑗,𝑗)

⋅ 𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1) ∫

𝑛

0
∫

[𝑠]

0
𝐾(𝑛
𝛼

𝑆
𝐻1

[𝑠]
)𝐾(𝑛
𝛼

𝑆
𝐻1

[𝑢]
)[(𝑠−𝑢)

2𝐻2−2
−(𝑠+𝑢)

2𝐻2−2
]𝑑𝑢 𝑑𝑠

) .

(102)

Consider the process 𝑉
𝑛
defined by

𝑉
𝑛
= ∫

𝑛

0

∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠

(103)

and the function ℎ defined by ℎ(𝑥) = 𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑥. Note

that𝑉
𝑛
is a bounded variation process (its quadratic variation

process is zero). Furthermore

ℎ
󸀠

(𝑥) = ℎ (𝑥) (−𝜆
2

𝑛
𝐻

2
(2𝐻

2
− 1)) . (104)

Using the change of variables formula for bounded variation
process it follows that

ℎ (𝑉
𝑛
) = ℎ (0) + ∫

𝑛

0

ℎ
󸀠

(𝑉
𝑠
) 𝑑𝑉

𝑠
, (105)
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which means that

ℎ (𝑉
𝑛
) = 𝑒

−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑛

= 1 − 𝜆
2

𝑛
𝐻

2
(2𝐻

2
− 1)∫

𝑛

0

𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑠𝑑𝑉

𝑠
.

(106)

Therefore

𝐸 (𝑒
𝑖𝜆
𝑛
𝑆
𝑛)

= 𝐸(𝑒
−(1/2)𝜆

2

𝑛
∑
𝑛−1

𝑗=0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝑓
𝐻2

(𝑗,𝑗)

× (1 − 𝜆
2

𝑛
𝐻

2
(2𝐻

2
− 1)∫

𝑛

0

𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑠 𝑑𝑉

𝑠
))

= 𝐸(𝑒
−(1/2)𝜆

2

𝑛
∑
𝑛−1

𝑗=0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝑓
𝐻2

(𝑗,𝑗)

− 𝜆
2

𝑛
𝐻

2
(2𝐻

2
− 1) 𝑒

−(1/2)𝜆
2

𝑛
∑
𝑛−1

𝑗=0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝑔
𝐻2

(𝑗,𝑗)

×∫

𝑛

0

𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑠𝑑𝑉

𝑠
)

:≡ 𝐸 (𝐽
(1)

𝑛
) − 𝐸 (𝐽

(2)

𝑛
) .

(107)

We will focus on the term 𝐸(𝐽
(2)

𝑛
) and show that

lim
𝑛 → ∞

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐽

(2)

𝑛

󵄨󵄨󵄨󵄨󵄨
) = 0. (108)

From

𝑑𝑉
𝑠
= (∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢)𝑑𝑠,

(109)

we obtain

𝐸 (𝐽
(2)

𝑛
)

= 𝐸(𝜆
2

𝑛
𝐻

2
(2𝐻

2
− 1) 𝑒

−(1/2)𝜆
2

𝑛
∑
𝑛−1

𝑗=0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

𝑗
)𝑓
𝐻2

(𝑗,𝑗)

× ∫

𝑛

0

𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑠

⋅ ∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠)

= 𝐸(𝜆
2

𝑛
𝐻

2
(2𝐻

2
− 1)

× ∫

𝑛

0

𝑒
−(1/2)𝜆

2

𝑛
∫

𝑠

0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

[𝑢]
)𝑓
𝐻2

(𝑢,𝑢)𝑑𝑢

× 𝑒
−(1/2)𝜆

2

𝑛
∫

𝑛

𝑠
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

[𝑢]
)𝑓
𝐻2

(𝑢,𝑢)𝑑𝑢

⋅ 𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑠

× ∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠) .

(110)

Recall that the following holds:

𝐸 (𝑒
𝑖𝜆
𝑛
𝑆
𝑛 | 𝑆

𝐻
1

𝑠
)

= 𝐸 (𝑒
−(1/2)𝜆

2

𝑛
∫

𝑠

0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

[𝑢]
)𝑓
𝐻2

(𝑢,𝑢)𝑑𝑢

𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑠 | 𝑆

𝐻
1

𝑠
) .

(111)

This can be seen for 𝑠 as an integer at the beginning of the
proof and also it can be checked for any 𝑠 > 0.Wewill use this
property to compute the following upper bound for 𝐸(|𝐽(2)

𝑛
|):

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐽

(2)

𝑛

󵄨󵄨󵄨󵄨󵄨
)

≤ 𝐸(𝜆
2

𝑛
∫

𝑛

0

𝑒
−(1/2)𝜆

2

𝑛
∫

𝑠

0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

[𝑢]
)𝑓
𝐻2

(𝑢,𝑢)𝑑𝑢

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒

−(1/2)𝜆
2

𝑛
∫

𝑛

𝑠
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

[𝑢]
)𝑓
𝐻2

(𝑢,𝑢)𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑠 ⋅ 𝐻

2

󵄨󵄨󵄨󵄨2𝐻2
− 1
󵄨󵄨󵄨󵄨

× ∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠)

≤ 𝐸(𝜆
2

𝑛
∫

𝑛

0

𝐸(𝑒
−(1/2)𝜆

2

𝑛
∫

𝑠

0
𝐾
2
(𝑛
𝛼

𝑆
𝐻1

[𝑢]
)𝑓
𝐻2

(𝑢,𝑢)𝑑𝑢

×𝑒
−𝜆
2

𝑛
𝐻
2
(2𝐻
2
−1)𝑉
𝑠 | 𝑆

𝐻
1

𝑠
)

⋅ 𝐻
2

󵄨󵄨󵄨󵄨2𝐻2
− 1
󵄨󵄨󵄨󵄨 ∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠) .

(112)
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This is because all the terms of the double integral are mea-
surable with respect to the filtration generated by (𝑆𝐻

1

𝑟
, 𝑟 ≤ 𝑠).

At this point we use (111) to write

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐽

(2)

𝑛

󵄨󵄨󵄨󵄨󵄨
)

≤ 𝐸(𝜆
2

𝑛
∫

𝑛

0

𝐸 (𝑒
𝑖𝜆
𝑛
𝑆
𝑠 | 𝑆

𝐻
1

𝑠
)𝐻

2

󵄨󵄨󵄨󵄨2𝐻2
− 1
󵄨󵄨󵄨󵄨

⋅ ∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠)

≤ 𝐸(𝜆
2

𝑛
∫

𝑛

0

󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖𝜆
𝑛
𝑆
𝑠
󵄨󵄨󵄨󵄨󵄨
𝐻

2

󵄨󵄨󵄨󵄨2𝐻2
− 1
󵄨󵄨󵄨󵄨

⋅ ∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠)

≤ 𝐸(𝜆
2

𝑛
∫

𝑛

0

∫

[𝑠]

0

𝐾(𝑛
𝛼

𝑆
𝐻
1

[𝑠]
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

[𝑢]
)𝐻

2

󵄨󵄨󵄨󵄨2𝐻2
− 1
󵄨󵄨󵄨󵄨

× [(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠)

≤ 𝐸(𝜆
2

𝑛

𝑛−1

∑

𝑗=0

𝑗−1

∑

𝑘=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
)𝐻

2

󵄨󵄨󵄨󵄨2𝐻2
− 1
󵄨󵄨󵄨󵄨

× ∫

𝑗+1

𝑗

∫

𝑘+1

𝑘

[(𝑠 − 𝑢)
2𝐻
2
−2

− (𝑠 + 𝑢)
2𝐻
2
−2

] 𝑑𝑢 𝑑𝑠) .

(113)

Suppose that 𝐻
2
> 1/2, which means that 2𝐻

2
− 1 > 0 and

𝑔
𝐻
2

(𝑗, 𝑘) > 0; consequently

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐽

(2)

𝑛

󵄨󵄨󵄨󵄨󵄨
)

≤ 𝐸(
𝜆

2

𝑛

2

𝑛−1

∑

𝑗=0

𝑗−1

∑

𝑘=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
) 𝑓

𝐻
2

(𝑗, 𝑘))

≤ 𝐸(
𝜆

2

2
𝑛

𝑛+𝐻
1
−1

𝑛−1

∑

𝑗=0

𝑗−1

∑

𝑘=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)𝐾 (𝑛

𝛼

𝑆
𝐻
1

𝑘
) 𝑓

𝐻
2

(𝑗, 𝑘)) .

(114)

This term is exactly the nondiagonal term of the 𝐿2-norm
of 𝑛(𝛼+𝐻

1
−1)/2

𝑆
𝑛
and we know that, under condition (98), it

converges to zero as 𝑛 tends to infinity. Finally we have

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐽

(2)

𝑛

󵄨󵄨󵄨󵄨󵄨
) 󳨀→ 0, as 𝑛 󳨀→ ∞. (115)

Suppose𝐻
2
< 1/2. It follows that 2𝐻

2
− 1 < 0, 𝑓

𝐻
2

(𝑗, 𝑘) < 0,
which gives us

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐽

(2)

𝑛

󵄨󵄨󵄨󵄨󵄨
)

≤ 𝐸( −
𝜆

2

𝑛

2

𝑛−1

∑

𝑗=0

𝑗−1

∑

𝑘=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)

× 𝐾 (𝑛
𝛼

𝑆
𝐻
1

𝑘
) 𝑓

𝐻
2

(𝑗, 𝑘))

≤ 𝐸( −
𝜆

2

2
𝑛

𝑛+𝐻
1
−1

𝑛−1

∑

𝑗=0

𝑗−1

∑

𝑘=0

𝐾(𝑛
𝛼

𝑆
𝐻
1

𝑗
)

× 𝐾 (𝑛
𝛼

𝑆
𝐻
1

𝑘
) 𝑓

𝐻
2

(𝑗, 𝑘)) .

(116)

We get the following result again which is now valid for𝐻
2
∈

(0, 1):

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐽

(2)

𝑛

󵄨󵄨󵄨󵄨󵄨
) 󳨀→ 0, as 𝑛 󳨀→ ∞. (117)

Concerning the term 𝐽
(1)

𝑛
we note that

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐽

(1)

𝑛

󵄨󵄨󵄨󵄨󵄨
) = 𝐸 (𝑒

−(𝜆
𝑛
/2)⟨𝑆⟩

𝑛) , (118)

and the result follows fromTheorem 8.
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