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Thenonlinear chaotic systemwithmultistochastic disturbances is investigated. Based on the orthogonal polynomial approximation,
the method of transforming the system into an equivalent deterministic system is given. Then dynamic analysis of the nonlinear
chaotic system with multistochastic disturbances can be reduced into that of its equivalent deterministic system. Especially, the
Lorenz system with multistochastic disturbances is studied to demonstrate the feasibility of the given method. And its dynamic
behaviors are gained including the phase portrait, the bifurcation diagram, the Poincaré section, and the maximum Lyapunov
exponent.

1. Introduction

Chaos is a hot topic in the nonlinear science. And it has been
found to be useful and has great potential in many disci-
plines such as mixing liquids with low power consumption,
presenting outages in power systems, biomedical engineering
applications involving signals from the brain and heart, to
name just a few [1]. The deterministic chaotic system has
been studied extensively [2–5]. However, stochastic processes
are prevalent in nature. They affect all physical phenomena
from both external and internal sources. For example, noise
in physics, chemistry, and biology has a profound effect on the
chaotic dynamical system; strong wind can cause nonlinear
random vibration of large bridges and offshore platforms.
Hence, a growing number of scholars have shown great
interests in the research of nonlinear stochastic dynamics [6–
9].

To research the dynamic behaviors of the nonlinear
stochastic systems, there are several mathematical methods
available: Monte Carlo method [10], stochastic finite element
method [11, 12], and orthogonal polynomial approximation
method [13, 14]. Monte Carlo method is simple and universal
but usually involved a quite amount of computation. Stochas-
tic finite element method involved the least computation but
is usually restricted to system with random variables of small
perturbation. Based on the expansion theory of orthogonal

polynomials [15–19], the orthogonal polynomial approxima-
tion without the limitation of small perturbation was intro-
duced in [13] and improved in [14]. Recently, the orthogonal
polynomial approximation has been successfully applied for
studying the dynamic behaviors of the nonlinear systemswith
one random parameter [20–24]. In 2003, the evolutionary
random response problems of the linear systemswith random
parameters were firstly studied [20, 21] by Chebyshev poly-
nomial and Gegenbauer polynomial. The period-doubling
bifurcation in double-well stochastic Duffing system was
analyzed in [22]. The bifurcation in an extended Van der Pol
system with bounded random parameter was discussed in
[23]. And the control problems of stochastic Duffing-Van der
Pol system were researched in [24].

In the earlier literature, most of the discussions are
devoted to the systems with one stochastic disturbance [20–
24], which have only one random parameter in their models.
However, there exist all kinds of stochastic factors in the non-
linear chaotic process in the real world. In order to explore the
dynamic behaviors of the nonlinear chaotic system under the
influence of several kinds of stochastic factors, it is necessary
and important to research the nonlinear chaotic system with
multistochastic disturbances, which means that two or more
parameters of the nonlinear chaotic system are designed
as random ones. Moreover, the nonlinear chaotic system
with multistochastic disturbances is more general than such
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system with deterministic or one random parameter. But the
works on this subject are very few as far as we know [25].

Motivated by the above discussion, the nonlinear chaotic
system with multistochastic disturbances is investigated in
this paper. Firstly, in order to research its complex and
fascinating dynamic behaviors, the method of simplifying
the system into an equivalent deterministic system is given
according to the orthogonal polynomial approximation.Then
the dynamical characteristics of the system can be obtained
by analyzing the equivalent deterministic one. For illustrating
purposes, the Lorenz system with multistochastic distur-
bances is studied. Its dynamical characteristics are obtained
by analyzing the phase portrait, the bifurcation diagram, the
Poincaré section, and the maximum Lyapunov exponent of
the equivalent deterministic system. Finally, numerical sim-
ulation shows that dynamic behaviors in the Lorenz system
withmultistochastic disturbances are determined not only by
system parameters, but also by multistochastic disturbances
and stochastic intensities. In addition, the Lorenz system
with multistochastic disturbances is more general than such
system with deterministic or one random parameter.

The rest of this paper is organized as follows. The
method of transforming the nonlinear chaotic system with
multistochastic disturbances into an equivalent deterministic
system is given in Section 2. The Lorenz system with mul-
tistochastic disturbances is discussed in Section 3. Dynamic
analysis and numerical simulation are given in Section 4. And
conclusion closes the paper in Section 5.

2. Orthogonal Polynomial Approximation
for the Nonlinear Chaotic System with
Multistochastic Disturbances

The nonlinear chaotic system can be described as

�̇� (𝑡) = 𝑓 (𝑡, 𝑥) , (1)

where 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 is the state vector
and 𝑓(𝑡, 𝑥) = (𝑓

1
(𝑡, 𝑥), 𝑓

2
(𝑡, 𝑥), . . . , 𝑓

𝑛
(𝑡, 𝑥))

𝑇 is a continuous
nonlinear vector function. Now, consider the nonlinear
chaotic system with multistochastic disturbances; that is,

�̇� (𝑡, 𝜉) = 𝑓 (𝑡, 𝑥 (𝑡, 𝜉)) , (2)

where 𝜉 = (𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑚
)

𝑇 is a random vector and 𝜉

𝑖
(𝑖 =

1, 2, . . . , 𝑚) are independent identically distributed random
variables. They are defined on [𝑎, 𝑏] with the probability
density function 𝜌(𝜉

𝑖
).

Remark 1. If 𝑚 = 1 and 𝜉 = 𝜉

1
, then only one parameter in

the system (2) is random. Then the system (2) is a nonlinear
chaotic system with one stochastic disturbance. If 𝑚 ≥ 2

and 𝜉 = (𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑚
)

𝑇, then two or more parameters in
the system (2) are random. In this case, the system (2) is a
nonlinear chaotic system with multistochastic disturbances.
For different kinds of stochastic disturbances, we consider
the perturbation of parameters in the system (2) as a random
vector 𝜉 in this paper.

According to the principle of the orthogonal polynomial
approximation [26], the responses of the system (2) can be
approximately expressed under the condition of the conver-
gence in mean square as follows:
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where 𝑥
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𝑖
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onal polynomials and𝑁
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(𝑖 = 1, . . . , 𝑚) represents the largest

order of the polynomials.
Substituting (3) into (2), we get
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(4)

According to the results in [26], the orthogonality of
polynomials can be expressed as

∫
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(5)

and the orthogonal polynomials satisfy the following recur-
rent relation:
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cient of the item 𝜉

𝑗 for polynomial 𝑈
𝑗
(𝜉).

Then the quadratic product polynomial of (4) can be sim-
plified into a linear combination of related single polynomials
via the recurrent relation. By calculation, we have
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where ̃
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𝑇 is a contin-
uous linear vector function. Multiply both sides of (7) by
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𝑈

𝑗
1

(𝜉

1
) ⋅ ⋅ ⋅ 𝑈

𝑗
𝑚

(𝜉

𝑚
) (𝑗

1
= 0, 1, . . . , 𝑁

1
; . . . ; 𝑗

𝑚
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and take expectation. Based on the orthogonality of the poly-
nomial approximation, the equivalent deterministic system is

̇
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̃
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where 𝑥 = (𝑥

0101⋅⋅⋅0𝑚
⋅ ⋅ ⋅ 𝑥

𝑁
1
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𝑇. Then dynamical fea-
tures of the nonlinear chaotic system with multistochastic
disturbances can be obtained by analyzing its equivalent
deterministic system.

Remark 2. Based on the probability density function 𝜌(𝜉

𝑖
)

defined on [𝑎, 𝑏], appropriate orthogonal polynomial𝑈(𝜉

𝑖
) is

chosen. For example, one has the following.

(i) The second kind of Chebyshev polynomial associated
with the arch distribution is defined on [−1, 1].

(ii) Legendre polynomial with the uniform distribution is
defined on [−1, 1].

(iii) Laguerre polynomial with the Gamma distribution is
defined on [0, +∞).

(iv) Hermite polynomial with the Gaussian distribution is
defined on (−∞, +∞).

(v) Jacobi polynomials with the Beta distribution is
defined on [0, 1].

Readers are referred to [26] for further information about
the relationships among these orthogonal polynomials.

3. Orthogonal Polynomial Approximation for
the Lorenz System with
Multistochastic Disturbances

As a representative of the chaos, the Lorenz-like systems
have been analyzed [27–29]. Among them, Chen system
and Lü system have been proved to be the special cases
of the Lorenz system in [30, 31]. The Lorenz system has
become one of the most widely studied nonlinear chaotic
systems because of its wide range of behaviors [32–34]. It
has been found to be useful in statistics, engineering science,
and so on [35–37]. Therefore, the research on the Lorenz
system with multistochastic disturbances has very important
theoretical significance. Next, the Lorenz system with mul-
tistochastic disturbances will be considered. The complex
dynamic behaviors are discussedwith performing the numer-
ical simulations of its equivalent deterministic system.

The Lorenz system is

�̇� = 𝑎 (𝑦 − 𝑥) ,

̇𝑦 = 𝑐𝑥 − 𝑥𝑧 − 𝑦,

�̇� = 𝑥𝑦 − 𝑏𝑧,

(9)

where 𝑥, 𝑦, and 𝑧 are state variables. 𝑎, 𝑏, and 𝑐 are unknown
parameters to be identified. In particular, when 𝑎 = 10,
𝑏 = 8/3, and 𝑐 = 28, the system (9) displays a chaotic
attractor. In this paper, we consider the Lorenz system with
multistochastic disturbances. If 𝑏 and 𝑐 are independently

random parameters, then (9) becomes the stochastic Lorenz
system. Suppose that 𝑏 and 𝑐 can be expressed as

𝑏 = 𝑏 + 𝛿
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where 𝑏 and 𝑐 are mean values of 𝑏 and 𝑐, respectively;
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2
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of the random parameters 𝑏 and 𝑐, respectively.
Then, the stochastic Lorenz system can be written as
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2
𝜉

2
) 𝑥 − 𝑥𝑧 − 𝑦,

�̇� = 𝑥𝑦 − (𝑏 + 𝛿

1
𝜉

1
) 𝑧.

(11)

According to (3), the responses can be written as
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Figure 1: The bifurcation diagrams of the three responses.
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Figure 2: The phase portraits of the three responses with 𝑎 = 3.43.
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(13)

Similar to [23], we choose the random variables 𝜉
𝑖
(𝑖 =

1, 2) defined on [−1, 1] with an arch-like distribution in the
rest of the paper. The arch-like probability density function
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Figure 4:ThePoincaré sections of the three responseswith 𝑎 = 5.73.

𝜌(𝜉) is usually characterized by the uncertainty in the real
word; that is,

𝜌 (𝜉) =

{

{

{

(

2

𝜋

)
√
1 − 𝜉

2
,









𝜉









≤ 1,

0,









𝜉









> 1.

(14)

Corresponding to these random variables, the orthogonal
polynomial is chosen as the second kind of Chebyshev
polynomial. And the orthogonality of the polynomial can be
expressed as

∫

1

−1

(

2

𝜋
√
1 − 𝜉

2
)𝑈

𝑖
(𝜉) 𝑈

𝑗
(𝜉) 𝑑𝜉 = {

1, 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗.

(15)
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Figure 5: The Poincaré sections of the three responses with 𝑎 = 5.91.

Therefore, the coefficients of (6) are 𝛼

𝑗−1
= 𝛾

𝑗+1
= 1/2 and

𝛽

𝑗
= 0 (𝑗 = 0, 1, 2, . . .). Furthermore, the quadratic product

polynomial of (13) can be simplified into a linear combination
of the related single polynomials via the recurrent relation.
The coefficients of 𝑈

𝑖
(𝜉

1
)𝑈

𝑗
(𝜉

2
) can be denoted as 𝑋𝑌
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(16)
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Figure 6: The maximum Lyapunov exponents for the two systems.
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Figure 7: The Poincaré sections of the two systems with 𝑎 = 5.66.

where 𝑋𝑌

𝑖𝑗
(𝑡) or 𝑋𝑍

𝑖𝑗
(𝑡) (𝑖 = 0, 1, . . . ,𝑀; 𝑗 = 0, 1, . . . , 𝑁)

can be derived through the computer algebraic system.
Substituting (6) and (16) into (13), we yield

𝑀
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Figure 8: The Poincaré sections of the two systems with 𝑎 = 5.61.
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Figure 9: The bifurcation diagrams of the three responses.
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Figure 10: The time history of the three responses with 𝑐 = 13.76.
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Based on the result of (8), an equivalent deterministic system
of the stochastic Lorenz system (11) is finally obtained when
𝑀 = 𝑁 = 3; that is,

�̇�

𝑖𝑗
(𝑡) = 𝑎 [𝑦

𝑖𝑗
(𝑡) − 𝑥

𝑖𝑗
(𝑡)] ,

̇𝑦

𝑖𝑗
(𝑡) = 𝑐𝑥

𝑖𝑗
(𝑡) − 𝑋𝑍

𝑖𝑗
(𝑡) − 𝑦

𝑖𝑗
(𝑡)

+

𝛿

2

2

[𝑥

𝑖𝑗−1
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𝑖−1𝑗
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𝑖+1𝑗
(𝑡)] ,

(18)

where 𝑥
𝑖,−1

(𝑡) = 0, 𝑧
−1,𝑗

(𝑡) = 0, 𝑥
𝑖,4
(𝑡) = 0, 𝑧

4,𝑗
(𝑡) = 0, and

(𝑖, 𝑗 = 0, 1, 2, 3).

The ensemble mean responses of the system (11) are

𝐸 [𝑥 (𝑡, 𝜉

1
, 𝜉
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1
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2
)] =

3

∑
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𝑖
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𝑗
(𝜉

2
)] = 𝑧

00
(𝑡) .

(19)

The sample responses can be obtained as follows:

𝑥 (𝑡, 0, 0) ≈

3

∑

𝑖=0

3

∑

𝑗=0

𝑥

𝑖𝑗
(𝑡) 𝑈

𝑖
(0) 𝑈

𝑗
(0)

= 𝑥

00
(𝑡) − 𝑥

02
(𝑡) − 𝑥

20
(𝑡) + 𝑥

22
(𝑡) ,

𝑦 (𝑡, 0, 0) ≈

3

∑

𝑖=0

3

∑

𝑗=0

𝑦

𝑖𝑗
(𝑡) 𝑈

𝑖
(0) 𝑈

𝑗
(0)

= 𝑦

00
(𝑡) − 𝑦
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(𝑡) − 𝑦

20
(𝑡) + 𝑦
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(𝑡) ,

𝑧 (𝑡, 0, 0) ≈

3

∑

𝑖=0

3

∑

𝑗=0

𝑧

𝑖𝑗
(𝑡) 𝑈

𝑖
(0) 𝑈

𝑗
(0)

= 𝑧

00
(𝑡) − 𝑧
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(𝑡) − 𝑧
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(𝑡) + 𝑧

22
(𝑡) .

(20)

Given a series of specific initial conditions, the responses
of the equivalent deterministic system (18) and the determin-
istic system (9) can be obtained by numerical simulation.
Then the ensemble mean responses (19) and the sample
responses (20) are received. Set DR for the deterministic
responses of the system (9), set EMR for the ensemble mean
responses (19), and set SRM for the sample responses (20).
EMR can be used to explore basic nonlinear phenomena in
the stochastic Lorenz system (11).The feasibility of the second
kind of Chebyshev polynomial approximation is verified by
comparing DR with SRM. Some differences of the dynamic
behaviors in the stochastic Lorenz system (11) are discussed
by comparing DR and EMR.

4. The Dynamic Analysis

In this section, dynamic analysis of the three responses DR,
SRM, and EMR is explored by MATLAB programming and
ode45 simulating. Owing to the small quantities of intensities
𝛿

1
and 𝛿

2
, the same initial conditions for system (9) and

system (18) are given; namely, 𝑥
0
= 𝑥(0) = −1.4, 𝑦

0
= 𝑦(0) =

2.4, and 𝑧

0
= 𝑧(0) = 0. Consider

𝑥 (0) = [−1.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

𝑇
,

𝑦 (0) = [2.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

𝑇
,

𝑧 (0) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

𝑇
.

(21)
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Figure 11: The phase portraits of the three responses with 𝑐 = 18.96.
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Figure 12: The maximum Lyapunov exponents for the two systems
with 𝛿

1
= 𝛿

2
= 0.01.

It is well known that the dynamic behaviors of the deter-
ministic Lorenz system are complex. With the changing of
parameters, the dynamic behaviors of the stochastic Lorenz
system (11) are determined by the system parameters and the
random parameter disturbances and their intensities. In the
following, we analyze the dynamic features of the system (11)
in detail.

4.1. Dynamic Analysis of the Stochastic Lorenz System (11)with
the Change of System Parameter 𝑎 and Stochastic Intensity.
The system parameters are chosen as 𝑏 = 8/3, 𝑐 = 28,

Table 1

𝑎 [0, 0.3] (0.3, 5.72] 5.73 [5.74, 6]
DR EP LC LC Chaos
SRM EP LC LC Chaos
EMR EP EP Chaos Chaos

𝛿

1
= 0.01, and 𝛿

2
= 0.01 and the initial condition is given

as (21). When the parameter 𝑎 belongs to different inter-
vals, Table 1 shows different dynamic behaviors of the three
responses, where EP is the abbreviation of equilibrium point
and LC is the abbreviation of limit cycle.

The bifurcation diagrams of the three responses DR,
SRM, and EMR are given in Figures 1(a), 1(b), and 1(c).
It is found that the trajectories of the three responses DR,
SRM, and EMR converge to the same equilibrium point as
𝑎 ∈ [0, 0.3]. DR and SRM converge to the same limit cycle,
while EMR still converges to equilibrium point in the interval
(0.3, 5.72] shown in Figures 2(a) and 2(b). In order to study
the chaos phenomenon of the stochastic Lorenz system
(11), we discuss the maximum Lyapunov exponent and the
Poincaré section. It is clear that EMR enters chaos earlier than
DR as revealed in Figure 3. For example, DR and SRM still
converge to limit cycle with 𝑎 = 5.73 in Figure 4(a). But
EMR enters chaos in Figure 4(b). The three responses DR,
SRM, and EMR are all chaotic in the interval [5.74, 6] such
as 𝑎 = 5.91 exhibited in Figures 5(a), 5(b), and 5(c).

Increase the stochastic intensity 𝛿

1
to 0.03. From the

maximum Lyapunov exponents for the systems (9) and (11)
in Figure 6(a), we can find that the stochastic Lorenz system
(11) has been chaotic with 𝑎 = 5.70. Continue increasing it to
0.05; from themaximumLyapunov exponents for the systems
(9) and (11) in Figure 6(b), we can find that the system (11) has
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Figure 13: The Poincaré sections of the three responses with 𝑐 = 24.05.
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Figure 14: The maximum Lyapunov exponents for the two systems.

entered chaos with 𝑎 = 5.68. Further increase it to 0.08. The
system (9) still converges to limit cycle with 𝑎 = 5.66, whereas
the system (11) is chaotic, which are, respectively, revealed
in Figures 7(a) and 7(b). When 𝛿

1
= 0.1, the system (11) is

chaotic with 𝑎 = 5.61, but the system (9) is not, which are,
respectively, revealed in Figures 8(a) and 8(b).

Influenced by the system parameter 𝑎, EMR does not
experience period state before entering chaos. EMR and DR
enter chaos at different time periods. With the increase of

the stochastic intensity 𝛿

1
, the stochastic Lorenz system (11)

enters chaos earlier than the deterministic system (9).

4.2. Dynamic Analysis of the Stochastic Lorenz System (11)with
the Change of Random Parameter 𝑐 and Stochastic Intensity.
Now the system parameters are 𝑎 = 10, 𝑏 = 8/3, 𝛿

1
= 0.01,

and 𝛿

2
= 0.01. The dynamical characteristics of the three

responses DR, SRM, and EMR are discussed in Table 2.
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Table 2

𝑐 [0, 17.76) except for [13.76, 13.85] [13.76, 13.85] [17.76, 24.04] [24.05, 24.10] [24.11, 26]
DR EP EP LC LC Chaos
SRM EP EP LC LC Chaos
EMR EP EP EP Chaos Chaos

−7.7 −7.65 −7.6 −7.55 −7.5 −7.45
−8

−7.95

−7.9

−7.85

−7.8

−7.75

−7.7

−7.65

−7.6

−7.55

−7.5

x
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Figure 15: The Poincaré sections of the two systems with 𝑐 = 23.90.
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Figure 16: The Poincaré sections of the two systems with 𝑐 = 23.85.
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Figure 17: The phase portraits of the four responses with 𝑐 = 13.75.
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Figure 18: The time history of the four responses.

From the bifurcation diagrams in Figure 9, it is found
that the trajectories of the three responses DR, SRM, and
EMR converge to the same equilibrium point in the intervals
[0, 13.76)⋃(13.85, 17.76). With 𝑐 = 13.76, the responses
DR and SRM converge to the same equilibrium point, while
the response EMR converges to another equilibrium point
demonstrated in Figure 10. The responses DR and SRM
converge to the same limit cycle, but the response EMR still
converges to the equilibrium point for 𝑐 ∈ [17.76, 24.04].
Figure 11 has shown that 𝑐 = 18.96. Figure 12 shows the
maximum Lyapunov exponents for the systems (9) and (11)
and they enter chaos at different times. Figures 13(a) and 13(b)
are their Poincaré sections. AndEMRhas entered chaoswhen
DR and SRMconverge to limit cycle as 𝑐 ∈ [24.05, 24.10]. DR,
SRM, and EMR are all chaotic for 𝑐 ≥ 24.11.

Furthermore, Figure 14(a) demonstrates the maximum
Lyapunov exponents for EMR and DR as 𝛿

1
= 0.03. It is

shown that EMRhas entered chaos with 𝑐 = 24.01. Increasing
𝛿

1
to 0.05, EMR has entered chaos with 𝑐 = 23.97 in

Figure 14(b). Further increasing it to 0.08, it is obvious that
EMR has entered chaos at 𝑐 = 23.90, which is displayed
in Figure 15(b). But DR has not entered chaos, which is
displayed in Figure 15(a). When 𝛿

1
= 0.1, EMR has been

chaotic with 𝑐 = 23.85, but DR has not been chaotic, which is
exhibited in Figure 16. It shows that EMR enters chaos earlier
with the increase of the stochastic intensity 𝛿

1
.

If the parameter 𝑏 is random in the system (9), Lorenz
system with one random parameter was obtained [38]. Set
EMR(𝑏) for the ensemble mean response of the Lorenz
system with one random parameter 𝑏. Then we can discuss
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Table 3

𝑐 [0, 13.75]⋃(13.85, 17.75] (13.75, 13.85] (17.75, 23.94] (23.94, 24.06] (24.06, 26]
DR EP EP LC LC Chaos
SRM EP EP LC LC Chaos
EMR EP EP EP Chaos Chaos
EMR(𝑏) EP EP EP Chaos Chaos
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Figure 19: The phase portraits of the four responses with 𝑐 = 23.94.

the dynamical features of DR, SRM, EMR, and EMR(𝑏).
Table 3 clearly reveals this.

It is obvious that DR, SRM, EMR, and EMR(𝑏) have the
same equilibrium point for 𝑐 = 13.75 in Figure 17. DR and
SRM converge to one equilibrium point, while EMR and
EMR(𝑏) converge to another equilibrium point with 𝑐 =

13.79 in Figure 18(a). But DR, SRM, and EMR(𝑏) have the
same equilibrium point as 𝑐 = 13.85, while EMR has another
equilibriumpoint in Figure 18(b).DR and SRMhave the same
periodic solution for 𝑐 = 23.94, but EMR and EMR(𝑏) still
converge to the same equilibrium point, shown in Figures
19(a) and 19(b), respectively. EMR and EMR(𝑏) have been
chaotic for 𝑐 = 24.06 as shown in Figures 20(b) and 20(c),
while DR and SRM still converge to equilibrium point in
Figure 20(a). DR, SRM, EMR, and EMR(𝑏) are all chaotic for
𝑐 = 24.5.

Influenced by the random parameter 𝑐, the system (11)
doesn’t experience period state before entering chaos. The
systems (11) and (9) converge to different equilibrium points
in [13.76, 13.85]. And they enter chaos at different time.
Besides, the Lorenz system with multistochastic disturbances
is consistent with the deterministic one very well as 𝜉

1
= 𝜉

2
=

0. Finally, the Lorenz system with one random parameter is

a special case of the Lorenz system with multistochastic
disturbances.

5. Conclusion

In this paper, the nonlinear chaotic systemwithmultistochas-
tic disturbances is studied. Firstly, themethod of reducing the
nonlinear chaotic system with multistochastic disturbances
into an equivalent deterministic system is given according to
the orthogonal polynomial approximation.Then its dynamic
analysis can be achieved by discussing its equivalent deter-
ministic system. To illustrate purposes, the Lorenz system
with multistochastic disturbances is discussed. Affected by
the stochastic disturbances and the stochastic intensities, the
dynamic behaviors of the stochastic Lorenz system show
some differences. Moreover, the Lorenz system with multi-
stochastic disturbances ismore general than such systemwith
deterministic or one random parameter. Besides, with the
increase of the stochastic intensity, the Lorenz system with
multistochastic disturbances enters chaos earlier.

In the future, we will do further researches for the cases
that 𝑏 and 𝑐 are correlated or both changed in the Lorenz sys-
tem with multistochastic disturbances. They are interesting
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Figure 20: The bifurcation diagrams of the three responses.

and challenging problems and richer dynamic behaviors are
expected to be found.
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