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One-weight inequalities with general weights for Riemann-Liouville transform and 𝑛-dimensional fractional integral operator in
variable exponent Lebesgue spaces defined on R𝑛 are investigated. In particular, we derive necessary and sufficient conditions
governing one-weight inequalities for these operators on the cone of nonnegative decreasing functions in 𝐿𝑝(𝑥) spaces.

1. Introduction

We derive necessary and sufficient conditions governing the
one-weight inequality for the Riemann-Liouville operator

𝑅
𝛼
𝑓 (𝑥) =

1

𝑥𝛼
∫

𝑥

0

𝑓 (𝑡)

(𝑥 − 𝑡)
1−𝛼

𝑑𝑡 0 < 𝛼 < 1 (1)

and 𝑛-dimensional fractional integral operator

𝐼
𝛼
𝑔 (𝑥) =

1

|𝑥|
𝛼
∫
|𝑦|<|𝑥|

𝑔 (𝑡)

|𝑥 − 𝑡|
𝑛−𝛼

𝑑𝑡 0 < 𝛼 < 𝑛, (2)

on the cone of nonnegative decreasing function in 𝐿
𝑝(𝑥)

spaces.
In the last two decades a considerable interest of

researchers was attracted to the investigation of the mapping
properties of integral operators in so-called Nakano spaces
𝐿
𝑝(⋅) (see, e.g., the monographs [1, 2] and references therein).

Mathematical problems related to these spaces arise in
applications to mechanics of the continuum medium. For
example, Ružicka [3] studied the problems in the so-called
rheological and electrorheological fluids, which lead to spaces
with variable exponent.

Weighted estimates for the Hardy transform

(𝐻
1
𝑓) (𝑥) = ∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡, 𝑥 > 0, (3)

in 𝐿
𝑝(⋅) spaces were derived in the papers [4] for power-

type weights and in [5–9] for general weights. The Hardy
inequality for nonnegative decreasing functions was studied
in [10, 11]. Furthermore Hardy type inequality was studied
in [12, 13] by Rafeiro and Samko in Lebesgue spaces with
variable exponent.

Weighted problems for the Riemann-Liouville transform
in 𝐿𝑝(𝑥) spaces were explored in the papers [5, 14–16] (see also
the monograph [17]).

Historically, one and twoweightHardy inequalities on the
cone of nonnegative decreasing functions defined on R

+
in

the classical Lebesgue spaceswere characterized byArino and
Muckenhoupt [18] and Sawyer [19], respectively.

It should be emphasized that the operator 𝐼
𝛼
𝑓(𝑥) is the

weighted truncated potential. The trace inequity for this
operator in the classical Lebesgue spaces was established by
Sawyer [20] (see also the monograph [21], Ch.6 for related
topics).

In general, the modular inequality

∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞(𝑥)

V (𝑥) 𝑑𝑥 ≤ 𝑐∫
1

0

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨
𝑝(𝑡)

𝑤 (𝑡) 𝑑𝑡 (∗)

for the Hardy operator is not valid (see [22], Corollary 2.3,
for details). Namely, the following fact holds: if there exists
a positive constant 𝑐 such that inequality (∗) is true for all

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 621857, 5 pages
http://dx.doi.org/10.1155/2014/621857

http://dx.doi.org/10.1155/2014/621857


2 Abstract and Applied Analysis

𝑓 ≥ 0, where 𝑞; 𝑝; 𝑤; and V are nonnegative measurable
functions, then there exists 𝑏 ∈ [0, 1] such that 𝑤(𝑡) > 0 for
almost every 𝑡 < 𝑏; V(𝑥) = 0 for almost every 𝑥 > 𝑏, and 𝑝(𝑡)
and 𝑞(𝑥) take the same constant values a.e. for 𝑡 ∈ (0; 𝑏) and
𝑥 ∈ (0; 𝑏) ∩ {V ̸= 0}.

To get the main result we use the following pointwise
inequalities:

𝑐
1
(𝑇𝑓) (𝑥) ≤ (𝑅

𝛼
𝑓) (𝑥) ≤ 𝑐

2
(𝑇𝑓) (𝑥) ,

𝑐
3
(𝐻𝑔) (𝑥) ≤ (𝐼

𝛼
𝑔) (𝑥) ≤ 𝑐

4
(𝐻𝑔) (𝑥) ,

(4)

for nonnegative decreasing functions, where 𝑐
1
, 𝑐
2
, 𝑐
3
, and 𝑐

4

are constants and are independent of 𝑓, 𝑔, and 𝑥, and

𝑇𝑓 (𝑥) =
1

𝑥
∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡,

𝐻𝑔 (𝑥) =
1

|𝑥|
𝑛
∫
|𝑦|<|𝑥|

𝑔 (𝑦) 𝑑𝑦.

(5)

In the sequel by the symbol 𝑇𝑓 ≈ 𝑇𝑔 we mean that there
are positive constants 𝑐

1
and 𝑐
2
such that 𝑐

1
𝑇𝑓(𝑥) ≤ 𝑇𝑔(𝑥) ≤

𝑐
2
𝑇𝑓(𝑥). Constants in inequalities will be mainly denoted by

𝑐 or 𝐶; the symbol R
+
means the interval (0, +∞).

2. Preliminaries

We say that a radial function 𝑓 : R𝑛 → R
+
is decreasing

if there is a decreasing function 𝑔 : R
+
→ R

+
such that

𝑔(|𝑥|) = 𝑓(𝑥), 𝑥 ∈ R𝑛. We will denote 𝑔 again by 𝑓. Let 𝑝 :
R𝑛 → R𝑛 be ameasurable function, satisfying the conditions
𝑝
−

= essinf
𝑥∈R𝑛𝑝(𝑥) > 0, 𝑝

+

= esssup
𝑥∈R𝑛𝑝(𝑥) < ∞.

Given 𝑝 : R𝑛 → R
+
such that 0 < 𝑝− ≤ 𝑝+ < ∞ and

a nonnegative measurable function (weight) 𝑢 in R𝑛, let us
define the following local oscillation of 𝑝:

𝜑
𝑝(⋅),𝑢

(𝛿) = esssup
𝑥∈𝐵(0,𝛿)∩supp 𝑢

𝑝 (𝑥) − essinf
𝑥∈𝐵(0,𝛿)∩supp 𝑢

𝑝 (𝑥) , (6)

where 𝐵(0, 𝛿) is the ball with center 0 and radius 𝛿.
We observe that 𝜑

𝑝(⋅),𝑢
(𝛿) is nondecreasing and positive

function such that

lim
𝛿→∞

𝜑
𝑝(⋅),𝑢

(𝛿) = 𝑝
+

𝑢
− 𝑝
−

𝑢
, (7)

where 𝑝+
𝑢
and 𝑝−

𝑢
denote the essential infimum and supre-

mum of 𝑝 on the support of 𝑢, respectively.
By the similar manner (see [10]) the function 𝜓

𝑝(⋅),𝑢
(𝜂) is

defined for an exponent 𝑝 : R
+
󳨃→ R
+
and weight V on R

+
:

𝜓
𝑝(⋅),V (𝜂) = esssup

𝑥∈(0,𝜂)∩supp V
𝑝 (𝑥) − essinf

𝑥∈(0,𝜂)∩supp V
𝑝 (𝑥) . (8)

Let 𝐷(R
+
) be the class of nonnegative decreasing func-

tions on R
+
and let 𝐷𝑅(R𝑛) be the class of all nonnegative

radially decreasing functions on R𝑛. Suppose that 𝑢 is
measurable a.e. positive function (weight) on R𝑛. We denote
by 𝐿𝑝(𝑥)(𝑢,R𝑛) the class of all nonnegative functions on R𝑛

for which

𝑆
𝑝
(𝑓) = ∫

R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑢 (𝑥) 𝑑𝜇 (𝑥) < ∞. (9)

For essential properties of 𝐿𝑝(𝑥) spaces we refer to the
papers [23, 24] and the monographs [1, 2].

Under the symbol 𝐿𝑝(x)dec (𝑢,R+) we mean the class of
nonnegative decreasing functions on R

+
from 𝐿

𝑝(𝑥)

(𝑢,R𝑛) ∩

𝐷𝑅(R𝑛).
Now we list the well-known results regarding one-weight

inequality for the operator 𝑇. For the following statement we
refer to [18].

Theorem A. Let 𝑟 be constant such that 0 < 𝑟 < ∞. Then the
inequity

∫

∞

0

V (𝑥) (𝑇𝑓 (𝑥))𝑟𝑑𝑥 ≤ 𝑐∫
∞

0

V (𝑥) (𝑓 (𝑥))𝑟𝑑𝑥,

𝑓 ∈ 𝐿
𝑟

(V,R
+
) , 𝑓 ↓

(10)

for a weight V holds, if and only if there exists a positive constant
𝐶 such that for all 𝑠 > 0

∫

∞

𝑠

(
𝑠

𝑥
)

𝑟

V (𝑥) 𝑑𝑥 ≤ 𝐶∫
𝑠

0

V (𝑥) 𝑑𝑥. (11)

Condition (11) is called 𝐵
𝑟
condition and was introduced

in [18].

Theorem B (see [10]). Let V be a weight on (0,∞) and 𝑝 :

R
+
→ R

+
such that 0 < 𝑝

−

≤ 𝑝
+

< ∞, and assume that
𝜓
𝑝(⋅),V(0+) = 0. The following facts are equivalent:

(a) there exists a positive constant 𝑐 such that, for any 𝑓 ∈
𝐷(R
+
),

∫

∞

0

(𝑇𝑓 (𝑥))
𝑝(𝑥)V (𝑥) 𝑑𝑥 ≤ 𝐶∫

∞

0

(𝑓 (𝑥))
𝑝(𝑥)V (𝑥) 𝑑𝑥; (12)

(b) for any 𝑟, 𝑠 > 0,

∫

∞

𝑟

(
𝑟

𝑠𝑥
)

𝑝(𝑥)

V (𝑥) 𝑑𝑥 ≤ 𝐶∫
𝑟

0

V (𝑥)
𝑠𝑝(𝑥)

𝑑𝑥; (13)

(c) 𝑝
|supp V

≡ 𝑝
0
a.e. and V ∈ 𝐵

𝑝
0

.

Proposition 1. For the operators 𝑇,𝐻, 𝑅
𝛼
, and 𝐼

𝛼
, the follow-

ing relations hold:

(a)

𝑅
𝛼
𝑓 ≈ 𝑇𝑓, 0 < 𝛼 < 1, 𝑓 ∈ 𝐷 (R

+
) ; (14)

(b)

𝐼
𝛼
𝑔 ≈ 𝐻𝑔, 0 < 𝛼 < 𝑛, 𝑔 ∈ 𝐷𝑅 (R

𝑛

) . (15)

Proof. (a) Upper estimate: represent 𝑅
𝛼
𝑓 as follows:

𝑅
𝛼
𝑓 (𝑥) =

1

𝑥𝛼
∫

𝑥/2

0

𝑓 (𝑡)

(𝑥 − 𝑡)
1−𝛼

𝑑𝑡

+
1

𝑥𝛼
∫

𝑥

𝑥/2

𝑓 (𝑡)

(𝑥 − 𝑡)
1−𝛼

𝑑𝑡

= 𝑆
1
(𝑥) + 𝑆

2
(𝑥) .

(16)
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Observe that if 𝑡 < 𝑥/2, then 𝑥/2 < 𝑥 − 𝑡. Hence

𝑆
1
(𝑥) ≤ 𝑐

1

𝑥
∫

𝑥/2

0

𝑓 (𝑡) 𝑑𝑡 ≤ 𝑐𝑇𝑓 (𝑥) , (17)

where the positive constant 𝑐 does not depend on 𝑓 and 𝑥.
Using the fact that 𝑓 is decreasing we find that

𝑆
2
(𝑥) ≤ 𝑐𝑓 (

𝑥

2
) ≤ 𝑐𝑇𝑓 (𝑥) . (18)

Lower estimate follows immediately by using the fact that
𝑓 is nonnegative and the obvious estimate 𝑥 − 𝑡 ≤ 𝑥 and 0 <
𝑡 < 𝑥.

(b) Upper estimate: let us represent the operator 𝐼
𝛼
as

follows:

𝐼
𝛼
𝑔 (𝑥) =

1

|𝑥|
𝛼
∫
|𝑦|<|𝑥|/2

𝑔 (𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛−𝛼

𝑑𝑦

+
1

|𝑥|
𝛼
∫
|𝑥|/2<|𝑦|<|𝑥|

𝑔 (𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑛−𝛼

𝑑𝑦

=: 𝑆
󸀠

1
(𝑥) + 𝑆

󸀠

2
(𝑥) .

(19)

Since |𝑥|/2 ≤ |𝑥 − 𝑦| for |𝑦| < |𝑥|/2 we have that

𝑆
󸀠

1
(𝑥) ≤

𝑐

|𝑥|
𝑛
∫
|𝑦|<|𝑥|/2

𝑔 (𝑦) 𝑑𝑦 ≤ 𝑐𝐻𝑔 (𝑥) . (20)

Taking into account the fact that 𝑓 is radially decreasing on
R𝑛 we find that there is a decreasing function 𝑓 : R

+
→ R
+

such that

𝑆
󸀠

2
(𝑥) ≤ 𝑓(

|𝑥|

2
) ⋅

1

|𝑥|
𝛼
∫
|𝑥|/2<|𝑦|<|𝑥|

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝛼−𝑛

𝑑𝑦. (21)

Let 𝐹
𝑥
= {𝑦 : |𝑥|/2 < |𝑦| < |𝑥|}. Then we have

∫
𝐹
𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝛼−𝑛

𝑑𝑦

= ∫

∞

0

󵄨󵄨󵄨󵄨󵄨
{𝑦 ∈ 𝐹

𝑥
:
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝛼−𝑛

> 𝑡}
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤ ∫

|𝑥|
𝛼−𝑛

0

󵄨󵄨󵄨󵄨󵄨
{𝑦 ∈ 𝐹

𝑥
:
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝛼−𝑛

> 𝑡}
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

+ ∫

∞

|𝑥|
𝛼−𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑦 ∈ 𝐹

𝑥
:
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝛼−𝑛

> 𝑡}
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

=: 𝐼
1
+ 𝐼
2
.

(22)

It is easy to see that

𝐼
1
≤ ∫

|𝑥|
𝛼−𝑛

0

|𝐵 (0, |𝑥|)| 𝑑𝑡 = 𝑐|𝑥|
𝛼

; (23)

while using the fact that 𝑛/(𝑛 − 𝛼) > 1 we find that

𝐼
2
≤ ∫

∞

|𝑥|
𝛼−𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑦 ∈ 𝐹

𝑥
:
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 ≤ 𝑡
1/(𝛼−𝑛)

}
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤ 𝑐∫

∞

|𝑥|
𝛼−𝑛

𝑡
𝑛/(𝛼−𝑛)

𝑑𝑡 = 𝑐
𝛼,𝑛
|𝑥|
𝛼

.

(24)

Finally we conclude that

𝑆
󸀠

2
(𝑥) ≤ 𝑐𝑓 (

|𝑥|

2
) ≤ 𝑐𝐻𝑓 (𝑥) . (25)

Lower estimate follows immediately by using the fact that 𝑓
is nonnegative and the obvious estimate |𝑥 − 𝑦| ≤ |𝑥|, where
0 < |𝑦| < |𝑥|.

We will also need the following statement.

Lemma 2. Let 𝑟 be a constant such that 0 < 𝑟 < ∞. Then the
inequality

∫
R𝑛
(𝐻𝑓 (𝑥))

𝑟

𝑢 (𝑥) 𝑑𝑥 ≤ 𝐶∫
R𝑛
(𝑓 (𝑥))

𝑟

𝑢 (𝑥) 𝑑𝑥,

𝑓 ∈ 𝐿
𝑟

dec (𝑢,R
𝑛

) ,

(26)

holds, if and only if there exists a positive constant C such that,
for all 𝑠 > 0,

∫
|𝑥|>𝑠

(
𝑠

|𝑥|
)

𝑟

|𝑥|
𝑟(1−𝑛)

𝑢 (𝑥) 𝑑𝑥

≤ 𝐶∫
|𝑥|<𝑠

|𝑥|
𝑟(1−𝑛)

𝑢 (𝑥) 𝑑𝑥.

(27)

Proof. We will see that inequality (26) is equivalent to the
inequality

∫

∞

0

𝑢̃ (𝑡) (𝑇𝑓 (𝑡))
𝑟

𝑑𝑡 ≤ 𝐶∫

∞

0

𝑢̃ (𝑡) (𝑓 (𝑡))
𝑟

𝑑𝑡, (28)

where 𝑢̃(𝑡) = 𝑡
(𝑛−1)(1−𝑟)

𝑢(𝑡), 𝑓(𝑡) = 𝑡
𝑛−1

𝑓(𝑡), and 𝑢(𝑡) =
∫
𝑆
𝑛−1
𝑢(𝑡𝑥)𝑑𝜎(𝑥).
Indeed, using polar coordinates inR𝑛 we have

∫
R𝑛
(𝐻𝑓 (𝑥))

𝑟

𝑢 (𝑥) 𝑑𝑥

= ∫
R𝑛
𝑢 (𝑥) (

1

𝑡𝑛
∫
|𝑦|<𝑡

𝑓 (𝑦) 𝑑𝑦)

𝑟

𝑑𝑥

= ∫

∞

0

𝑡
𝑛−1

(
1

𝑡𝑛
∫
|𝑦|<𝑡

𝑓 (𝑦) 𝑑𝑦)

𝑟

(∫
𝑆
𝑛−1

𝑢 (𝑡𝑥) 𝑑𝜎𝑥) 𝑑𝑡

= 𝐶∫

∞

0

𝑡
𝑛−1

𝑡
−𝑛𝑟

𝑡
𝑟

(
1

𝑡
∫

𝑡

0

𝜏
𝑛−1

𝑓 (𝜏) 𝑑𝜏)

𝑟

𝑢 (𝑡) 𝑑𝑡

= 𝐶∫

∞

0

𝑡
𝑛−1

𝑡
𝑟(1−𝑛)

𝑢 (𝑡) (
1

𝑡
∫

𝑡

0

𝑓 (𝜏) 𝑑𝜏)

𝑟

𝑑𝑡

≤ 𝐶∫

∞

0

𝑢̃ (𝑡) (𝑓 (𝑡))
𝑟

𝑑𝑡

= 𝐶∫

∞

0

𝑡
(𝑛−1)(1−𝑟)

𝑡
(𝑛−1)𝑟

(𝑓 (𝑡))
𝑟

𝑑𝑡

= 𝐶∫
R𝑛
(𝑓 (𝑥))

𝑟

𝑢 (𝑥) 𝑑𝑥.

(29)

Conversely taking the test function 𝑓
𝑟
(𝑥) =

𝜒
𝐵(0,𝑟)

(𝑥)|𝑥|
1−𝑛, 𝑟 > 0, in modular inequality (26), one

can easily obtain inequality (27).
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3. The Main Results

To formulate the main results we need to prove the following
proposition.

Proposition 3. Let 𝑢 be a weight on R𝑛 and 𝑝 : R𝑛 → R
+

such that 0 < 𝑝− ≤ 𝑝+ < ∞, and assume that 𝜑
𝑝(⋅),𝑢(0+)

= 0.
The following statements are equivalent:

(a) there exists a positive constant 𝐶 such that, for any
𝑓 ∈ 𝐷𝑅(R𝑛),

∫
R𝑛
(𝐻𝑓 (𝑥))

𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥 ≤ 𝐶∫
R𝑛
(𝑓 (𝑥))

𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥; (30)

(b) for any 𝑟, 𝑠 > 0,

∫
|𝑥|>𝑟

(
𝑟

𝑠|𝑥|
𝑛
)

𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥 ≤ 𝐶∫
𝐵(0,𝑟)

|𝑥|
(1−𝑛)𝑝(𝑥)

𝑢 (𝑥)

𝑠𝑝(𝑥)
𝑑𝑥;

(31)

(c) 𝑝
|supp 𝑢

≡ 𝑝
0
a.e. and 𝑢 ∈ 𝐵

𝑝
0

.

Proof. We use the arguments of [10]. To show that (a) implies
(b) it is enough to test the modular inequality (30) for the
function 𝑓

𝑟,𝑠
(𝑥) = (1/𝑠)𝜒

𝐵(0,𝑟)
(𝑥)|𝑥|

1−𝑛, 𝑠, 𝑟 > 0. Indeed, it
can be checked that

𝐻𝑓
𝑟,𝑠
(𝑥) =

{{{{

{{{{

{

1

|𝑥|
𝑛

𝑠
∫
|𝑦|≤|𝑥|

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
1−𝑛

𝑑𝑦, if |𝑥| ≤ 𝑟;

1

|𝑥|
𝑛

𝑠
∫
|𝑦|≤𝑟

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
1−𝑛

𝑑𝑦, if |𝑥| > 𝑟.
(32)

Further, we find that

∫
|𝑥|>𝑟

𝑢 (𝑥) (𝐻𝑓
𝑟,𝑠
)
𝑝(𝑥)

𝑑𝑥

≤ ∫
R𝑛
𝑢 (𝑥) (𝐻𝑓

𝑟,𝑠
)
𝑝(𝑥)

𝑑𝑥

≤ 𝐶∫
R𝑛
𝑢 (𝑥) (

1

𝑠
𝜒
𝐵(0,𝑟)

(𝑥) |𝑥|
1−𝑛

)

𝑝(𝑥)

𝑑𝑥.

(33)

Therefore

∫
|𝑥|>𝑟

𝑢 (𝑥) (
𝑟

𝑠|𝑥|
𝑛
)

𝑝(𝑥)

𝑑𝑥 ≤ 𝐶∫
𝐵(0,𝑟)

|𝑥|
(1−𝑛)𝑝(𝑥)

𝑢 (𝑥)

𝑠𝑝(𝑥)
𝑑𝑥.

(34)

To obtain (c) from (b)we are going to prove that condition (b)
implies that𝜑

𝑝(⋅),𝑢(𝛿)
is a constant function; namely,𝜑

𝑝(⋅),𝑢(𝛿)
=

𝑝
+

𝑢
− 𝑝
−

𝑢
for all 𝛿 > 0. This fact and the hypothesis on 𝜑

𝑝(⋅),𝑢(𝛿)

imply that 𝜑
𝑝(⋅),𝑢(𝛿)

≡ 0, and hence, due to (7),

𝑝
|supp 𝑢

≡ 𝑝
+

𝑢
− 𝑝
−

𝑢
≡ 𝑝
0

a.e. (35)

Finally (31) means that 𝑢 ∈ 𝐵
𝑝
0

. Let us suppose that 𝜑
𝑝(⋅),𝑢

is
not constant. Then one of the following conditions holds:

(i) there exists 𝛿 > 0 such that

𝛼 = esssup
𝑥∈𝐵(0,𝛿)∩supp 𝑢

𝑝 (𝑥) < 𝑝
+

𝑢
< ∞, (36)

and, hence, there exists 𝜖 > 0 such that
󵄨󵄨󵄨󵄨{|𝑥| > 𝛿 : 𝑝 (𝑥) ≥ 𝛼 + 𝜖} ∩ supp 𝑢󵄨󵄨󵄨󵄨 > 0, (37)

or
(ii) there exists 𝛿 > 0 such that

𝛽 = essinf
𝑥∈𝐵(0,𝛿)∩supp 𝑢

𝑝 (𝑥) > 𝑝
−

𝑢
> 0, (38)

and then, for some 𝜖 > 0,
󵄨󵄨󵄨󵄨{|𝑥| > 𝛿 : 𝑝 (𝑥) ≤ 𝛽 − 𝜖} ∩ supp 𝑢󵄨󵄨󵄨󵄨 > 0. (39)

In case (i) we observe that condition (b), for 𝑟 = 𝛿, implies
that

∫
|𝑥|>𝛿

(
𝛿

𝑠
)

𝑝(𝑥)

𝑢 (𝑥)

|𝑥|
𝑛𝑝(𝑥)

𝑑𝑥 ≤ 𝐶∫
𝐵(0,𝛿)

|𝑥|
(1−𝑛)𝑝(𝑥)

𝑢 (𝑥)

𝑠𝑝(𝑥)
𝑑𝑥.

(40)

Then using (36) we obtain, for 𝑠 < min(1, 𝛿),

(
𝛿

𝑠
)

𝛼+𝜖

∫
{|𝑥|≥𝛿:𝑝(𝑥)≥𝛼+𝜖}

𝑢 (𝑥)

|𝑥|
𝑛𝑝(𝑥)

𝑑𝑥

≤
𝐶

𝑠𝛼
∫
𝐵(0,𝛿)

𝑢 (𝑥) |𝑥|
(1−𝑛)𝑝(𝑥)

𝑑𝑥,

(41)

which is clearly a contradiction if we let 𝑠 ↓ 0. Similarly in
case (ii) let us consider the same condition (b), for 𝑟 = 𝛿, and
fix now 𝑠 > 1. Taking into account (38) we find that

1

𝑠𝛽−𝜖
∫
{|𝑥|≥𝛿:𝑝(𝑥)≤𝛽−𝜖}

(
𝛿

|𝑥|
𝑛
)

𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥

≤
𝐶

𝑠𝛽
∫
𝐵(0,𝛿)

|𝑥|
(1−𝑛)𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥,

(42)

which is a contradiction if we let 𝑠 ↑ ∞.
Finally, the fact that condition (c) implies (a) follows from

[18, Theorem 1.7].

Theorem 4. Let 𝑢 be a weight on (0,∞) and 𝑝 : R
+
→ R
+

such that 0 < 𝑝− ≤ 𝑝+ < ∞. Assume that 𝜓
𝑝(⋅),V(0+) = 0. The

following facts are equivalent:

(i) there exists a positive constant 𝐶 such that, for any 𝑓 ∈
𝐷(R
+
),

∫
R
+

(𝑅
𝛼
𝑓 (𝑥))

𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥

≤ 𝐶∫
R
+

(𝑓 (𝑥))
𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥;

(43)
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(ii) condition (13) holds;
(iii) condition (𝑐) of Theorem B is satisfied.

Proof. Proof follows by using Theorem B and
Proposition 1(a).

Theorem 5. Let 𝑢 be a weight on R𝑛 and 𝑝 : R𝑛 → R
+
such

that 0 < 𝑝− ≤ 𝑝+ < ∞, and assume that 𝜑
𝑝(⋅),𝑢(0

+
)
= 0. The

following facts are equivalent:

(i) there exists a positive constant 𝐶 such that, for any 𝑓 ∈
𝐷𝑅(R𝑛),

∫
R𝑛
(𝐼
𝛼
𝑓 (𝑥))

𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥

≤ 𝐶∫
R𝑛
(𝑓 (𝑥))

𝑝(𝑥)

𝑢 (𝑥) 𝑑𝑥;

(44)

(ii) condition (31) holds;
(iii) condition (c) of Proposition 3 holds.

Proof. Proof follows by using Propositions 3 and 1(b).
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