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The increasing penetration of distributed generation resources demands better economic performance of microgrids under the
smart-grid era. In this paper, a comprehensive environmental-economic dispatch method for smart microgrids is proposed, with
the objective for minimizing the summation of generation and emission costs in the system. As the proposed model belongs to
a large-scale nonlinear and nonconvex programming problem, a hybrid heuristic algorithm, named variable step-size chaotic
fuzzy quantum genetic algorithm (VSS QGA), is developed. The algorithm utilizes complementarity among multiple techniques
including the variable step size optimization, the rotation mutational angle fuzzy control, and the quantum genetic algorithm
and combines them so as to solve problems with superior accuracy and efficiency. The effectiveness of the proposed model is
demonstrated through a case study on an actual microgrid system and the advantages in the performance of VSS QGA is also
verified through the comparison with genetic algorithm (GA), the evolutionary programming approach (EP), the quantum genetic
algorithm (QGA), and the chaotic quantum genetic algorithm (CQGA).

1. Introduction

A microgrid (MG) is defined as an electrical system that
includes multiple loads and distributed energy resources,
which can be operated in grid-connected or islanding mode.
Due to its superior economic efficiency and operational
flexibility [1], MG has been widely regarded as a novel energy
supply form under the smart-grid paradigm. If applied
properly, MG is beneficial to network investment deferral,
pollution reduction, and improvement of energy utilization
efficiency and supply reliability [2, 3].

During the 13th five-year plan period, distributed gen-
eration (DG) will undergo development in China. With
increasing DG penetration into MG, the issue of “how
to obtain the optimal dispatch balancing the controversy
between economic and environmental benefits whilemeeting
the load demand andnetwork security” has become anurgent
problem for MG operators.

Due to the differences in the operation characteristics in
bulk power systems and MGs, there are significant distinc-
tions in their objectives and dispatching strategies. First, the
dispatch of traditional grid usually focuses on economy for
optimization, through dispatching different types of thermal
power unit to achieve real-time balance of the network power.
Contrast to the main grid, there are lots of uncontrollable
renewable distributed generations (RDG) in MG. Only the
conventional units and power purchasing from themain grid
are control variables. Second, when multiple unfirm gener-
ators are connected, the network capacity is shared based
on a particular principle of access (PoA) in order to balance
economic and environmental benefits and maintain the safe
and stable operation of the system.Third, in traditional power
system, the single-period based optimal power flow (OPF)
is widely used as a suitable tool for power dispatch problem,
due to the lack of RDG units [4]. The MG integrates a large
number of RDGs and requires dynamic optimal power flow
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(DOPF) to treat intermittent and temporal correlation of DG.
Due to the difference between the dispatching of traditional
grid and MG, it is of great significance to investigate the
suitable dispatch method for smart MG.

Recently, a number of optimization models and algo-
rithms for economic dispatch (ED) of MG with different
types of DG units have been developed [5–7]. In [8], a
penalty function-hybrid direct search method (PF-HDSM)
was developed to allocate the active power output of mul-
tiarea wind-thermal generating units to minimize the total
operating cost while fulfilling the equality and inequality
constraints. For the same purpose, a simple and efficient
harmony search (HS) method with a new pitch adjust-
ment rule (NPAHS) was proposed for dynamic economic
dispatch (DED) of electrical power systems in [6]. And a
hybrid solution methodology involving modified shuffled
frog leaping algorithm (MSFLA) with genetic algorithm
(GA) was carried out by [7] in which the valve-point effect
was considered. With the increasing public awareness of
environmental protection, it has become essential to optimize
not only the fuel cost but also the emission levels of harmful
pollutants. In this regard, EDproblemswill become economic
emission dispatch (EED) problems when in addition to it
there are environmental concerns caused by emissions from
fossil-fuel electric power plants [9]. The EED problem is a
nonlinear biobjective optimization subject designed to deal
with minimization of two conflicting objectives, namely, fuel
cost and air pollution from thermal power plants simul-
taneously [8]. The consideration of environmental emis-
sions in MG operations could render optimization being
a nonlinear and nonconvex problem with plenty of local
optima. It is difficult to reach the global optimal solution with
conventional numerical analysis method, such as Lambda
iteration and gradient methods [3]. Recently, some heuristic
algorithms have been applied to EED problems in MG, such
as virus optimization algorithm (VOA) [10], hybrid parti-
cle swarm optimization and gravitational search algorithm
(HPSO-GSA) [11], incremental artificial bee colony algorithm
with local search (IABC-LS) [4], or 𝜀-multi-objective GA
variable (𝜀v-MOGA) [12]. However, the above algorithms
lack adaptability for large scale systems, and the calculation
speed and convergence accuracy still need to be improved.
Therefore, developing more sophisticated algorithms for
dispatch optimization of MG is necessary.

GA is a classical algorithm that is used to solve the
combinational optimization problem or nonlinear optimiza-
tion problem with nondifferentiable objective function or
complicated constraint condition. Due to its parallel com-
puting character and the ability of adaptive search, GA
has been proposed for the solution of EED problems [13].
However, GA also shows more iterative times and slow
convergence speed and easily falls into local optimum. In
1996, Ajit Narayanan and Mark Moore proposed quantum
genetic algorithm (QGA) which introduced the quantum
theory into genetic algorithm. Due to its stronger search
capability andmore efficient and simple characteristics, QGA
has been proven to be a favorable technique to tackle ED/EED
problems of power systems [14]. In spite of its improvements,
QGA has its shortages like premature convergence and,

similarly, being caught in local optimum. To improve this
problem, an advanced version with superior accuracy and
efficiency is developed.

An EED model for smart microgrids (SMG) is proposed
in this paper, which aimed to minimize the generation and
emission cost. As the proposed model belongs to a large-
scale nonlinear and nonconvex programming problem, a
hybrid heuristic algorithm, named variable step-size chaotic
fuzzy QGA (VSS QGA), is developed. The algorithm com-
bines complementarity among several techniques such as
the variable step size optimization, the rotation mutation
angle fuzzy control, and the quantum genetic algorithm to
solve problemswith superior accuracy and efficiency. For that
very reason, it can be immune to local optima and has an
improved searching efficiency compared to cases where the
techniques are each used individually. The effectiveness of
the proposed model is demonstrated through a case study
on an actual MG system and the advantages in the perfor-
mance of VSS QGA are also confirmed through comparison
with genetic algorithm (GA), evolutionary programming
approach (EP), quantum genetic algorithm (QGA), and
chaotic quantum genetic algorithm (CQGA).

2. Model Formulation for EED of SMG

In general, it is assumed that the SMG under study is
composed of three different types of DG, namely, wind
turbines (WT), solar photovoltaic (PV), and diesel internal
combustion engine (DICE). As the power output of WT and
PV units is mainly dependent on the primary renewable
energy supply, the goal of EED is to allocate the active power
of controllable DG units (i.e., DICE) that was installed and
to achieve minimizing the generation and emission cost of
the entire system while meeting customer load demand and
network Figure 4.

2.1. Objective Function. The objective function of the pro-
posed EED model for SMG is given as follows:
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In above equation, the objective function 𝐶sum is composed
of both expected operating cost 𝐶gen and emission cost
𝐶emission. ] is a coefficient representing the importance of
environmental value and 1−] and ] are penalty factors of𝐶gen
and𝐶emission, respectively. Different values of ]mean different
importance between environment and economy, which then
lead to different optimization results. Operating personnel
can recognize flexible tradeoffs by adjusting these coefficients.
𝑇 is the number of time periods in a scheduling interval.With
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regard to the regulation of day-ahead generation scheduling,
𝑇 can be considered to be 24 hours. 𝑛 is the number of
controllable DICE units in the MG; 𝑚 is the number of
distributed renewable energy generation (DREG) in MG.
𝑝
𝑛dg
𝑖,𝑡

and 𝑝
𝑑reg
𝑗,𝑡

are the scheduled active power outputs from
unit 𝑖 of DICE and unit 𝑗 of DERG in period 𝑡, respectively;
𝑝
gsp
𝑡

is the active power injected from main grid in period 𝑡;
𝜃
𝑗
and 𝜃

𝑡
are spot prices of purchasing power from DREG

andmain grid during period 𝑡, respectively (¥/kWh);𝐶
𝑛dg,𝑖(∙)

represents the generation cost function of DICE unit 𝑖, which
is calculated as follows:
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In above equation, 𝛼
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)
2
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cost for per kilowatt-hour (¥/kWh) of electricity produced by
DICE unit 𝑖, where 𝛼

𝑖
, 𝛽
𝑖
, and 𝛿

𝑖
are the coefficients of fuel

cost function; 𝜇
𝑖
is the rate for operation and maintenance of

DICE unit 𝑖 (¥/kWh).
In addition, “𝐴” in (3) represents the set of emission

pollutants due to generation; 𝐶env,𝑎(∙) and Λ env,𝑎(∙) are the
emission cost function of DICE and main grid with respect
to pollution 𝑎, respectively, (kg/kWh), which is calculated as
follows:

𝐶env,𝑎 (𝑝𝑖,𝑡) = 𝜉
𝑑𝑒,𝑎,𝑖

× 𝐻
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Λ env,𝑎 (𝑝gsp,𝑡) = 𝜉gsp,𝑎 × 𝐻
𝑑𝑒,𝑎

× 𝑝
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, (6)

where 𝜉
𝑑𝑒,𝑎,𝑖

and 𝜉gsp,𝑎 are emission intensity from unit 𝑖 of
DICE and main grid (t/kWh), respectively, representing the
amount of emission induced for producing per kilowatt-hour
of pollutant 𝑎.𝐻

𝑑𝑒,𝑎
is the charge rate for emission of pollutant

𝑎 (¥/t).
In the objective function (1)–(4), despite of the intro-

duction of the coefficient V, the tradeoff between economic
and environmental motivations can be achieved, which
represents the coordinated MG operation towards the low-
carbon economy.

2.2. Constraints. The optimization formula of EED in (1)
is subject to the following set of equality and inequality
constraints, as shown in (7)–(13).

2.2.1. Power Balance Constraint. Consider
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where 𝑝𝑙
𝑡
and 𝑝

loss
𝑡

are predicted value of load demand and
network losses in the period 𝑡; 𝑝wind

𝑗,𝑡
and 𝑝

pv
𝑘,𝑡

represent
the expected power output of WG and PV in period 𝑡,
respectively; 𝑛

𝑤
and 𝑛

𝑠
are the number of WG and PV units

installed in the SMG.
In the SMG, RDG units are integrated into the network

based on the “fit-and-forget” strategy, which is lack of con-
trollability and visibility. Optimizing the operation of these

resources requires consideration of intertemporal linkages as
well as network power flow solutions. But this only optimizes
at a single point of time. DOPF is an extension of OPF to
cover multiple time periods. DOPF breaks the time-horizon
into 𝑡

𝑛
time-steps and extends all OPF variables and some

parameters into time series. The network must obey the
typical OPF constraints such as power flow equations during
each time-step independently.

2.2.2. Power Output Limits of Controllable DG Units. To
guarantee safe and stable operation of a MG, the power
outputs of DG units in the MGmust fall into their lower and
upper limits in the operation capacity, as shown in (6)-(7):
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where 𝑝
𝑛dg
𝑖,max/𝑝

𝑛dg
𝑖,min are the upper and lower boundaries for

the active power output of controllable DG 𝑖, respectively;
likewise, 𝑞𝑛dg

𝑖,max/𝑞
𝑛dg
𝑖,min denote the upper and lower limits for

its reactive power output.

2.2.3. Power Output Limits of RDG Units. As renewable
energy sources generally do not provide reactive power to
the system, there is only one constraint concerning the active
power output for each RDG unit, expressed as follows:

𝑝
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where 𝑝
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active power output of RDG unit 𝑖, respectively.

2.2.4. Ramp Rate Limits of Controllable DG. In actual prac-
tice, the system operator typically makes energy acquisition
plan on an hourly basis. As the load on system changes in sub-
sequent planning intervals, the power output of controllable
DG units is changed to match the load. However, this change
does not take place instantaneously whenever load changes.
Therefore, it is necessary to incorporate the following ramp-
rate limits in the EED model:
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where Δ𝑡 represents the duration of time periods; 𝑅𝑢
𝑖
, 𝑅𝑑
𝑖
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the up and down ramp rate limits of the controllable DG 𝑖,
respectively.

2.2.5. Power Interaction Limits of Smart MG with Main Grid.
DREG and main grid jointly participate in the optimal
operation of power system.When power shortage happens in
SMG, it can absorb power frommain grid in real time but can
be subjected to the maximum capacity constraints of circuits
and the system
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power interacted between SMG and main grid.
Furthermore, the network constraints should be also

taken into consideration.
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2.2.6. Thermal Limit of Feeders. The magnitude of current
passing through the feeders of a system should bewithin their
thermal limit during operation, which is expressed as

0 ≤




𝐼
𝑚𝑛





≤ 𝐼
𝑚𝑛,max, (12)

where 𝐼
𝑚𝑛,max is the permitted maximum current limit in the

feeder𝑚𝑛 in the time period 𝑡.

2.2.7. Node Voltage Constraint. To ensure the quality of
electricity supply, the voltage variation for each node in the
system must satisfy the following constraint, as is presented
below:

𝑉
𝑚,min ≤ Δ𝑉

𝑚
≤ 𝑉
𝑚,max, (13)

where 𝑉
𝑚,min and 𝑉

𝑚,max stand for the minimum and maxi-
mum limits with respect to the voltage variation.

3. Variable Step-Size Chaotic Fuzzy Quantum
Genetic Algorithm

Chaotic quantum genetic algorithm (CQGA) is an improved
version of the well-known quantum evolutionary algorithm
(QEA) [15], which incorporates the global searching ability of
GA, the local search ability of quantumprobability technique,
and the adaptability and transverse mobile ability of chaotic
algorithm. Hence, CQGA is widely acknowledged as an
effective tool to solve EED problem.

To construct VSS QGA, we take into consideration the
effect of initial value selection, the search step size on the
convergence speed, and the calculation precision. It combines
the variable step size optimal method, the rotation muta-
tional angle fuzzy control method, and the quantum genetic
algorithm to obtain the global optimal solution with a fast
search speed and higher calculation accuracy. The steps for
VSS QGA in EED are described as follows.

Step 1. Initialize populations with the variable step size chaos
algorithm.

(1) Chaotic System. Chaos is a universal, nonlinear phe-
nomenon in nature. Its behavior is complex and similar to
being random. However, due to the existence of the faint
positive characteristic, a chaotic system optimizes general
chaos variables by using logistic mapping:

𝑥
𝑗+1

= 𝜆𝑥
𝑗
(1 − 𝑥

𝑗
) , (14)

where 𝜆 is a chaotic attractor; 𝑗 is the number of iterations.
When 𝜇 = 4, the system gets into chaotic state, producing the
chaos variables 𝑥

𝑗
(𝑗 = 1, 2, 3, . . .), between (0, 1).

After 𝑗 iterations, 𝑥
𝑖𝑗
(𝑖 = 1, 2, 3, . . . , 𝑘) are obtained in

which 𝑘 is the variable dimension. The second carrier wave
can be obtained by using the following formula:
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interval of the feasible region relative to the optimization

objective function TC(⋅). 𝜂
𝑖
is the adjustment coefficient. 𝑥∗

𝑖

is an optimal solution in the initial stage of searching.
For the initialization of the chaos system, if𝑚 = 1,𝑚 = 1,
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mapped into the optimization variables space. The general
method of chaos is used to search by making 𝑚 = 𝑚 + 1,
𝑥
𝑖
(𝑚) = 4𝑥

𝑖
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(𝑚)], until the local optimal value does

not change. At this stage, the step size in search is changed to
the following equations:
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where 𝛾 ∈ (0, 0.5) is the adjustment coefficient; 𝑘𝑥∗
𝑖
is the

current optimal solution.
The optimization variables are restored to be

𝑥
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Through the new chaotic variable 𝑥
𝑖
(𝑚) = (1 − 𝛿)𝑥

∗

𝑖
+

𝛿𝑥
𝑖
(𝑚) (𝛿 is a smaller number), we repeat the above steps of

chaotic searching and make𝑚 = 𝑚

+ 1 until the minimum

of optimization objective function does not change. After
several iterations, the optimal variable 𝑘𝑥

∗

𝑖
and the corre-

sponding optimal objective function will be obtained by this
algorithm.

(2) Quantum Bit. In CQGA, the smallest information unit is
quantum bit (qubit). A qubit state can be |0⟩ or |1⟩, which can
be expressed as

|Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , (18)

where 𝛼, 𝛽 are tow complex of probability amplitude of the
corresponding state, where |𝑎|

2
+ |𝑏|
2

= 1 (|𝑎|2 and |𝑏|
2

represent the occurrence probabilities of qubit in the states
of |0⟩ and |1⟩, respectively).

(3) QuantumChromosome.The commonly used coding algo-
rithms in evolutionary algorithm (EA) are binary, decimal,
and symbolic coding. In the CQGA, a new coding method
based on quantum bit is determined by a pair of complex
number. The system with 𝑒 quantum bits can be expressed
as follows [16]:

[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑒

𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑒

] , (19)

where |𝑎
ℎ
|
2
+|𝑏
ℎ
|
2
= 1 (ℎ = 1, 2, . . . , 𝑒).This expression can be

used to represent any linear superposition state between |0⟩

and |1⟩.

(4) Chaotic QuantumPopulations.Using the following 𝑛 units
of the logistic mapping produces 𝑛 units of chaotic variables
as

𝑥
𝑗+1,𝑙

= 𝜇
𝑙
× 𝑥
𝑗,𝑙
× (1 − 𝑥

𝑗,𝑙
) , (20)
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where 𝜇
𝑙
= 4; 𝑙 is the sequence number of chaotic variables.

If 𝑗 = 0, a set of different initial values to a given 𝑛 units of
chaotic variables can be obtained. Chaotic variables of 𝑛 units
can also be obtained by using (20) (𝑙 = 1, 2, . . . , 𝑛). Using
the first qubit of the number 𝑛 chaotic variable initialization
populations, by making 𝑗 = 1, 2, . . . , 𝑛 − 1 based on Step 1,
we can obtain another 𝑛 − 1 solutions. These 𝑛 solutions will
consist of the initial populations.

Step 2. The encoding and individual measurements to the
power output of generator in populations CQGA and
EA are probability algorithms. In the population, 𝐺

𝑡
=
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, . . . , 𝑄
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, . . . , 𝑄
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} (𝑠 = 1, 2, . . . ,𝑀), where 𝑡 is

the generation of evolutionary and 𝑠 is the size of pop-
ulation; 𝑄

𝑡,𝑠
is the individual of number 𝑡 generation. In
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(𝑖 = 1, 2, . . . , 𝑛) is the
binary code of number 𝑖 unit power generation in number
𝑡 generation. The chromosome is defined as (21)

𝑞
𝑡,𝑖
= [

𝑎
𝑡,1

𝑎
𝑡,2

. . . 𝑎
𝑡,𝑒

𝑏
𝑡,1

𝑏
𝑡,2

. . . 𝑏
𝑡,𝑒

] , 𝑖 = 1, 2, . . . , 𝑛, (21)

where 𝑒 represents the length of the quantum chromosome.
In the initial group 𝐺

𝑡,
if 𝑎
𝑡,ℎ
, 𝑏
𝑡,ℎ

(ℎ = 1, 2, . . . , 𝑒)

and all the 𝑞
1,𝑖

in 𝑄
1
have been initialized, that is, all the

possible linear superposition states could emerge with the
same probability.

In the process of generating solution sets from 𝐺
𝑡
, a

general solution set, 𝑆
𝑡
= {𝑞
𝑡,1
, 𝑞
𝑡,2
, . . . , 𝑞

𝑡,𝑠
, . . . , 𝑞

𝑡,𝑀
}, can be

obtained (𝑞
𝑡
= {𝑞
𝑡,1
, 𝑞
𝑡,2
, . . . , 𝑞

𝑡,𝑖
, . . . , 𝑞

𝑡,𝑛
}); for each 𝑞

𝑡,𝑖
(𝑖 =

1, 2, . . . , 𝑛), whose length is 𝑒, there is a binary character string
(𝑥
1
, 𝑥
2
, . . . , 𝑥

ℎ
, . . . , 𝑥

𝑒
). Through the range of quantum bits

|𝑎
𝑡,ℎ
|
2 and |𝑏

𝑡,ℎ
|
2 (ℎ = 1, 2, . . . , 𝑒), it can be found that in the

binary coding a number 𝑤 between [0, 1] will be randomly
generated. In addition, if |𝑎

𝑡,ℎ
|
2
> 1, 1 will be taken; otherwise,

the 0 will be taken.

Step 3. Evaluate individual targets in 𝑆
𝑡
separately.

Individual targets in 𝑆
𝑡
are evaluated through a fitness

function to ensure that the total generation cost reaches
the optimal target. If a satisfactory solution is obtained, the
algorithm terminates. Otherwise, it moves on to Step 4.

Step 4. Update 𝑆
𝑡
by using an appropriate quantum rotating

gate 𝑉
𝑡
.

TheQGA applies logic gates into the quantumprobability
amplitude to maintain diversity of the population.Therefore,
updating method using a quantum gate is the key to the
QGA. In principle, this updating method applies to find
solutions for combinatorial optimization problems through
known optimal solution. However, for practical optimization
problems, in particular those multivariable continuous func-
tion optimization problems, their optimal solutions are not
obtained beforehand. Therefore, quantum rotation gates of
quantum logic gates are adopted for the QGA:

𝑈 = [

cos𝜔 − sin𝜔
sin𝜔 cos𝜔 ] , (22)

where 𝜔 is the rotation variation angle of the quantum gate.

Rotation of the control quantum gates on the rotating
angle is used to update the quantum bits in this paper, as
described in the following:

[

𝑎
𝑖

𝑏
𝑖

] = [

cosΔ𝜔 − sinΔ𝜔
sinΔ𝜔 cosΔ𝜔 ][

𝑎
𝑖

𝑏
𝑖

] , (23)

where Δ𝜔 is the rotation variation angle, with convergence
improved by controlling the amplitude ofΔ𝜔. If the amplitude
of Δ𝜔 is too high, the problem of premature convergence
occurs, and Δ𝜔 will be constant. To make full use of the
trend of fitness function 𝐹(⋅) and adjust the scale of MG
automatically, Δ𝜔 needs to change accordingly; therefore,
QGA must consider the function value and the rate of
change near the individual chromosome in order to adopt
the changes of the fitness function into the rotation angle step
function, as described in the following:

𝜔 = 𝜔
0
×

𝜌 ⋅




𝐹max − 𝐹min










𝐹 (𝑋) − 𝐹min






+

(1 − 𝜌) ⋅




Δ𝐹max − Δ𝐹min










Δ𝐹 (𝑋) − Δ𝐹min






,

(24)

where 𝜔
0
is the initial value of iteration. 𝜌 ∈ [0, 1] is the

control factor.𝐹max and𝐹min are theminimumandmaximum
values of fitness function, respectively; Δ𝐹(𝑋) is the gradient
at point 𝑋 of the fitness function 𝐹(⋅). Δ𝐹max and Δ𝐹min are,
respectively, determined by the following equation [17]:

Δ𝐹max = {max[
𝜕𝐹 (𝑋

1
)

𝜕𝑋
1

1

,

𝜕𝐹 (𝑋
2
)

𝜕𝑋
1

2

, . . . ,

𝜕𝐹 (𝑋
𝑛
)

𝜕𝑋
1

𝑛

] , . . . ,

max[
𝜕𝐹 (𝑋

1
)

𝜕𝑋
𝑀

1

,

𝜕𝐹 (𝑋
2
)

𝜕𝑋
𝑀

2

, . . . ,

𝜕𝐹 (𝑋
𝑛
)
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𝑀

𝑛

]} ,

Δ𝐹min = {min[
𝜕𝐹 (𝑋

1
)
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1

1

,

𝜕𝐹 (𝑋
2
)
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1

2

, . . . ,

𝜕𝐹 (𝑋
𝑛
)

𝜕𝑋
1

𝑛

] , . . . ,

min[
𝜕𝐹 (𝑋

1
)

𝜕𝑋
𝑀

1

,

𝜕𝐹 (𝑋
2
)

𝜕𝑋
𝑀

2

, . . . ,

𝜕𝐹 (𝑋
𝑛
)

𝜕𝑋
𝑀

𝑛

]} .

(25)

For a discrete case, Δ𝐹(𝑋) is the difference at point 𝑋 of
the fitness function 𝐹(⋅).

By this method, the quantum rotation gate is applied
to all probability amplitudes for individual targets in the
population. The following equation can be obtained by using
the quantum rotation gate 𝑉

𝑡
to update the target 𝑆

𝑡
:

𝑆 (𝑡 + 1) = 𝑉 (𝑡) × 𝑆 (𝑡) , (26)

where 𝑉(𝑡) is the number 𝑡 generation of quantum rotation
gates. 𝑆(𝑡) is the number 𝑡 probability amplitude for a given
object. 𝑆(𝑡 + 1) is the number (𝑡 + 1) generation probability
amplitude of the corresponding object.

Step 5 (perturbation). To solve the problem that CQGA can
be prone to be trapped in local optimum, the population
requires a perturbation. It is found that through the analysis
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Figure 1: Flow chart of the VSS QGA.

of CQGA, it is very difficult to prevent the best individual
in current generation from becoming the local extremum.
Therefore, when the best individual does not change in
successive generation, the algorithm is trapped into the local
extreme. At this point of time, a perturbationmust be applied
into the population to help it escape from the local optima
and start a new search. The complete process of VSS QGA is
shown in Figure 1.

4. Case Study

4.1. System Data. In order to verify the effectiveness of the
proposedEEDandVSS QGA, a 150-nodeMGextracted from
an actual system in China is used as the test bed, which is
shown in Figure 2. The MG system is connected to the main
grid via a substation at Bus 0. The scheduling duration of
EED under this study is assumed to be 1 day, which is further
divided into 24 time intervals. The technical parameters of
different DG technologies in MG are presented in Table 1,
while the information of spot prices in each day is given in
Table 2.

The prediction of power output for a single WG and
PV is shown in Figure 2. Here, it is assumed that the
cutin/rated/cutout speeds of WG units are VCI = 3m/s,
V
𝑅
= 14m/s, and VCO = 25m/s, respectively. The variation

of wind speed is assumed to follow a Weibull distribution,
with the shape parameter 𝑘 = 2 and the scale parameter
𝑐 = 2V/√𝜋, where V is the mean value of wind speed in the
site.The illumination intensity is simulated based on the Beta
distribution, with the parameters 𝛼 = 0.3 and 𝛽 = 1.2. The
daily duration of system demand is shown in Figure 3. We

take 𝑢
,𝐼
= ¥0.38/kW⋅h, which is consistent with the average

feed-in price implemented inChina; the emission cost𝐻
𝑑𝑒
for

SO
2
, NOx, and CO2 is assumed to be 6.57, 8.57, and 0.02 ¥/kg,

respectively. The upper and lower boundaries 𝑝gsp.min and
𝑝gsp.min for the power interacted between DREG and main
grid are set to 0 kW and 200 kW, respectively.

Initial parameter setting has a significant impact on
behavior of the algorithm.Therefore, appropriate parameters
of VSS QGA have to be found correctly. According to [14],
a large population size could slightly improve the mean cost
value, but it will increase theCPU time.Therefore, population
size of VSS QGA is set to 20. Since large angles may cause
premature convergence and small angles generally produce
better solution, the magnitude of rotation angle 𝜔 is set to
0.02𝜋. Besides, maximum iteration is 𝐺 = 800, qubit length
is 20, and mutation rate is 0.05.

4.2. Optimization Results. In order to balance the economy
and environmental protection in smartMG, V is set to V = 0.5,
which means the contribution rates of both operation and
emission cost to the object function are 50%. VSS QGA is
applied to solve the model of economic and environment
dispatch.

Figure 5 gives the optimization results of EED in above
system. As can be seen from the power output curves of WT,
PV, DICE, and main grid, the wind generation and main grid
are the main sources of power supply from 1 a.m. to 7 a.m.
After 8 a.m, the energy contribution of PV rises significantly
and reaches its peak from 12 a.m. to 3 p.m. At the same time,
due to high feed-in price in these periods, DICE units replace
themain grid and become themain source toMG.As evening



Journal of Applied Mathematics 7

107

110 111

117118

122

127

144 146

707172

78 75 76 77

85
87

100

12 13 14

1816 1917
24 23

22
25262728

40

5251
53 52

3

4 7
56

8
9

10
11

1520

2129
30

3134
35
36
37

38
39

41

42

43
44

4546
47
48
49
50

57 59
60
61
62

63

66

67

68
6973

79

80
81
82
83
84
86

8889
90
91
92

93
94
95

96
97

98
101
102

103

104
105

108
109
112
113

114

115

116
119 120

121
123
124
125

126

128

129

130

131

132

133

134

135

136
137

138
139

140

141
142143

145 147
148

149

150
6465

74

12

0

106

58

32 33

54
55
56

PV

PV

PV

PV

PV

WG

WG

WG

PV

PV

PV

PV

TD1

TD1

TD2

TD2

PV PV

99

Photovoltaic

Wind turbine

Number 1 diesel internal
combustion engine

Number 2 diesel internal
combustion engine

Figure 2: A real 150-node SMG system.
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Figure 3: Power forecast of renewable energy generation.

(5 p.m.–7 p.m.) approaches, the energy mix changes again.
Wind generation and main grid play dominate roles as wind
is strong and the solar output is weakened due to sunset. Last,
there is an obvious increase of power generation from DICE
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Figure 4: Power forecast of load demand.

between 7 p.m. to 9 p.m., implying that these units are put into
operation due to the high spot prices in these periods.

When V is 0, the model in this paper evolves into
traditional economic dispatch model with an objective to
minimize the expectation operation cost. While V takes a
greater value, the model evolves into environmental dispatch
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Table 1: Technical data of distributed generation units in SMG.

Type Operational limits/kW Climbing Speeds/(kW⋅min−1) Number
Lower limit Upper limit

WT 0 100 — 2
PV 0 20 — 10
#1 DICE 40 100 2 1
#2 DICE 80 200 1 1

Table 2: Information of daily spot prices.

Time/h Spot price/(¥/(kW⋅h))
1 0.24
2 0.18
3 0.13
4 0.10
5 0.13
6 0.17
7 0.27
8 0.39
9 0.52
10 0.53
11 0.81
12 1.00
13 0.99
14 1.49
15 0.99
16 0.79
17 0.40
18 0.36
19 0.36
20 0.41
21 0.44
22 0.35
23 0.30
24 0.23

Table 3: Emission characteristics of both traditional power plant
and distributed generation (g/kW⋅h).

Generation Type SO2 NO
𝑥

CO2

Main grid 0.330 2.880 643.890

DG
WT 0 0 0
PV 0 0 0

DICE 0.464 4.331 232.037

sectionwith an objective tominimize the emission Table 3. In
order to verify that the algorithm in this paper is applicable
for all kinds of scheduling problems, though defining V = 0

and V = 1, economic dispatch and environmental dispatch
model are built and optimized, respectively. Optimization
results under different MG scheduling paradigms are as
shown in Figure 6.
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Figure 5: Environmental and economic dispatch schemes.

The output of power sources under two different opera-
tionmodes is shown in Figure 6. As can be seen from Figures
5 and 6, with the growing of V, DERG and main grid output
are on the rise, while there is significant fall of power injection
from DICE. This is mainly because when V = 0, that is, only
the operating cost is considered, importing energy from the
main grid is preferred to the local production because the
price of the former is lower in valley periods; thus, DG units
offer the extra power that is required. And in the flat and
peak periods, the energy contribution of DICE and DREG
increases gradually due to their superiority in prices. When
V = 1, that is, only emission cost is considered, the emission-
free DREG units are preferred, which is consistent with our
expectation. The optimization results under different MG
scheduling paradigms are shown in Table 4.

As is shown in Table 4, the optimal scheme derived from
the economic dispatch strategy has the minimum economic
cost, which is only 2725.23 ¥. However, due to lack of
consideration on environmental burden in the optimization,
the emission cost in such system is dramatically high, which
poses a negative effect on the overall attractiveness of the case.
When the environmental objective is solely considered, the
environmental benefits of MG can be significantly improved.
This leads to a drop in the emission cost from DG and the
grid by 52.29 and 124.48 ¥, which corresponds to a decrease
of 26.5% and 73.84%, respectively, compared to the economic
dispatch scheme.
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Table 4: Optimization results under different MG scheduling paradigms.

Dispatch paradigm Energy purchase cost DG generation cost Main grid
emission cost DG emission cost Total cost

Economic Dispatch 782.46 1942.77 198.72 168.59 3092.54
Environmental Dispatch 2259.33 1368.22 146.43 44.11 3818.09
Economic-Environmental
Dispatch 910.46 2140.91 96.23 112.06 3259.66
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Figure 6: Power sour output under two different paradigms with V = 0 and V = 1.

Under the proposed EED paradigm, the environmental
and economic objectives are collectively optimized. The
overall cost is calculated to be 3259.66 ¥, which is the lowest
among all scenarios. Although the scheme is not the best in
either economic or environmental criteria, the coordination
embodied in EED scheme enables superior performance of
the plan in terms of comprehensive benefits.

4.3. Discussion. In this section, the convergence and robust-
ness of the proposed optimization method VSS QGA is
evaluated.

To achieve this end, 50 trials are performed with different
initial values generated randomly. The objective function
value of final schemes in these trails is recorded. Table 5 shows

the best, worst, average, and standard deviation (SD), rational
standard deviation (%RSD), and corrected rational standard
deviation (%CRSD) of the results.

As can be seen fromTable 5, there is little difference in the
fitness values in the 50 trials and all of them are close to the
average. Furthermore, it is also found that%RSD and%CRSD
are 0.975% and 0.987%, respectively, which are less than 1%.
The above facts demonstrate that the proposed method is
not sensitive to initial solution and is able to provide valid
dispatch decisions for smartMG close to the global optima in
real applications. Through above comparison, the robustness
of VSS QGA is validated.

To evaluate the convergence characteristic of VSS QGA,
different optimization methods are employed to solve EED
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Table 5: Summary of different trials in VSS QGA.

Parameter Value
Best Cost (¥) 3204.42
Worst Cost (¥) 3283.97
Average Cost (¥) 3259.66
SD 533.21
%RSD 0.975
%CRSD 0.987
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Figure 7: Calculation results of GA, EP, QGA, CQGA, and
VSS QGA.

problem. The comparisons of GA, EP, QGA, CQGA, and
VSS QGA with 500 iterations are given in Figure 7.

As observed, among all above algorithms, VSS QGA
exhibits the best performance. It is obvious that CQGA and
VSS GA have faster convergence speed compared to the rest
of methods. This is because unlike the searching strategies
of GA, EP, and QGA (which is typically based on the prob-
ability to exclude poor solutions by escaping local optimum
traps), VSS QGA and CQGA obtain the optimal solutions by
improving chaos motion ergodicity and local search strategy,
which ismore suitable and efficient for solving the scheduling
optimization problem. Different from CQGA, VSS QGA
takes advantage of the variable step size searching and the
rotated angle of the fuzzy control strategies, which in turn
leads to a superior searching efficiency and convergence
performance to reach the global optimal solution.

5. Conclusions

In this study, an application of a novel VSS QGA for EED
problem in SMG is developed. The proposed EED model for
SMG considers the minimization of generation and emission
costs as the objective while taking different constraints such
as energy balance, operation limits of power sources, and
network characteristics into account. To get faster and better
optimization performance, without changing the searching
mechanism of the QGA, VSS QGA introduces the variable
step size optimization and the rotation mutational angle
fuzzy control method into the algorithm, which improves
the evolution speed and enables the optimization immune

to the local optima. The effectiveness of the proposed meth-
ods is confirmed by comparing the results with the most
recently reported literatures, including QGA, EP, and GA.
The corresponding results show that the optimal scheduling
plan obtained by the proposed EED model will produce
greater economic benefit and social benefits, particularly
for the large-scale applications. Furthermore, VSS QGA has
superior convergence, robustness, and less computational
complexities as compared to other methods.
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