
Research Article
An Improved Differential Evolution Algorithm for Maritime
Collision Avoidance Route Planning

Yu-xin Zhao,1 Wang Li,1 Shaojun Feng,2 Washington Y. Ochieng,2 and Wolfgang Schuster2

1 College of Automation, Harbin Engineering University, Harbin 150001, China
2 Center for Transport Studies, Imperial College London, London SW7 2AZ, UK

Correspondence should be addressed to Yu-xin Zhao; zhaoyuxin@hrbeu.edu.cn

Received 6 August 2014; Revised 8 October 2014; Accepted 8 October 2014; Published 12 November 2014

Academic Editor: Shen Yin

Copyright © 2014 Yu-xin Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

High accuracy navigation and surveillance systems are pivotal to ensure efficient ship route planning and marine safety. Based on
existing ship navigation andmaritime collision prevention rules, an improved approach for collision avoidance route planning using
a differential evolution algorithm was developed. Simulation results show that the algorithm is capable of significantly enhancing
the optimized route over current methods. It has the potential to be used as a tool to generate optimal vessel routing in the presence
of conflicts.

1. Introduction

Collision avoidance technologies are increasingly becom-
ing relevant in the field of marine transport to ensure
safety [1]. These technologies are underpinned by three
key components: navigation and surveillance technologies
and optimization logic. Technologies such as differential
global positioning systems (DGPS), automatic radar plot-
ting aid (ARPA), automatic identification system (AIS), and
electronic chart display and information system (ECDIS)
have significantly improved positioning and surveillance per-
formance. Furthermore, optimization and decision-making
theories have rapidly developed in recent years [2, 3],
enabling the computation of better vessel trajectories in
multivessel environments.These include artificial intelligence
algorithms such as genetic algorithms (GA) (see [4, 5]),
ant colony algorithms (ACA) (see [6, 7]), fuzzy decision
methods (see [8–10]), and various other approaches [11–
15]. Smierzchalski proposed an evolutionary algorithm to
model a ship’s trajectory in collision situations (see [16, 17]).
However, the low computational efficiency puts into question
the practical application of such approach. Inspired by the
maze route algorithm [18], a practical model was proposed by
Chang et al. [19] to transform the decision-making problem
in collision avoidance into a route distance optimization

problem. Szlapczynski [20] improved this model by account-
ing for ship maneuvering characteristics, for the COLREGS
(The International Regulations for Preventing Collisions at
Sea) and by introducing other operational constraints (e.g.,
speed reduction capability). In [21–23] a concept of a set of
safe (though usually not optimal) trajectories is proposed,
based on collision avoidance path-searches for scenarios
involvingmultiple ships and stationary constraints.These soft
computing methods can be used not only to find an optimal
route from port to port, but also to avoid collision [24, 25].

However, the quality of the solution and the convergence
time of current optimization methods are typically not suf-
ficient for practical applications. Moreover, significant other
challenges remain, including accounting for regulations of
collision avoidance, aswell as navigation andmaneuverability
factors. Additionally, the computational efficiency and the
ability to adapt to the dynamic target saturation state in
restricted waters need further enhancement. In order to
address these issues, this paper introduces a modified differ-
ential evolution algorithm.

This paper addresses some of the above limitations by
developing a modified neighborhood differential evolution
(MNDE) algorithm, with global and local neighborhoods.
Differential evolution (DE) algorithms were first introduced
by Storn and Price [26], resulting in significant variants
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with improved performance [27]. These algorithms were
designed to address multiobjective, constrained, large-scale,
optimization problems. Analyses show that their perfor-
mance in terms of accuracy, robustness, and convergence
time is significantly better thanGA, ACA, and particle swarm
optimization (PSO) algorithms [28, 29].

Section 2 provides a brief outline of the basic DE family of
algorithms. Section 3 introduces the proposed variant of the
differential evolution with global and local neighborhoods
(DEGL) algorithm, and Section 4 characterizes the perfor-
mance of the developed algorithm. The algorithm is applied
in Section 5 to ship collision avoidance route planning and
the results are analyzed and discussed.

2. State-of-the-Art Differential
Evolution Algorithms

DE is an evolutionary algorithm based on modelling swarm
behavior, which uses optimization techniques based on coop-
eration and competition between individuals within popula-
tions. DE is based on a real-code greedy genetic algorithm.
Like other evolutionary algorithms, DE is based on the
following: from a randomly generated initial population and
according to certain rules of operation (such as mutation,
crossover, and selection), the best individuals are retained
following an iterative process which accounts for each indi-
vidual’s fitness and eliminates the inferior individuals, thus
guiding the search process in the search of the optimal
solution.

Mathematically, DE is a simple parallel direct search
method that attempts to find the global optimal solution in
a 𝐷-dimensional real parameter space R𝐷. Here we denote
by 𝑓 the decision rule defined in the fitness function and by
Ω a nonempty finite set in the search space, resulting in the
following optimization problem:

𝑓(
→
𝑋
∗
) < 𝑓 (�⃗�) , ∀�⃗� ∈ Ω, 𝑓 : Ω ⊆ R

𝐷
→ R. (1)

The goal of DE is to find a parameter vector
→
𝑋
∗, such that

the fitness function (or objective function) is minimized.
Assuming that each element of the population in DE is
denoted as 𝑃 = 0, 1, . . . , 𝑃max, the 𝑖th vector of the population
at the current generation is represented as

→
𝑋
𝑖,𝑃

= [𝑥
1,𝑖,𝑃

, 𝑥
2,𝑖,𝑃

, 𝑥
3,𝑖,𝑃

, . . . , 𝑥
𝐷,𝑖,𝑃

] .

𝑖 = 0, 1, . . . , 𝑁 − 1,

(2)

where 𝑁 is the total population, which is invariant during
the minimization process. The mutation is carried out by the
donor vector based on the difference between two randomly
chosen solution vectors; in this sense, its mutation is like an
exploration move in pattern search. The crossover operation
of DE can be performed in either binomial or exponential
manner. DE is based on a global population search strategy,
using a simple differential mutation operation and one-
on-one competitive strategies for survival. Moreover, DE
has specific memory capabilities enabling dynamic tracking

search to adjust the search strategy without requiring the
detailed knowledge of the characteristics of the problem. DE
shows strong global convergence ability and robustness.

The performance of DE depends on the correct balance
between global exploration and local development capacity,
with significant reliance on the control parameters, including
population size, scaling factor, and crossover rate. In recent
years, significant variants of DE, such as the DE family
of Storn and Price [26, 27] which consists of 10 classical
mutation strategies, were developed. However, improving the
mutation strategy cannot entirely solve DE weaknesses such
as premature convergence or likelihood of local convergence.
For example,𝐷𝐸/𝑡𝑎𝑟𝑔𝑒𝑡-𝑡𝑜-𝑏𝑒𝑠𝑡/1 is one of themost effective
mutation strategies proposed by Storn and Price:

→
𝐾
𝑖,𝑃

=
→
𝑋
𝑖,𝑃

+ 𝑆 ⋅ (
→
𝑋best,𝑃 −

→
𝑋
𝑖,𝑃
) + 𝑆 ⋅ (

→
𝑋
𝑟
𝑖

1
,𝑃
−
→
𝑋
𝑟
𝑖

2
,𝑃
) , (3)

where→𝑋best,𝑃 is the best individual vector with the best fitness
(i.e., lowest objective function value for a givenminimization
problem) in the population at generation𝑃.The scaling factor
𝑆 is a positive control parameter for scaling the difference
vectors. In the mutation strategy, the difference between any
two of these three random selected vectors is scaled by the
factor 𝑆 to generate the corresponding donor vector. It is con-
stant during the global optimum searching process. For each
iteration, all of the vectors are close to the optimal location
of the fitness surface, resulting in the DE quickly converging
to the optimal solution. However, the “development” ability
may result in the optimal solution in some local search space,
causing the DE to lose its global search capability after a
few iterations. Furthermore, the DE algorithm adopts the
“greedy” selection rule (choosing always the better vector
between the target vector and the trial vector), with a fixed
scaling factor 𝑆 (typically selected in the range [0.4, 1]).
Therefore, if the vector →

𝑋
𝑟
𝑖

1
,𝑃

−
→
𝑋
𝑟
𝑖

2
,𝑃

for generating the
disturbance is small (when the individual vectors are close to
each other, usually the population converges to a small range),
the individual vectorswould not explore a better search space,
and it is difficult to avoid becoming trapped in a suboptimal
solution [30]. In order to address this issue, inspired by
PSO, Das et al. [31] proposed a novel DE algorithm, DEGL
(differential evolution using a neighborhood-basedmutation
operator with global and local neighborhoods).

In Das et al.’s work, a strategy similar to (3) is adopted
to design two types of neighborhood-based models for local
mutation and global mutation separately, using the globally
optimal vector →𝑋best,𝑃 at the current generation 𝑃 to mutate
a given population member. The neighborhood concept
comes from the PSO algorithm. Assuming a given differential
evolution population →

𝑋
𝑃

= {
→
𝑋
1,𝑃

, . . . ,
→
𝑋
𝑖,𝑃
, . . . ,

→
𝑋
𝑁,𝑃

} with
→
𝑋
𝑖,𝑃

= [𝑥
1,𝑖,𝑃

, 𝑥
2,𝑖,𝑃

, . . . , 𝑥
𝐷,𝑖,𝑃

], a neighborhood with radius 𝑘
(𝑘 is a nonzero integerwithin the interval [0, (𝑁−1)/2], where
2𝑘 + 1 ≤ 𝑁) is defined for each vector →𝑋

𝑖,𝐺
. This results in a

neighborhood population →
𝑋
𝐾
= {

→
𝑋
𝑖−𝑘,𝑃

, . . . ,
→
𝑋
𝑖,𝑃

. . . ,
→
𝑋
𝑖+𝑘,𝑃

}.
Here, the ring topology structure is adopted, so that the two
contiguous neighborhoods of →𝑋

1,𝐺
are →𝑋
𝑁,𝑃

and →
𝑋
2,𝑃
. Based
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on the above assumptions, Das et al. give the local and global
neighborhood-based mutation models as follows.

The local mutation model is described by

→
𝐿
𝑖,𝑃

=
→
𝑋
𝑖,𝑃

+ 𝛼 ⋅ (
→
𝑋
𝑛 best𝑖 ,𝑃 −

→
𝑋
𝑖,𝑃
) + 𝛽 ⋅ (

→
𝑋
𝑝,𝑃

−
→
𝑋
𝑞,𝑃

) ,

(4)

where→𝑋
𝑛 best𝑖 ,𝑃 represents the optimal vector in the neighbor-

hood population of →𝑋
𝑖,𝑃

and 𝑝, 𝑞 ∈ [𝑖 − 𝑘, 𝑖 + 𝑘] (𝑝 ̸= 𝑞 ̸= 𝑖).
Similarly, the global mutation model is given by

→
𝐺
𝑖,𝑃

=
→
𝑋
𝑖,𝑃

+ 𝛼 ⋅ (
→
𝑋
𝑔 best,𝑃 −

→
𝑋
𝑖,𝑃
) + 𝛽 ⋅ (

→
𝑋
𝑟1 ,𝑃

−
→
𝑋
𝑟2 ,𝑃

) .

(5)

The final donor vector of DEGL is a combination of the
local and global donor vectors using a scalar weight 𝜆 ∈ (0, 1):

→
𝑉
𝑖,𝑃

= 𝜆 ⋅
→
𝐺
𝑖,𝑃

+ (1 − 𝜆) ⋅
→
𝐿
𝑖,𝑃
. (6)

When 𝜆 = 1 and 𝛼 = 𝛽 = 𝑆, (5) will be transformed into
the mutation strategy 𝐷𝐸/𝑡𝑎𝑟𝑔𝑒𝑡-𝑡𝑜-𝑏𝑒𝑠𝑡/1 (see (3)). DEGL
is effectively a generalized model providing a better balance
between local and global strategies.

3. An Improved DE Algorithm Based on DEGL

A key limitation of the DEGL model developed by Das
et al. is that the global optimum searching capability and
the convergence speed are very sensitive to the choice of
these scaling factors. The choice of scale factor is thus
crucial in optimizing the performance of DEGL. If the scale
factors are small, the disturbance added to the population is
negligible, resulting in the algorithm premature convergence.
Consequently, it is difficult for the algorithm to converge to
the minimum. If on the other hand the vectors are getting
close to the location of the global optimal, a smaller scaling
factor would help to reduce the search time, which con-
tributes significantly to accelerating the convergence speed.
On the other hand, a large scaling factor could be conducive
to enhance the diversity of individuals in the process of
mutation; as a consequence, the premature convergence is
likely to be avoided, but at the expense of the convergence
rate.

In order to address the limitation of using fixed scaling
factors and thereby improve the performance of DEGL, this
paper develops a new variant of DE, referred to as theMNDE
(modified neighborhood-based mutation operator DE). Two
key novelties are introduced: firstly, we adopt variable scaling
jitter factors instead of the fixed scaling factor to enhance
the convergence performance; secondly, the global optimal
individual vector is used to replace the first item in the global
mutation model, significantly accelerating the convergence
speed.

MNDE combines the local mutation model and the new
global mutation model and redefines the global mutation
model as
→
𝐺
𝑖,𝑝

=
→
𝑋
𝑔 best,𝑝 + 𝛼

𝑔
⋅ (

→
𝑋
𝑔 best,𝑝 −

→
𝑋
𝑖,𝑝
) + 𝛽
𝑔
⋅ (

→
𝑋
𝑟1 ,𝑝

−
→
𝑋
𝑟2 ,𝑝

) .

(7)

Here, 𝛼
𝑔
and 𝛽

𝑔
are the variable scaling jitter factors based

on the fixed scaling factor 𝑆, which is used to scale the
difference vectors to generate the corresponding donor vector
in the mutation strategy. Replacing the fixed scaling factor
with variable scaling jitter factors can effectively maintain
the diversity of the population in the global neighborhood
model; moreover, the convergence speed is significantly
improved. More specifically, when the variable scaling factor
is relatively large, the individuals tend to sample diverse
zones of the search space during the global optimum search,
which prevents the population from getting trapped in local
minima. Meanwhile, smaller scaling factors in the second
step of the global optimum search help adjust the movements
of the trial solutions of the first step and allow to better
explore the interior space in which the suspected global
optimum lies, hence allowing the population to converge to
the global optimum solution.

The scaling jitter factors randomly jitter in a small
neighborhood of the fixed scale factor 𝑆. In other words, a
small disturbance is introduced to modify the scale factor
to increase the population diversity and thus avoid the
potentially premature convergence observed with state-of-
the-art DEGL. The jitter factors are computed as

𝛼
𝑔
= 𝛽
𝑔
= 𝛾 ∗ rand (𝑁,𝐷) + 𝑆. (8)

𝛼
𝑔
and 𝛽

𝑔
are given by the sum of the scale factor 𝑆 and the

𝑁 ∗ 𝐷 dimensional random matrix 𝛾 ∗ rand(𝑁,𝐷), where
𝑁 and 𝐷 are the dimensions of the individual vectors and 𝐷

generally corresponds to the dimension of the optimization
problem. We introduce control parameter 𝛾 to adjust the
jitter range of the scaling factor in order to maintain both
exploitation and exploration performance. As mentioned
previously, if the scale factor is too small, the difference vector
is very small (i.e., the individual vectors are very close to
each other, typical during population convergence to a small
domain), and the individual vectors would not explore a
better search space, making it difficult to avoid becoming
trapped in a suboptimal solution. Under these circumstances
we choose a larger 𝛾 to yield a bigger scaling factor to
preserve the diversity of the vectors belonging to the same
neighborhood. On the other hand, if the scaling factor is
too large, the number of iterations needed to search for the
global optimum is large, delaying solution convergence. We
therefore reduce the control parameter 𝛾 to generate a suitable
scaling factor so as to improve convergence performance.

The second novelty is that, unlike in the DEGL algorithm,
we adopt the global optimal individual vector at the current
generation →

𝑋
𝑔 best,𝑃 as the first item in the global mutation

model. The global mutation model is used to guide the
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Table 1: Benchmark functions and parameter setup.

Function Expression Search range Optimum solution 𝑥
∗ Optimum value 𝑓(𝑥∗)

Sphere 𝑓
1
(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
[−5.12, 5.12]

𝐷
[0, 0 ⋅ ⋅ ⋅ 0] 0

Axis parallel hyperellipsoid 𝑓
2
(𝑥) =

𝐷

∑

𝑖=1

𝑖𝑥
2

𝑖
[−5.12, 5.12]

𝐷
[0, 0 ⋅ ⋅ ⋅ 0] 0

Sum of different powers 𝑓
3
(𝑥) =

𝐷

∑

𝑖=1

𝑥𝑖


(𝑖+1)

[−1, 1]
𝐷

[0, 0 ⋅ ⋅ ⋅ 0] 0

Rosenbrock 𝑓
4
(𝑥) =

𝐷−1

∑

𝑖=1

[100(𝑥
2

𝑖
− 𝑥
𝑖+1

)
2

+ (𝑥
𝑖
− 1)
2

] [−2, 2]
2

[1, 1] 0

Schwefel’s problem 𝑓
5
(𝑥) =

𝐷

∑

𝑖=1

𝑥𝑖
 +

𝐷

∏

𝑖=1

𝑥𝑖
 [−10, 10]

𝐷
[0, 0 ⋅ ⋅ ⋅ 0] 0

Step function 𝑓
6
(𝑥) =

𝐷

∑

𝑖=1

([𝑥
𝑖
+ 0.5])

2

[−100, 100]
𝐷

[0.5, 0.5 ⋅ ⋅ ⋅ 0.5] 0

De Jong’s function 4 (no noise) 𝑓
7
(𝑥) =

𝐷

∑

𝑖=1

𝑖𝑥
4

𝑖
[−1.28, 1.28]

𝐷
[0, 0 ⋅ ⋅ ⋅ 0] 0

Rastrigin 𝑓
8
(𝑥) =

𝐷

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos(2𝜋𝑥

𝑖
) + 10] [−6, 6]

𝐷
[0, 0 ⋅ ⋅ ⋅ 0] 0

mutation strategy to mutate a population member, which
improves the convergence ability especially in the global
multimodal optimization. Choosing the best vector in the
whole population ensures that the new trial vectorwithminor
fitness value may be generated in a small search space near
the global optimum solution, thereby enhancing converging
ability. Furthermore, if the vectors are getting close to the
location of the global optimal solution, the convergence rate is
accelerated by choosing the global optimum individual vector
instead of the current target individual vector.

4. Performance Testing and Analysis

To evaluate the performance of theMNDE algorithm, various
simulations were carried out.

We selected 8 classical benchmark functions (shown
in Table 1) and compared them using three DE algo-
rithms including DEGL, 𝐷𝐸/𝑏𝑒𝑠𝑡/1 (simplified as DE1), and
𝐷𝐸/𝑡𝑎𝑟𝑔𝑒𝑡-𝑡𝑜-𝑏𝑒𝑠𝑡/1 (simplified as DE2). The hardware plat-
form used was a ThinkPad laptop with configuration Core2
Duo CPU, 2.10GHz, 4GB Memory, and 64-bit Windows 7
OS; the software was MATLAB 2009a. For each simulation,
all algorithms were run 40 times independently, and the
optimal solution, worst solution, mean, standard deviation,
and average processing time (s) for the given convergence
threshold were computed.

In these simulations, we choose the population size of
all DE variants 𝑁 = 200, a scale factor 𝑆 = 0.85, and a
crossover rate 𝑅 = 0.9. For DEGL, we set the fixed scale
factors 𝛼 = 𝛽 = 𝑆, and for MNDE, the jitter scale factors
𝛼
𝑔
= 𝛽
𝑔
= 𝛾 ∗ rand(𝑁,𝐷) + 𝑆, where 𝛾 = 0.0001, the radius

of neighborhood 𝑘 = 3, and a combination scalar weight 𝜆 in
(8) is used to balance the global mutation strategy and local
mutation strategy in the search of the optimal solution. In the
preliminary stage of the optimization, a smaller 𝜆 could help
to enhance the exploitation ability, while a larger 𝜆 improves

the exploration ability in the later stage. In this paper, a linear
increment schedule to change𝜆was adopted to achieve global
optimization. Here, all four contestant algorithms and the
same stopping criterion (i.e., the samemaximum evolution of
the number of iterations) were used. For each test function,
the individual vector has to evolve within the limits of the
search range, which is shown in Table 1. The dimension of
each vector is 𝐷 = 30, and up to 3000 iterations are carried
out.When the vector evolves to the optimum solution 𝑥

∗, the
optimum value of the test function 𝑓(𝑥

∗
) is obtained.

The optimal solution, the worst solution, the mean, and
the standard deviation of the best-of-run values of each of
the four contestant algorithms are presented in Table 2. The
average number of iterations required to achieve the same
prescribed threshold fitness 10

−10 is shown in Table 3, the
symbol of “—” indicates that the algorithm failed to reach the
prescribed threshold within 3000 iterations. Table 2 shows
the improved performance of the MNDE algorithm over
other algorithms. It can be clearly seen that the solution
found by MNDE algorithm is the most precise among
these comparative algorithms, and this is due to the use
of the scaling jitter factor in MNDE algorithm. The scaling
jitter factor can be adjusted itself according to the current
solution during the mutation process; therefore the diversity
of the population is enhanced, so the individuals tend to
sample diverse zones of the search space during the global
optimal searching process, which prevents the population
from getting trapped in local minima. In most cases, MNDE
algorithm also runs faster and converges more quickly, as
shown in Table 3, and this is because of choosing the best
vector in the global mutation operation strategy. Adopting
the best vector in thewhole population canmake sure that the
new trial vector with minor fitness value may be generated
in a small search space near the global optimum solution;
therefore the algorithm can avoid blind searching; thus the
converging ability is greatly improved.
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Table 2: The optimal solution, the worst solution, the mean, and the standard deviation tested on various benchmark functions.

Function Algorithm Optimal value/worst value Mean/standard deviation

𝑓
1

DE1 8.26E − 016/5.93E − 014 4.75E − 015/6.82E − 030
DE2 2.26E − 018/7.75E − 016 5.08E − 018/3.88E − 042
DEGL 1.34E − 050/5.04E − 049 2.61E − 049/3.49E − 095
MNDE 7.57E − 132/6.11E − 130 3.43E − 086/3.79E − 170

𝑓
2

DE1 8.65E − 014/4.25E − 013 1.69E − 014/2.28E − 023
DE2 8.28E − 017/1.06E − 016 9.41E − 017/1.62E − 034
DEGL 3.08E − 050/3.55E − 049 1.93E − 049/2.93E − 086
MNDE 3.19E − 130/5.89E − 129 3.11E − 129/3.94E − 189

𝑓
3

DE1 6.01E − 037/1.87E − 036 1.24E − 036/9.61E − 060
DE2 5.33E − 042/2.64E − 040 8.16E − 042/1.63E − 076
DEGL 1.99E − 068/1.50E − 065 7.52E − 066/1.06E − 120
MNDE 2.03E − 077/4.34E − 074 2.17E − 074/3.17E − 128

𝑓
4

DE1 5.66E − 002/2.36E − 000 9.74E − 001/6.39E − 002
DE2 3.90E − 003/3.99E − 001 1.99E − 001/2.82E − 003
DEGL 6.40E − 016/6.89E − 014 3.48E − 014/4.83E − 028
MNDE 9.49E − 029/2.54E − 028 1.74E − 028/2.54E − 051

𝑓
5

DE1 4.14E − 008/6.49E − 007 5.19E − 008/1.66E − 015
DE2 5.75E − 009/1.52E − 008 1.05E − 008/6.62E − 017
DEGL 2.35E − 025/2.01E − 024 1.12E − 024/1.26E − 045
MNDE 3.92E − 038/2.19E − 035 1.10E − 035/1.54E − 062

𝑓
6

DE1 2.31E − 015/8.61E − 014 8.87E − 14/2.66E − 24
DE2 1.65E − 015/1.87E − 014 1.76E − 015/1.57E − 029
DEGL 0.00E − 000/0.00E − 000 0.00E − 000/0.00E − 000
MNDE 0.00E − 000/0.00E − 000 0.00E − 000/0.00E − 000

𝑓
7

DE1 1.43E − 029/8.68E − 027 5.05E − 029/5.13E − 059
DE2 1.20E − 033/2.11E − 032 1.12E − 032/1.42E − 53
DEGL 1.37E − 085/5.97E − 084 3.05E − 084/4.13E − 161
MNDE 9.54E − 109/5.12E − 096 2.56E − 096/3.62E − 198

𝑓
8

DE1 2.68E − 002/3.58E − 000 2.76E − 001/6.61E − 001
DE2 5.38E − 002/1.03E − 001 7.70E − 002/3.29E − 002
DEGL 1.79E − 011/7.07E − 010 3.53E − 012/4.99E − 022
MNDE 6.19E − 030/1.28E − 028 1.24E − 028/6.02E − 056

To further illustrate the performance of the MNDE,
two benchmark functions were used to test and evaluate
algorithm performance under challenging conditions.

In the following section, a comparison between MNDE
and other DE variants is carried out.

The Rosenbrock function is a classic two-dimensional
test function with a single peak, which has a unique
global minimum of 0 at (1, 1) as shown in Figure 1. The
convergence characteristics of the four algorithms DE1,
DE2, DEGL, and MNDE are shown in Figures 2 and
3. The MNDE strategy exhibits the shortest convergence
time for a given threshold fitness and the fewest number
of iterations to reach the global minimum value 0. As
we use the global optimal individual vector →

𝑋
𝑔 best,𝑃 as

the first item in the global mutation model in (7), the
MNDE strategy has significantly better performance than
DEGL in terms of convergence accuracy and the speed of
evolution.

TheRastrigin function is a typical multipeak test function
used to evaluate a global optimization problem:

DA +

𝐷

∑

𝑖=1

(𝑥
2

𝑖
− 𝐴 cos (2𝜋𝑥

𝑖
)) , −𝑊 ≤ 𝑥

𝑖
≤ 𝑊. (9)

The Rastrigin function has a global optimum point at 0
and a large number of local minima, as shown in Figure 4.
For example, when 𝐴 = 1, 𝐷 = 6, and 𝑊 = 5.12, there are
1771561 local minima.

Figure 5 shows that theMNDE has significant advantages
in the search of a global optimum solution over other algo-
rithms. In the test results, the MNDE strategy converges to
the optimum point after a relative small number of iterations
(compared to the DE1 and DEGL strategies, an almost 50%
reduction in the number of iterations). The DE2 strategy
was unable to find any solution in the predefined number of
iterations. It should be noted that, as we introduce the scaling
jitter factors 𝛼

𝑔
and 𝛽

𝑔
, MNDE can effectively maintain the
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Table 3: The average number of iterations required to reach 10
−10.

Function Algorithm Iterations

𝑓
1

DE1 2076
DE2 1925
DEGL 496
MNDE 438

𝑓
2

DE1 2139
DE2 1965
DEGL 497
MNDE 488

𝑓
3

DE1 815
DE2 719
DEGL 266
MNDE 252

𝑓
4

DE1 —
DE2 —
DEGL 1525
MNDE 1049

𝑓
5

DE1 —
DE2 —
DEGL 812
MNDE 737

𝑓
6

DE1 2254
DE2 2196
DEGL 575
MNDE 522

𝑓
7

DE1 1163
DE2 1096
DEGL 304
MNDE 291

𝑓
8

DE1 —
DE2 —
DEGL 1605
MNDE 1061

diversity of the population in the global neighborhoodmodel
and improve the global search over DEGL.

5. Application to Ship Collision Avoidance
Route Planning

In recent studies, researchers have investigated ways of
improving the collision avoidance route planning perfor-
mance of evolutionary algorithms, for example, Lee [18] and
Zaman et al. [10]. Here we test the dynamic ship collision
avoidance route planning methodology of the improved
differential evolution algorithm developed in this paper.

In this paper, we test the performance using a method
similar to that used in Lee [18] and Zaman et al. [10].The new
method in this paper compares GA, DE, and MNDE, using
the same platform to evaluate the ship collision avoidance
performance. All programs were run in the Visual studio
2008 and MATLAB R2009 mixed simulation environments.
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Figure 1: The solution space of the Rosenbrock function.
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Figure 5:The evolution results of theRastrigin functionwith a given
predefined number of iterations.

Table 4 gives the detailed settings and operations for the
different algorithms.

We simplify the fitness functions to reduce the execution
time. Economy and safety are the most two important
considerations for ship collision avoidance route planning.
Here, we choose the shortest distance andminimum threat as
the performance indicators, yielding the following least fuel
consumption fitness function:

min𝐶
𝑙
= ∫

𝐿

0

𝜔
𝑙
d𝑙. (10)

The minimum threat fitness function is given by

min𝐶
𝑡
= ∫

𝐿

0

𝜔
𝑡
d𝑙. (11)

The total fitness function can be expressed as

min𝐶 = 𝑘𝐶
𝑡
+ (1 − 𝑘) 𝐶𝑙, (12)

where𝐿 is the distance of the route,𝐶
𝑙
is the fuel consumption

model, a function of the route distance. Here we assume that

GA

MNDE

DE

Executed route
Planned route

Phase
1

Figure 6: A noncollision avoidance scenario in open waters.

GA

MNDE

DE

Executed route
Planned route

Phase
2

Figure 7: A head-on collision scenario in open waters.

𝜔
𝑙
equals 1, making the cost of the fuel linearly proportional

to the route distance. Meanwhile, 𝐶
𝑡
indicates the threat

associated with the route. Note that the weighing coefficient
𝑘 ∈ [0, 1] allows balancing cost efficiency and safety
performance.

Using the settings and operation rules in Table 4, we
assume that the course of the target ship is fixed, and the
speed of the own and target ships is constant, as shown in
Table 5. The experimental analysis focusses on two typical
circumstances described in the COLREGS, namely, head-
on and crossing scenarios. The avoidance operations for
the following three shortest collision avoidance routes are
obtained separately for the GA, DE, and MNDE algorithms.

Scenario 1. Noncollision avoidance scenario (Figure 6).

Scenario 2. A head-on collision scenario (Figure 7), requiring
the own ship to pass on the right side of the target ship.

Scenario 3. A crossing scenario (Figure 8), where the own ship
is required to pass on the left side of the target ship and to
avoid passing the front of the target ship.

In Figures 6, 7, and 8, the black, yellow, and red lines
are the routes generated by the MNDE, the standard DE,
and the GA algorithms, respectively. The solid lines display
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Table 4: Settings and operating rules of the three optimizing algorithms.

Algorithm Parameters Settings Operations Settings

GA

Population size 90 Population initialization Encode each individual with real coding;
each real number string represents a route

Individual dimension 30 Selection Roulette wheel selection
Crossover rate 0.4 Crossover A single point crossover

Mutation rate 0.2 Mutation Select the 𝑗th gene of the 𝑖th individual
for mutation

Maximum number of iterations 100 Fitness value calculation Minimum distance + minimum threat

DE

Population size 90 Population initialization Generate initialisation vectors randomly
Individual dimension 30 Selection Greedy selection

Crossover rate 0.85 Crossover Binomial crossover

Scalar weight 0.6 Mutation Disturb current solution by using
differential vectors

Maximum number of iterations 100 Fitness value calculation Minimum distance + minimum threat

MNDE

Population size 90 Population initialization Generate initialization vectors randomly

Individual dimension 30 Selection Random selection for generating the
neighborhood

Crossover rate 0.85 Crossover Binomial crossover
Scalar weight 0.6 Mutation Neighborhood-based mutations

Jittering parameter 0.0001
Maximum number of iterations 100 Fitness value calculation Minimum distance + minimum threat

Table 5: Courses and speed configurations of the own and target
ships.

Speed
(knots)

Course (degrees)
GA DE MNDE

Scenario 1
Own ship 25 32.15∘ 32.15∘ 32.15∘

Target 1 12 230∘

Target 2 8 320∘

Scenario 2
Own ship 25 30.930∘ 32.15∘ 32.15∘

Target 1 12 230∘

Target 2 8 320∘

Scenario 3
Own ship 25 26.499∘ 32.15∘ 32.15∘

Target 1 12 230∘

Target 2 8 320∘

the executed routes, while the dotted lines display the planned
routes at the current time.

Figure 6 shows the real and planned routes in a noncol-
lision scenario of three ships in open waters. The MNDE
algorithm provides the shortest route for both the planned
and executed routes.

Figure 7 shows a head-on collision scenario in open
waters. In this scenario, the MNDE and standard DE algo-
rithms are significantly better than the GA algorithm. For
MNDE and standard DE, the own ship was able to resume
its original route without any significant delay.

Figure 8 shows a crossing scenario.Here, we see again that
the MNDE provides a better route than the standard DE or
GA. The solutions provided by the MNDE and standard DE
are also more reliable than that provided by the GA.

GA

MNDE

DE

Executed route

Phase
3

Figure 8: A crossing scenario in open waters.

6. Conclusion

An improved differential evolution algorithm is developed
in this paper. It introduces the concept of variable scaling
jitter factors to maintain the diversity of the population
and accelerate convergence speed. The variable scaling jitter
factors enable a better trade-off between the exploitation and
exploration abilities via the control parameter 𝛾. By adopting
the global optimal individual vector in the global mutation
model, the convergence ability of the algorithm was signifi-
cantly enhanced. Performance tests with various benchmark
functions were carried out and application scenarios were
evaluated to validate the algorithms’ feasibility and efficiency
in solving dynamic route planning problems. Three different
algorithms (MNDE, DE, and GA) were run to search an
ideal dynamic route in a GIS-based system. The results show
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that the MNDE algorithm achieves a significantly better
performance than the other two algorithms. Future work will
investigate more complex scenarios, including larger number
of vessels, varying ship types and speed settings, variable
weather conditions and other operational restrictions, traffic
conditions, and ship onboard equipment. This will lead to
the development of a practical intelligent support system for
vessel navigation.
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