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A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture com-
putation system is discussed.The difference scheme with variable stencil is constructed on the base of an integral equality between
the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation
between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential
algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied.

1. Introduction

Many physical phenomena in transport processes are mod-
eled by time-dependent hyperbolic conservation laws [1–4].
The finite volume method (FVM) is a standard conservative
method to construct numerical approximations for solving
hyperbolic conservation problems. Modern modifications of
FVM [5–8] provide well-established conservative methods
for solving the governing advection equations. Moreover,
some of them were developed to treat high gradients and
discontinuities of a solution [7, 8]. In spite of their advances
for hyperbolic equations, these methods have the limitation
consisting in a time step restriction, mainly for stability
sake. On the other hand, during the last three decades the
idea of applying the method of characteristics to advective
quantities forward in time has rapidly developed and has
gained popularity in many areas [9–13]. In contrast to
traditional Eulerian schemes, semi-Lagrangian algorithms
provide unconditional stability and allow using large time
steps. Despite unconditional stability, these methods are
explicit and therefore they look well suited for paralleliza-
tion. Now semi-Lagrangian methods are intensively studied

and their efficiency for convection-dominated problems is
proved. For a more detailed discussion about the comparison
of traditional Eulerian and semi-Lagrangian schemes for
hyperbolic conservation laws, see [6, 14, 15].

Initially semi-Lagrangian algorithms, as methods of
characteristics, were developed with application in climate
prediction [16–21]. The simplest schemes use the approx-
imation of a trajectory (or curvilinear characteristic) by
a straight line and employ a low-order interpolation to
compute a numerical solution. Nowadays, simplicity and
efficiency of these schemes make them quite popular in
different fields of numerical modeling like fluid dynamics
applications [9, 12, 22], shallow water equations [10], fiber
dynamics described by the Fokker-Planck equation [11], heat-
conduction equation [23], and so forth. Now modern semi-
Lagrangian algorithms involve a higher-order approximation
of a curvilinear characteristic and employ a higher-order
interpolation; see, for example, [22]. Recently, considerable
efforts have been made to construct the conservative semi-
Lagrangian methods [9, 20, 24–28]. For instance, Scroggs
and Semazzi [9] presented a semi-Lagrangian finite volume
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method that used a rectangular grid for a system of conser-
vation laws and satisfied the discrete conservation relation,
but the numerical results demonstrate some violation of full
conservation. Early modifications of the semi-Lagrangian
approach use a rectangular grid which is fixed throughout
the simulation [9, 17, 24, 25]. Semi-Lagrangian schemes allow
using spatial grids independently of one another. As a result,
adaptive grids are widely used in modern versions of this
approach [20, 28]. In spite of the progress in semi-Lagrangian
methods, for most of them [9–12, 20, 24, 28] convergence has
not been theoretically proved.

In this paper, we present a sketch of the theoretical proof
and a numerical justification for the difference scheme of
the semi-Lagrangian family. We start with the theorem about
an exact equality that involves two spatial integrals over
domains at neighboring time levels and the third integral
over an inflow boundary. To prove convergence theoretically,
we use a square grid, the bilinear interpolation, and the
Runge-Kutta method for the fourth-order approximation of
characteristics. This allows us to prove first-order conver-
gence in a discrete analogue of the 𝐿

1
-norm. The theoretical

convergence estimates are confirmed by numerical results.
In the remaining part of the paper, some parallel imple-

mentations of this method are studied. We discuss the design
subtleties of parallel implementations of the algorithm by
the OpenMP-technology for shared memory computational
systems and by the CUDA technology for general-purpose
GPU programming. In addition, the influence of the Hyper-
Threading technology on the performance of our OpenMP-
code is studied. Moreover, the difficulties of the algorithm
implementation and the performance for hybrid architecture
computation systems are discussed for our CUDA codes.

2. Formulation of the Problem

Let𝐷 = [0, 1]×[0, 1]. In the closed domain [0, 𝑇]×𝐷 consider
the two-dimensional advection equation

𝜕𝜌

𝜕𝑡
+
𝜕 (𝑢𝜌)

𝜕𝑥
+
𝜕 (V𝜌)
𝜕𝑦

= 0, (1)

where 𝑢(𝑡, 𝑥, 𝑦) and V(𝑡, 𝑥, 𝑦) are known and are sufficiently
smooth in [0, 𝑇] × 𝐷. We suppose for simplicity that ∀𝑡 ∈
[0, 𝑇] the coefficients satisfy the no-slip conditions at the
upper and lower sides of𝐷

𝑢 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑦=0

= 𝑢 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑦=1

= 0,

V (𝑡, 𝑥, 𝑦)󵄨󵄨󵄨󵄨𝑦=0 = V (𝑡, 𝑥, 𝑦)󵄨󵄨󵄨󵄨𝑦=1 = 0
(2)

and the flow conditions at the left and right sides of𝐷

𝑢 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑥=0

≥ 0, 𝑢 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑥=1

≥ 0. (3)

For the unknown function 𝜌(𝑡, 𝑥, 𝑦) the following initial and
boundary conditions are specified:

∀ (𝑥, 𝑦) ∈ 𝐷 𝜌 (0, 𝑥, 𝑦) = 𝜌init (𝑥, 𝑦) , (4)

∀ (𝑡, 𝑦) ∈ [0, 𝑇] × [0, 1] 𝜌 (𝑡, 0, 𝑦) = 𝜌in (𝑡, 𝑦) . (5)
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Figure 1: Curvilinear quadrangle 𝑄.

3. Numerical Scheme

Subdivide the time segment [0, 𝑇] into𝐾 time levels 𝑡
𝑘
= 𝑘𝜏,

𝑘 = 0, . . . , 𝐾, with the time step 𝜏 = 𝑇/𝐾. Let Ω be a closed
quadrangle at the time level 𝑡

𝑘
. For each of its points on the

segment 𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
]we construct the characteristics defined

by the system of ordinary differential equations

𝑥󸀠 (𝑡) = 𝑢 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) ,

𝑦󸀠 (𝑡) = V (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) ,

𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
] ,

(6)

with the initial value at level 𝑡 = 𝑡
𝑘
as a parameter:

𝑥 (𝑡
𝑘
) = 𝑥
0
, 𝑦 (𝑡

𝑘
) = 𝑦
0
, (𝑥

0
, 𝑦
0
) ∈ Ω. (7)

With the help of these characteristics the edges ofΩ generate
four surfaces 𝑆

𝑛
, 𝑛 = 1, . . . , 4, with the edges 𝐶

𝑛
at 𝑡 = 𝑡

𝑘−1

(Figure 1).
If Ω is located near the inflow boundary 𝑥 = 0, surfaces

𝑆
𝑛
can cross the plane 𝑥 = 0. In this case we get an additional

curvilinear polygon 𝐼 on the plane 𝑥 = 0 (Figure 2).
Generally speaking, 𝐼 and 𝑄 can be triangular, pentag-

onal, or empty domains. If one of them is empty, then the
integral over an empty domain is supposed to be equal to
zero. Since there is no fundamental difference, we consider
only the most common case with quadrangular domains. For
Ω, 𝑄, and 𝐼 the following statement is valid.

Theorem 1. For a smooth solution of the problem (1)–(5) we
have the equality

∫
Ω

𝜌 (𝑡
𝑘
, 𝑥, 𝑦) 𝑑Ω

= ∫
𝑄

𝜌 (𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑄 + ∫

𝐼

(𝜌𝑢) (𝑡, 0, 𝑦) 𝑑𝐼.

(8)

Proof. Denote the volume bounded by Ω,𝑄, 𝐼, and surfaces
𝑆
𝑛
by𝑉 and its boundary by Γ. Apply theGauss-Ostrogradsky

theorem to the left-hand side of the equality

∫
𝑉

(
𝜕𝜌

𝜕𝑡
+
𝜕 (𝑢𝜌)

𝜕𝑥
+
𝜕 (V𝜌)
𝜕𝑦

)𝑑𝑉 = 0. (9)
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Figure 2: Appearance of the boundary quadrangle 𝐼.

Then

∫
𝑉

(
𝜕𝜌

𝜕𝑡
+
𝜕 (𝑢𝜌)

𝜕𝑥
+
𝜕 (V𝜌)
𝜕𝑦

)𝑑𝑉

= ∫
Γ

(𝜌, 𝜌𝑢, 𝜌V) ⋅ (𝑛
𝑡
, 𝑛
𝑥
, 𝑛
𝑦
)
𝑇

𝑑Γ

= ∫
Γ

𝜌 (1, 𝑢, V) ⋅ (𝑛
𝑡
, 𝑛
𝑥
, 𝑛
𝑦
)
𝑇

𝑑Γ = 0.

(10)

Here (𝑛
𝑡
, 𝑛
𝑥
, 𝑛
𝑦
) is the outer normal to Γ and sign “⋅” means

the scalar product. The normal (𝑛
𝑡
, 𝑛
𝑥
, 𝑛
𝑦
) equals (1, 0, 0) on

Ω, (−1, 0, 0) on 𝑄, and (0, −1, 0) on 𝐼. For any 𝑆
𝑛
the normal

(𝑛
𝑡
, 𝑛
𝑥
, 𝑛
𝑦
) is orthogonal to all tangent directions of 𝑆

𝑛
includ-

ing the tangent of characteristics (1 + 𝑢2 + V2)−1/2(1, 𝑢, V).
Therefore (1, 𝑢, V) ⋅ (𝑛

𝑡
, 𝑛
𝑥
, 𝑛
𝑦
)
𝑇
= 0. Taking into account this

reasoning in (10), we get the equality

∫
Ω

𝜌 (𝑡
𝑘
, 𝑥, 𝑦) 𝑑Ω − ∫

𝑄

𝜌 (𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑄

− ∫
𝐼

(𝜌𝑢) (𝑡, 0, 𝑦) 𝑑𝐼 = 0

(11)

that is equivalent to the statement of theorem.

Now construct the uniform mesh 𝐷
ℎ
with mesh-size ℎ =

1/𝑁,𝑁 ≥ 2:

𝐷
ℎ
= {(𝑥

𝑖
, 𝑦
𝑗
) : 𝑥
𝑖
= 𝑖ℎ, 𝑦

𝑗
= 𝑗ℎ; 𝑖, 𝑗 = 0, . . . , 𝑁} . (12)

We will find an approximate solution 𝜌ℎ(𝑡, 𝑥, 𝑦) at each time
level 𝑡 = 𝑡

𝑟
∀𝑟 = 0, . . . , 𝐾 as a grid function with values

𝜌
𝑟

𝑖,𝑗
= 𝜌
ℎ
(𝑡
𝑟
, 𝑥
𝑖
, 𝑦
𝑗
) ∀𝑖, 𝑗 = 0, . . . , 𝑁, (13)

unlike the values of the exact solution

𝜌
𝑟

𝑖,𝑗
= 𝜌 (𝑡

𝑟
, 𝑥
𝑖
, 𝑦
𝑗
) . (14)

To construct the difference schemewith a variable stencil,
we suppose that the function 𝜌ℎ at time level 𝑡

𝑘−1
is already

y

y1

y0
x0 x1 x2 x

Ω2.0

Figure 3: Boundary rectangles.

known and we need to find it at level 𝑡
𝑘
. To compute 𝜌 𝑘

𝑖,𝑗
for

some 𝑖, 𝑗 = 1, 2, . . . , 𝑁 − 1, we take the square Ω
𝑖,𝑗
with four

vertices (𝑥
𝑖
±ℎ/2, 𝑦

𝑗
±ℎ/2) and applyTheorem 1. To determine

𝜌
𝑘

𝑖,𝑗
on the boundary of𝐷we use the rectanglesΩ

𝑖,𝑗
which are

adjoined to this boundary inside𝐷 (Figure 3).
Note that 𝜌 𝑘

0,𝑗
= 𝜌
𝑘

0,𝑗
are known from the boundary

condition (5).
Without loss of generality we describe the construction

of the difference equations for inner nodes with 𝑖, 𝑗 =

1, 2, . . . , 𝑁 − 1 only. Thus, due toTheorem 1 we get

∫
Ω𝑖,𝑗

𝜌 (𝑡
𝑘
, 𝑥, 𝑦) 𝑑Ω = ∫

𝑄
𝑘−1

𝑖,𝑗

𝜌 (𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑄

+ ∫
𝐼
𝑘−1

𝑖,𝑗

(𝜌𝑢) (𝑡, 0, 𝑦) 𝑑𝐼.

(15)

Here the curvilinear polygons 𝑄𝑘−1
𝑖,𝑗

and 𝐼𝑘−1
𝑖,𝑗

are formed by
the characteristics (6) that issue out of the edges of square
Ω
𝑖,𝑗
. To compute the second integrals in (15) numerically,

first we replace the exact function 𝜌(𝑡
𝑘−1
, 𝑥, 𝑦) by its bilinear

interpolant

𝜌
𝐼

ℎ
(𝑡
𝑘−1
, 𝑥, 𝑦) =

𝑁

∑

𝑞=0

𝑁

∑

𝑝=0

𝜌
𝑘−1

𝑝,𝑞
𝜑
𝑝,𝑞
(𝑥, 𝑦) (16)

with the help of the basis functions

𝜑
𝑝,𝑞
(𝑥) =

{{{{{

{{{{{

{

(

1 −
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑝
− 𝑥

󵄨󵄨󵄨󵄨󵄨

ℎ
)(

1 −
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑞
− 𝑦

󵄨󵄨󵄨󵄨󵄨

ℎ
)

∀ (𝑥, 𝑦) ∈ [𝑥
𝑝−1
, 𝑥
𝑝+1
] × [𝑦

𝑞−1
, 𝑦
𝑞+1
] ,

0 otherwise,

∀𝑝, 𝑞 = 0, . . . , 𝑁.

(17)

To compute the integral over the domain 𝐼𝑘−1
𝑖,𝑗

, we also use the
bilinear interpolant

(𝜌𝑢)
𝐼

𝜏
(𝑡, 𝑦)

=

𝑁

∑

𝑞=0

𝐾

∑

𝑟=0

𝜌in (𝑡𝑟, 𝑦𝑞) 𝑢 (𝑡𝑟, 0, 𝑦𝑞) 𝜓𝑟,𝑞 (𝑡, 𝑦)
(18)
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with the basis functions

𝜓
𝑟,𝑞
(𝑥) =

{{{{{

{{{{{

{

(
1 −

󵄨󵄨󵄨󵄨𝑡𝑟 − 𝑡
󵄨󵄨󵄨󵄨

𝜏
)(

1 −
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑞
− 𝑦

󵄨󵄨󵄨󵄨󵄨

ℎ
)

∀ (𝑡, 𝑦) ∈ [𝑡
𝑟−1
, 𝑡
𝑟+1
] × [𝑦

𝑞−1
, 𝑦
𝑞+1
] ,

0 otherwise,

∀𝑟 = 0, . . . , 𝐾, 𝑞 = 0, . . . , 𝑁.

(19)

The left-hand side of (15) is approximated by the midpoint
quadrature rule with second-order accuracy:

∫
Ω𝑖,𝑗

𝜌 (𝑡
𝑘
, 𝑥, 𝑦) 𝑑Ω ≈ mes (Ω

𝑖,𝑗
) 𝜌
𝑘

𝑖,𝑗

∀𝑖, 𝑗 = 0, 1, . . . , 𝑁.

(20)

So, instead of the exact equality (15) we get the approximate
one:

mes (Ω
𝑖,𝑗
) 𝜌
𝑘

𝑖,𝑗
≈ ∫
𝑄
𝑘−1

𝑖,𝑗

𝜌
𝐼

ℎ
(𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑄

+ ∫
𝐼
𝑘−1

𝑖,𝑗

(𝜌𝑢)
𝐼

𝜏
(𝑡, 0, 𝑦) 𝑑𝐼.

(21)

To simplify the numerical computation of the right-hand
side in (21), we approximate the domains 𝑄𝑘−1

𝑖,𝑗
and 𝐼𝑘−1
𝑖,𝑗

by
simpler ones. Since in themore general case both domains are
curvilinear quadrangles, we demonstrate the approximation
only for quadrangular𝑄𝑘−1

𝑖,𝑗
. Introduce four additional points

(𝑥
𝑖
± ℎ/2, 𝑦

𝑗
) and (𝑥

𝑖
, 𝑦
𝑗
± ℎ/2) on the square Ω

𝑖,𝑗
at time

level 𝑡
𝑘
and denote each of the eight nodes by 𝐴

𝑛
= (𝑥
𝑛
, 𝑦
𝑛
),

𝑛 = 1, . . . , 8. Out of each 𝐴
𝑛
we pass the corresponding

characteristic to the time level 𝑡
𝑘−1

which gives the point
𝐵
𝑛
= (𝑥
𝑛
, 𝑦
𝑛
) (Figure 4).

To compute the coordinates of the point 𝐵
𝑛
numerically,

we solve the system of ordinary differential equations (6) with
the initial condition

𝑥 (𝑡
𝑘
) = 𝑥
𝑛
, 𝑦 (𝑡

𝑘
) = 𝑦
𝑛
, (22)

by the fourth-order Runge-Kutta method [29]. Thus, we find
the approximation 𝐵ℎ

𝑛
= (𝑥
𝑛
(𝑡
𝑘−1
), 𝑦
𝑛
(𝑡
𝑘−1
)) of the point 𝐵

𝑛
.

The nodes 𝐵ℎ
𝑛
, 𝑛 = 1, . . . , 8, define the polygon 𝑃𝑘−1

𝑖,𝑗
which

is considered as a quadrangle with four parabolic edges
(Figures 4-5). The constructed domain 𝑃

𝑘−1

𝑖,𝑗
approximates

𝑄
𝑘−1

𝑖,𝑗
. In the same way we construct the polygon 𝐿𝑘−1

𝑖,𝑗
which

approximates 𝐼𝑘−1
𝑖,𝑗

. For the above approximation the follow-
ing statement is valid [30].

Lemma 2. Let the coordinates of the nodes 𝐵
𝑛
, 𝑛 = 1, . . . , 8,

be computed within the fourth-order accuracy 𝑥
𝑛
− 𝑥
𝑛
(𝑡
𝑘
) =

𝑂(𝜏
4
), 𝑦
𝑛
− 𝑦
𝑛
(𝑡) = 𝑂(𝜏

4
). Assume that the ratio between 𝜏

and ℎ is fixed: 𝜏 = 𝑐ℎ. Then for all 𝑖, 𝑗 = 0, . . . , 𝑁

mes (𝑄𝑘−1
𝑖,𝑗

\ 𝑃
𝑘−1

𝑖,𝑗
) + mes (𝑃𝑘−1

𝑖,𝑗
\ 𝑄
𝑘−1

𝑖,𝑗
) = 𝑂 (ℎ

4
) ,

mes (𝐼𝑘−1
𝑖,𝑗

\ 𝐿
𝑘−1

𝑖,𝑗
) + mes (𝐿𝑘−1

𝑖,𝑗
\ 𝐼
𝑘−1

𝑖,𝑗
) = 𝑂 (ℎ

4
) ,

(23)

A1

A8

A7 A5

A4

B1

B8

B2 B3

B4

B5

tk

tk−1Qk−1
i,j

Figure 4: Approximation of a curvilinear quadrangle.
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Bh
2

Bh
3

Boundary of Qk−1
i,j

Boundary of Pk−1
i,j

Figure 5: Approximation of nodes and edges.

where the notation mes (Ω)means the measure of the domain
Ω.

Thus, the replacement of 𝑄𝑘−1
𝑖,𝑗

by 𝑃𝑘−1
𝑖,𝑗

and 𝐼𝑘−1
𝑖,𝑗

by 𝐿𝑘−1
𝑖,𝑗

,
𝑖 = 1, . . . , 𝑁, 𝑗 = 0, . . . , 𝑁, reduces the approximate equality
(21) to another one:

mes (Ω
𝑖,𝑗
) 𝜌
𝑘

𝑖,𝑗
≈ ∫
𝑃
𝑘−1

𝑖,𝑗

𝜌
𝐼

ℎ
(𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑃

+ ∫
𝐿
𝑘−1

𝑖,𝑗

(𝜌𝑢)
𝐼

𝜏
(𝑡, 0, 𝑦) 𝑑𝐿.

(24)

Divide it by mes (Ω
𝑖,𝑗
) and replace 𝜌𝐼

ℎ
by the interpolant 𝜌 𝐼

ℎ
of

the known grid function 𝜌ℎ at the level 𝑡
𝑘−1

:

𝜌
𝐼

ℎ
(𝑡
𝑘−1
, 𝑥, 𝑦) =

𝑁

∑

𝑞=0

𝑁

∑

𝑝=0

𝜌
𝑘−1

𝑝,𝑞
𝜑
𝑝,𝑞
(𝑥, 𝑦) . (25)

As a result, we get the equation for finding 𝜌 𝑘
𝑖,𝑗
as an approxi-

mation of 𝜌𝑘
𝑖,𝑗
:

𝜌
𝑘

𝑖,𝑗
=

1

mes (Ω
𝑖,𝑗
)

∫
𝑃
𝑘−1

𝑖,𝑗

𝜌
𝐼

ℎ
(𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑃

+
1

mes (Ω
𝑖,𝑗
)

∫
𝐿
𝑘−1

𝑖,𝑗

(𝜌𝑢)
𝐼

𝜏
(𝑡, 0, 𝑦) 𝑑𝐿

∀𝑖 = 1, . . . , 𝑁, 𝑗 = 0, 1, . . . , 𝑁,

(26)

𝜌
𝑘

0,𝑗
= 𝜌in (𝑡𝑘, 0, 𝑦𝑗) ∀𝑗 = 0, . . . , 𝑁. (27)

To compute the integrals numerically, we decompose the
domain 𝑃𝑘−1

𝑖,𝑗
(or 𝐿𝑘−1
𝑖,𝑗

) into several triangles which lie only in
one cell [𝑥

𝑝−1
, 𝑥
𝑝
]×[𝑦
𝑞
, 𝑦
𝑞+1
], 𝑝, 𝑞 = 0, 1, . . . , 𝑁−1, and have

only one parabolic edge and two straight-line edges parallel
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to the coordinate axes. Then we replace the integral over the
domain𝑃𝑘−1

𝑖,𝑗
(or 𝐿𝑘−1
𝑖,𝑗

) by a sumof integrals.Thuswe compute
integrals directly without any quadrature rule.

To evaluate the order of convergence, we use the discrete
analogue of the 𝐿

1
(𝐷)-norm:

󵄩󵄩󵄩󵄩󵄩
𝜌
ℎ󵄩󵄩󵄩󵄩󵄩

ℎ

𝐿1

=

𝑁

∑

𝑖,𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜌
ℎ

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
mes (Ω

𝑖,𝑗
) . (28)

For the numerical solution computed by (26) the following
theorem is valid.

Theorem3. Let the solution𝜌(𝑡, 𝑥, 𝑦) of the problem (1)–(5) be
sufficiently smooth and let the discrete solution 𝜌ℎ be computed
by (26). Assume that 𝜏 = 𝑐ℎ. Then we have the following
estimate: ∀𝑘 = 0, 1, . . . , 𝐾

󵄩󵄩󵄩󵄩󵄩
𝜌(𝑡
𝑘
, ⋅) − 𝜌

ℎ
(𝑡
𝑘
, ⋅)
󵄩󵄩󵄩󵄩󵄩

ℎ

𝐿1

≤ 𝑘 (𝑐
1
ℎ
2
+ 𝑐
2
𝑐
2
ℎ
3
) , (29)

with the constants 𝑐
1
and 𝑐
2
independent of 𝑘, ℎ, 𝜏, and 𝑐.

Proof. Use the induction on 𝑘. For 𝑘 = 0 inequality (29) is
valid because of the exact initial condition (4). Suppose the
estimate (29) is valid for some 𝑘 − 1 ≥ 0 and prove it for 𝑘.

FromTheorem 1 ∀𝑖 = 1, . . . , 𝑁, 𝑗 = 0, . . . , 𝑁 we get

∫
Ω𝑖,𝑗

𝜌 (𝑡
𝑘
, 𝑥, 𝑦) 𝑑Ω = ∫

𝑄
𝑘−1

𝑖,𝑗

𝜌 (𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑄

+ ∫
𝐼
𝑘−1

𝑖,𝑗

𝜌 (𝑡, 0, 𝑦) 𝑢 (𝑡, 0, 𝑦) 𝑑𝐼.

(30)

For the first integral we have the equality

𝜌 (𝑡
𝑘
, 𝑥
𝑖
, 𝑦
𝑗
)mes (Ω

𝑖,𝑗
)

= ∫
Ω𝑖,𝑗

𝜌 (𝑡
𝑘
, 𝑥, 𝑦) 𝑑Ω + 𝛿

𝑘

𝑖,𝑗
mes (Ω

𝑖,𝑗
) ,

(31)

where

󵄨󵄨󵄨󵄨󵄨
𝛿
𝑘

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
≤ {

𝑐
1
ℎ
2

∀𝑖 = 1, . . . , 𝑁 − 1,

𝑐
2
ℎ when 𝑖 = 𝑁.

(32)

In the second and third integrals we replace the polygons
𝑄
𝑘−1

𝑖,𝑗
and 𝐼𝑘−1
𝑖,𝑗

by 𝑃𝑘−1
𝑖,𝑗

and 𝐿𝑘−1
𝑖,𝑗

, respectively, according to
the foregoing approximation. Then we replace 𝜌(𝑡

𝑘−1
, 𝑥, 𝑦)

and𝜌(𝑡, 0, 𝑦)𝑢(𝑡, 0, 𝑦) by their piecewise bilinear interpolants.
Due to Lemma 2 and boundedness of the functions 𝜌(𝑡, 𝑥, 𝑦)
and 𝑢(𝑡, 𝑥, 𝑦), formulae (30)-(31) are represented in the
following way:

𝜌
𝑘

𝑖,𝑗
mes (Ω

𝑖,𝑗
) = ∫
𝑃
𝑘−1

𝑖,𝑗

𝜌
𝐼

ℎ
(𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑃

+ ∫
𝐿
𝑘−1

𝑖,𝑗

(𝜌𝑢)
𝐼

𝜏
(𝑡, 0, 𝑦) 𝑑𝐿 + 𝛿

𝑘

𝑖,𝑗
mes (Ω

𝑖,𝑗
)

+ 𝛾
𝑘−1

𝑖,𝑗
+ 𝜂
𝑘−1

𝑖,𝑗
mes (𝑃𝑘−1

𝑖,𝑗
) + 𝜃
𝑘−1

𝑖,𝑗
mes (𝐿𝑘−1

𝑖,𝑗
) ,

(33)

where |𝛾𝑘−1
𝑖,𝑗
| ≤ 𝑐

3
ℎ
4, |𝜂𝑘−1
𝑖,𝑗
| ≤ 𝑐

4
ℎ
2, |𝜃𝑘−1
𝑖,𝑗
| ≤ 𝑐

5
𝜏ℎ. Now

multiply (26) by mes(Ω
𝑖,𝑗
) and subtract it from (33). Then we

have

(𝜌
𝑘

𝑖,𝑗
− 𝜌
𝑘

𝑖,𝑗
)mes (Ω

𝑖,𝑗
)

= ∫
𝑃
𝑘−1

𝑖,𝑗

𝑁

∑

𝑝,𝑞=0

(𝜌
𝑘−1

𝑝,𝑞
− 𝜌
𝑘−1

𝑝,𝑞
) 𝜓
𝑝,𝑞
(𝑥, 𝑦) 𝑑𝑃

+ 𝛿
𝑘

𝑖,𝑗
mes (Ω

𝑖,𝑗
) + 𝛾
𝑘−1

𝑖,𝑗
+ 𝜂
𝑘−1

𝑖,𝑗
mes (𝑃𝑘−1

𝑖,𝑗
)

+ 𝜃
𝑘−1

𝑖,𝑗
mes (𝐿𝑘−1

𝑖,𝑗
) .

(34)

Now, let us sum up the modulus of the last equation for all
𝑖 = 1, . . . , 𝑁, 𝑗 = 0, . . . , 𝑁 and use the decomposition

𝜌
𝑘−1

𝑖,𝑗
= 𝜌
𝑘−1

𝑖,𝑗
+ 𝜉
𝑘−1

𝑖,𝑗
(35)

at level 𝑡
𝑘−1

with a grid function 𝜉
𝑘−1
(𝑥, 𝑦) satisfying the

estimate

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘−1󵄩󵄩󵄩󵄩󵄩

ℎ

𝐿1

≤ (𝑘 − 1) (𝑐
1
ℎ
2
+ 𝑐
2
𝑐
2
ℎ
3
) , (36)

due to the induction hypothesis. Then we get

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘󵄩󵄩󵄩󵄩󵄩

ℎ

𝐿1

≤

𝑁

∑

𝑖,𝑗=0

(∫
𝑃
𝑘−1

𝑖,𝑗

𝑁

∑

𝑝,𝑞=0

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑘−1

𝑝,𝑞

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑝,𝑞
(𝑥, 𝑦) 𝑑𝑃)

+

𝑁

∑

𝑖,𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝛿
𝑘

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
mes (Ω

𝑖,𝑗
) +

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑘−1

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨

+

𝑁

∑

𝑖,𝑗=0

(
󵄨󵄨󵄨󵄨󵄨
𝜂
𝑘−1

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
mes (𝑃𝑘−1

𝑖,𝑗
) +

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑘−1

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
mes (𝐿𝑘−1

𝑖,𝑗
)) .

(37)

Since

𝑁

∑

𝑖,𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝛿
𝑘

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
mes (Ω

𝑖,𝑗
) ≤ (𝑐

1
+ 2𝑐
2
) ℎ
2
,

𝑁

∑

𝑖,𝑗=0

mes (𝑃𝑘−1
𝑖,𝑗
) ≤ 1,

𝑁

∑

𝑖,𝑗=0

mes (𝐿𝑘−1
𝑖,𝑗
) = 𝜏,

(38)

we have

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘󵄩󵄩󵄩󵄩󵄩

ℎ

𝐿1

≤

𝑁

∑

𝑖,𝑗=0

(∫
𝑃
𝑘−1

𝑖,𝑗

𝑁

∑

𝑝,𝑞=0

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑘−1

𝑝,𝑞

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑝,𝑞
(𝑥, 𝑦) 𝑑𝑃)

+ (𝑐
1
+ 2𝑐
2
+ 𝑐
3
+ 𝑐
4
) ℎ
2
+ 𝑐
5
ℎ𝜏
2
.

(39)
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Finally consider the transformations

𝑁

∑

𝑖,𝑗=0

(∫
𝑃
𝑘−1

𝑖,𝑗

𝑁

∑

𝑝,𝑞=0

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑘−1

𝑝,𝑞

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑝,𝑞
(𝑥, 𝑦) 𝑑𝑃)

=

𝑁

∑

𝑝,𝑞=0

(

𝑁

∑

𝑖,𝑗=0

∫
𝑃
𝑘−1

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑘−1

𝑝,𝑞

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑝,𝑞
(𝑥, 𝑦) 𝑑𝑃)

≤

𝑁

∑

𝑝,𝑞=0

(
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑘−1

𝑝,𝑞

󵄨󵄨󵄨󵄨󵄨
∫
𝐷

𝜓
𝑝,𝑞
(𝑥, 𝑦) 𝑑𝐷) .

(40)

It leads to the inequality

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘󵄩󵄩󵄩󵄩󵄩

ℎ

𝐿1

≤

𝑁

∑

𝑝,𝑞=0

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑘−1

𝑝,𝑞

󵄨󵄨󵄨󵄨󵄨
mes (Ω

𝑝,𝑞
)

+ (𝑐
1
+ 2𝑐
2
+ 𝑐
3
+ 𝑐
4
) ℎ
2
+ 𝑐
5
ℎ𝜏
2
.

(41)

Denote 𝑐
1
= (𝑐
1
+ 2𝑐
2
+ 𝑐
3
+ 𝑐
4
) and 𝑐

2
= 𝑐
5
. Thus due to the

relation 𝜏 = 𝑐 ℎ we get inequality (29).

Corollary 4. Let the conditions of Theorem 3 be valid. Then
for 𝑡
𝑘
= 𝑇 one has the estimate

󵄩󵄩󵄩󵄩󵄩
𝜌 (𝑇, ⋅) − 𝜌

ℎ
(𝑇, ⋅)

󵄩󵄩󵄩󵄩󵄩

ℎ

𝐿1

≤ 𝑇(
𝑐
1
ℎ

𝑐
+ 𝑐
2
𝑐ℎ
2
) . (42)

Remark 5. Let the functions 𝜌init(𝑥, 𝑦) and 𝜌in(𝑡, 𝑦) be greater
than zero in the initial and boundary conditions (4)-(5).Then
the interpolants 𝜌𝐼

ℎ
(𝑡
0
, 𝑥, 𝑦) and (𝜌𝑢)𝐼

𝜏
(𝑡, 0, 𝑦) due to (3) are

nonnegative. The integration of them results in nonnegative
values in (26).Thus, by induction we can prove the inequality

𝜌
ℎ
(𝑡
𝑟
, 𝑥
𝑖
, 𝑦
𝑗
) ≥ 0 ∀𝑟 = 1, . . . , 𝐾, 𝑖, 𝑗 = 0, . . . , 𝑁. (43)

Remark 6. The strategy of the domain approximation with
8 nodes is not optimal, of course. In fact it is enough to
use 4 nodes for rectangles. But a theoretical justification
becomes much more complicated. We did not demonstrate
it here since the main purpose of the paper is to verify
parallel properties of the proposed algorithm. Of course,
such an optimization reduces the number of arithmetical
operations but has no influence on the parallel properties of
the algorithm. The same applies to the difference schemes of
higher order.

4. The Numerical Algorithm and
Its Parallel Implementations

The constructed algorithm is implemented in the following
way.

Algorithm 7 (sequential).

(1) Set 𝜌ℎ(0, 𝑥
𝑖
, 𝑦
𝑗
) = 𝜌init(𝑥𝑖, 𝑦𝑗), 𝑖, 𝑗 = 0, . . . , 𝑁, as the

initial data (4).

(2) Time loop: for each time step 𝑘 = 1, . . . , 𝐾 do:
Space loop: for each cell Ω

𝑖,𝑗
, 𝑖 = 1, . . . , 𝑁, 𝑗 = 0,

. . . , 𝑁 do:

(2.1) For each node𝐴
𝑛
= (𝑥
𝑛
, 𝑦
𝑛
), 𝑛 = 1, . . . , 4, solve

the system (18)–(20) and determine the corre-
sponding vertex coordinates 𝐵ℎ

𝑛
= (𝑥
𝑛
(𝑡
𝑘−1
),

𝑦
𝑛
(𝑡
𝑘−1
)) of a polygon 𝑃𝑘−1

𝑖,𝑗
.

(2.2) If a certain characteristic 𝐴
𝑛
𝐵
ℎ

𝑛
intersects the

plane 𝑥 = 0 then the coordinates of this cross-
point are determined.

(2.3) Compute

𝐽
𝑘−1

𝑖,𝑗
= ∫
𝑃
𝑘−1

𝑖,𝑗

𝜌
𝐼

ℎ
(𝑡
𝑘−1
, 𝑥, 𝑦) 𝑑𝑃

+ ∫
𝐿
𝑘−1

𝑖,𝑗

(𝜌𝑢)
𝐼

(𝑡, 0, 𝑦) 𝑑𝐿,

(44)

according to (26) where the integrals are calcu-
lated over each nonempty intersection 𝑃𝑘−1

𝑖,𝑗
∩

{[𝑥
𝑝
, 𝑥
𝑝+1
] × [𝑦

𝑞
, 𝑦
𝑞+1
]} and 𝐿𝑘−1

𝑖,𝑗
∩ {[𝑡
𝑘−1
, 𝑡
𝑘
] ×

[𝑦
𝑞
, 𝑦
𝑞+1
]} separately.

(2.4) Compute 𝜌ℎ(𝑡
𝑘
, 𝑥
𝑖
, 𝑦
𝑗
) = 𝐽
𝑘−1

𝑖,𝑗
/mes(Ω

𝑖,𝑗
).

The end of the space loop.

(2.5) Put 𝜌ℎ(𝑡
𝑘
, 0, 𝑦
𝑗
) = 𝜌in(𝑡𝑘, 𝑦𝑗) for all 𝑗 = 0, . . . ,

𝑁.
(2.6) If necessary, calculate the norms of a solution,

an error, and other statistic data with respect to
an actual time step.

The end of the time loop.

Note that items (2.1)–(2.3) are compute-intensive, espe-
cially the procedure of determining the mutual arrangement
of 𝑃𝑘−1
𝑖,𝑗

and the cells {[𝑥
𝑝
, 𝑥
𝑝+1
] × [𝑦

𝑞
, 𝑦
𝑞+1
]}
𝑁−1

𝑝,𝑞=0
at the

previous time level in item (2.3).
The algorithm is explicit with respect to time, since to

calculate 𝜌ℎ(𝑡
𝑘
, 𝑥, 𝑦) at each time level 𝑡

𝑘
the data are used

only from the previous time level 𝑡
𝑘−1

.
Another advantage of Algorithm 7 is data independence

in the general space loop; that is, the items (2.1)–(2.4) are
carried out for any pair (𝑖, 𝑗), 𝑖 = 1, . . . , 𝑁, 𝑗 = 0, . . . , 𝑁,
independently. In this connection the data parallelism is used.

In the shared memory case for the OpenMP-technology
it is sufficient to parallelize the general space loop at each time
level using an OpenMP directive like the following one:

#pragma omp parallel for collapse (2)
. . .

In order for paralleling to be correct, the data-sharing
attributes of all variables to intermediate outcomes of items
(2.1)–(2.4) have to be private for each thread.

Another justified approach to paralleling the algorithm
is the usage of the NVIDIA CUDA technology for GPU.
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The main aspects of the parallel implementation related to
various features of general-purpose GPU programming are
briefly discussed below.

All functions used in the numerical calculations on aCPU
must be recompiled for a GPU. If we use NVIDIA CUDA
these functions must be declared with the special qualifier
host device which indicates that the NVCC compiler

creates two versions of its executable code for a CPU (host)
and for a GPU (device) separately. GPU will call a device
version of a function while CPU will call its host version.

The principles of efficient CUDA programming are as
follows: (1) the maximal use of inherent parallelism of the
problem and (2) the optimization of memory access.

The first version of our parallel CUDA-algorithm is
based on the inherent parallelism of our numerical explicit
approach. Every thread treats only one cell Ω

𝑖,𝑗
∈ 𝐷
ℎ
; hence,

the space loop body (items (2.1)–(2.4) of Algorithm 7) is the
general computation kernel.

While programming for GPU, the correct defining of the
kernel configuration is important. The kernel configuration
includes two parameters, namely, the number of blocks
(blockCount) in a grid and the number of threads (blockSize)
per block. There is a limit in 1024 threads per block for our
GPU NVIDIA hardware. In the first CUDA-algorithm no
threads amount optimization is used.

Consequently, the simplest parallel version of
Algorithm 7 for the CPU/GPU hybrid architecture is
the following.

Algorithm 8 (CUDA parallel, version 1).

(1) Calculate the kernel configuration (blockSize,
blockCount) using data about a computational
domain.

(2) Allocate host (CPU) and device (GPU)memory; copy
initial data from host to device.

(3) Time loop: for each time step 𝑘 = 1, . . . , 𝐾 do:

(3.1) Call the first CUDA kernel (basic):

(3.1.1) For each cell Ω
𝑖,𝑗
, 𝑖 = 1, . . . , 𝑁, 𝑗 = 0, . . . ,

𝑁, execute items (2.1)–(2.4) of Algorithm 7
in parallel.

(3.2) Synch point: wait for calculations to be com-
pleted.

(3.3) Call the second CUDA kernel (assistive):

(3.3.1) Copy data from an actual time level array
to the previous one in parallel.

(3.4) Synch point: wait for copying to be completed.
(3.5) If necessary, copy results from device to host.
(3.6) If necessary, calculate the norms of a solution,

an error, and other statistic data with respect to
an actual time step.

The end of the time loop.
(4) Copy the results from device to host.

In order to decrease the execution time of Algorithm 8,
items (3.5)-(3.6) must be performed as rare as possible, for
instance, only at time levels where accuracy control, data for
drawing, and so forth are needed.

Algorithm 8 has two general disadvantages: (1) small
speedup in comparison to the sequential version (Figure 8)
and (2) impossibility of execution with a fine computational
mesh (Table 2). What is the matter with these problems?

First, the general loop has a lot of selection statements.
The main selection is between two different ways of

catching in item (3.1.1) of Algorithm 8 (to be more exact, in
the item (2.3) of sequential Algorithm 7). The cells whose
trajectories intersect the boundary and the internal cells are
processed in different ways. We can use two different kernels
which execute in parallel.

We use data parallelism only in Algorithm 8. However,
there is yet another class of parallelism to be exploited
on NVIDIA GPU. This parallelism is similar to the task
parallelism that is found in multithreaded CPU applications.
NVIDIA CUDA task parallelism is based on CUDA streams.
A CUDA stream represents a queue of GPU operations such
as kernel launches, memory copies, and event starts and
stops. The order in which operations are added to the stream
specifies the order in which they will be executed. Each
stream may be considered as a certain task on the GPU, and
there are opportunities for these tasks to execute in parallel
[31]. Thus we apply CUDA streams to our two kernels to
improve parallelism and total GPU utilization.

There are many selections in item (2.3) for determining
mutual arrangement of 𝑃𝑘−1

𝑖,𝑗
and cells of the mesh of the

previous time level. Unfortunately, we cannot avoid these
selections.

Secondly, the CUDA kernel in (3.3) of Algorithm 8 idles
in the context of computation. We apply loop unrolling in
order to eliminate this kernel.

Thirdly, the basic CUDA kernel of Algorithm 8 is not
optimal for memory access. To optimize concurrent read
access global memory of simultaneously running threads,
constant memory is preferable to use. Applying this approach
in our program we allocate all invariable values in constant
memory GPU.

Moreover, for the optimization of parameters of kernels
launch we use the CUDAOccupancy Calculator. It calculates
optimal streaming multiprocessor (SM) utilization taking
into account GPU compute capability, CUDA device proper-
ties, the number of blocks in a grid, the number of threads per
block, the size of the shared-memory space, and the number
of registers per thread.

Consequently, the second CUDA-version of Algorithm 7
for the CPU/GPU hybrid architecture is the following.

Algorithm 9 (CUDA parallel, version 2).

(1) Calculate kernel configuration (blockSize,
blockCount) using data about a computational

domain.
(2) Allocate host (CPU) and device (GPU)memory, copy

initial data from host to device, and copy constant
data from host to constant memory of device.



8 Journal of Applied Mathematics

(3) Time loop: for each time step 𝑘 = 1, 3, 5, . . . , 𝐾−1 do:

(3.1) Call the first CUDA kernel to boundary cells
access by the first CUDA stream:

(3.1.1) Execute items (2.1)–(2.4) of Algorithm 7 in
parallel for each cell Ω

𝑖,𝑗
whose character-

istics intersect the boundary.

(3.2) Call the second CUDA kernel to inner cells
access by the second CUDA stream:

(3.2.1) Execute items (2.1), (2.3)-(2.4) of
Algorithm 7 in parallel for each internal
cellΩ

𝑖,𝑗
.

(3.3) Synch point: wait for calculations of both kernels
to be completed.

(3.4) Call the first CUDA kernel to boundary cells
access by the first CUDA stream:

(3.4.1) Execute items (2.1)–(2.4) of Algorithm 7 in
parallel for each cell Ω

𝑖,𝑗
whose character-

istics intersect the boundary.

(3.5) Call the second CUDA kernel to inner cells
access by the second CUDA stream:

(3.5.1) Execute items (2.1), (2.3)-(2.4) of
Algorithm 7 in parallel for each internal
cellΩ

𝑖,𝑗
.

(3.6) Synch point: wait for calculations of both kernels
to be completed.

(3.7) If necessary, copy results from device to host.
(3.8) If necessary, calculate the norms of a solution,

an error, and other statistic data with respect to
an actual time step.

The end of the time loop.
(4) If 𝐾 is odd then repeat items (3.1)-(3.2).
(5) Copy results from device to host.

5. Numerical Experiments

Specify the velocities

𝑢 (𝑡, 𝑥, 𝑦) = 100𝑦 (1 − 𝑦) [
𝜋

2
− arctg (𝑥)] ,

V (𝑡, 𝑥, 𝑦) = arctg(
𝑥 (1 − 𝑥) 𝑦 (1 − 𝑦) (1 + 𝑡)

10
)

(45)

and take the initial and boundary conditions in the following
form:

∀ (𝑥, 𝑦) ∈ 𝐷 𝜌 (0, 𝑥, 𝑦) = 𝜌init (𝑥, 𝑦) = 1,

∀ (𝑡, 𝑦) ∈ [0, 𝑇] × [0, 1] 𝜌 (𝑡, 0, 𝑦) = 𝜌in (𝑡, 𝑦) = 1.
(46)

Numerical experiments were performed with the ICM
SB RAS FLAGMAN computation system of the following
configuration.

0 1 2 3 4 5 6

1

1.2

n: N = 10 ∗ 2n

Figure 6: The order of convergence.

Hardware.CPU: INTEL XEON, 2×6 cores, HyperThreading;
40Gb DDR3; GPU: NVIDIA TESLA C2050 (CC 2.0).

Software. OS: UBUNTU 11.04; C/C++: GCC 4.5.2, INTEL
C++ Compiler 13.1.0; CUDA C/C++: NVCC 5.0; NVIDIA
CUDA 5.0; BOOST 1.53; NVIDIA CUDA-GDB 5.0.

One of the purposes for the numerical experiments was
to check the convergence order in 𝜏 and ℎ. Therefore the
computations were performed on the sequence of 𝑁 × 𝑁

regular square grids,𝑁 = 10 ⋅ 2
𝑛, 𝑛 = 0, . . . , 6. The number of

time steps is defined by 𝜏 = ℎ/5.
Assume that {𝜌𝑛

ℎ
}
6

𝑛=0
is the set of solutions found on the

sequence of square grids. The expression log
2
(‖𝜌 − 𝜌

𝑛

ℎ
‖
ℎ

𝐿1
/

‖𝜌 − 𝜌
𝑛+1

ℎ
‖
ℎ

𝐿1
) as a function in 𝑛 can be considered as the order

of convergence (Figure 6). The corresponding exact values of
𝜌
𝐾

𝑖,𝑗
were computed by the characteristics method directly. In

Figure 6 we can see the first order of convergence in ℎ.
In our sequential and OpenMP computational experi-

ments we compare the GCC and Intel C++ compilers. The
execution time for the better Intel compiling code is on
average by 15% less than the better GCC one. All presented
numerical resultswere compiledwith−O2optimization level.
Let us remark that we try to use other compiler options (−O3,
−parallel,−AVX), but the performance increases only slightly
or sometimes even decreases. For the CUDA-version we used
the NVCC compiler.

The results of computation speedup of the OpenMP-
version are presented in Table 1 and in Figure 8. The first line
of the table shows speedup (or rather slowing down) of one
thread that executed the OpenMP-code as compared with
the sequential code. Generally, the compiler optimization
under the OpenMP library and overhead related to the
synchronization of OpenMP-threads can be estimated for
these data. As we can see in our case, overhead is small.

One of the purposes of the studies is to assess influence
of the HyperThreading (HT) technology on the parallelism.
As long as only 12 physical cores are available on the CPU, we
have access to 24 logical cores when HT is enabled and to 12
logical cores when HT is disabled, respectively. Experiments
show that when HT is enabled the execution time with 24
threads is about 14% less than that with 12 threads when
HT is disabled (Figure 7). As our code is compute-intensive,
probably, the advantage of HTmay be related to optimization
of memory access.
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Table 1: Speedup of OpenMP-code (HyperThreading is switched Off/On).

Number of threads Number of points in one space dimension (number of the time steps)
80 ∗ 80 (400) 160 ∗ 160 (800) 320 ∗ 320 (1600) 640 ∗ 640 (3200) 1280 ∗ 1280 (6400)

1 0.94/1.00 0.99/1.00 0.99/1.00 0.99/1.00 0.99/1.00
4 3.86/3.89 3.90/3.93 3.92/3.93 3.93/3.95 3.93/3.96
8 7.40/7.35 7.48/7.37 7.53/7.57 7.55/7.59 7.56/7.60
12 10.86/10.86 11.08/11.04 11.17/11.12 11.21/11.14 11.20/10.86
16 4.15/8.76 4.77/8.94 6.32/8.96 7.54/8.98 7.60/8.88
20 4.69/10.63 5.82/10.85 6.55/10.94 7.26/10.96 7.89/10.73
24 5.71/10.98 6.17/12.80 7.30/12.55 7.97/12.83 8.45/12.85

Table 2: Execution time of all versions of program.

Version Number of mesh points in one space dimension (number of the time steps)
80 ∗ 80 (400) 160 ∗ 160 (800) 320 ∗ 320 (1600) 640 ∗ 640 (3200) 1280 ∗ 1280 (6400)

Sequential, −O0 20.16 159.40 1268.46 10107.80 ∗

Sequential, −O2 9.99 78.97 626.72 4980.61 39598.90
Sequential, −O3 9.87 78.08 619.80 4936.25 39202.91
OpenMP(12), −O0, HT Off 1.98 12.52 103.45 819.06 6519.87
OpenMP(12), −O2, HT Off 0.92 7.13 56.10 444.15 3535.53
OpenMP(24), −O2, HT On 0.91 6.17 49.93 388.20 3080.91
CUDA version 1 2.55 13.06 74.02 ∗∗ ∗∗

CUDA version 2 3.20 8.27 42.60 308.82 ∗∗
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Figure 7: Execution time of OpenMP-code (the main vertical axis)
and speedup in comparison with the sequential code (additional
vertical axis). The comparison of results when HyperThreading is
switched On or Off.

The execution time of the sequential, OpenMP, and two
versions ofCUDAcodes is given inTable 2.The≪∗≫ symbol
signifies that the result has not been reached in reasonable
time; for the CUDA-versions the ≪ ∗∗ ≫ symbol means
that the kernel launch failed due to registers bottleneck. For
OpenMP the results on 12 threads when HT is disabled and
on 24 threads when HT is enabled are demonstrated.
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Figure 8: Speedup of parallel versions.

Comparative information on a possibility of code opti-
mization by the GCC compiler is also presented in Table 2.
The execution time of the code compiled without optimiza-
tion and with −O2 and −O3 optimization levels, respec-
tively, was measured. It is clear from Table 2 that compiler
optimization considerably (more than two times) reduces
the execution time of the sequential code. As the compiler
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Table 3: Speedup of parallel versions.

Number of mesh points in one space dimension (number of the time steps)
80 ∗ 80 (400) 160 ∗ 160 (800) 320 ∗ 320 (1600) 640 ∗ 640 (3200)

OpenMP(24), -O2, HT ON/sequential 10.98 12.80 12.55 12.83
CUDA version 1/sequential 3.92 6.05 8.47 ∗∗

CUDA version 2/sequential 3.12 9.55 14.71 16.13
CUDA version 2/OpenMP(12), -O2, HT Off 0.29 0.86 1.32 1.44
CUDA version 2/OpenMP(24), -O2, HT On 0.28 0.75 1.17 1.26

global void unit foo (float∗ inA, float out, int size) {
int i=blockIdx.x∗blockDim.x+threadIdx.x;
if (i<size)

out[i] = do smb with(inA[i]);
}

Pseudocode 1

does not optimize the CUDA-code, the execution time of the
CUDA-versions does not depend on compiling options.

Table 3 and Figure 8 present the data on computation
speedup of the best OpenMP-version and two CUDA-
versions in comparison with the sequential program com-
piled with −O2. Speedup of the second CUDA-version in
comparison with the OpenMP-version is given as well.
Numerical experiments show that on fine grids in compari-
son with the sequential program the best Open-MP program
with 24 threads gives more than 12 times speedup and the
second CUDA-version shows about 16 times speedup.

6. Discussion

Nowadays there are a lot of algorithms of the family of semi-
Lagrangian methods. As we mentioned above, the presented
method is based on square grid only and uses accessory
algorithms that makes computationmore resource-intensive.
Nevertheless, such a complication allows us to prove first-
order convergence. Furthermore, the theorem which allows
one to take into account a volume of substance passed
through a boundary is presented. This enables us to prove
the balance equation. Numerical experiments completely
confirm the theoretical convergence results.

As for parallel implementation of our approach, we can
note the following.

Though the algorithm is explicit we are not satisfied with
the results of the CUDA-versions.

First of all, there is a problem with feasibility of CUDA-
code on fine grids (more than 640 × 640 nodes). Profile-
feedback analysis shows at least two causes: (1) assumed
computational domain decomposition and (2) the problemof
hardware constraint on the amount of registers on streaming
multiprocessors.

Concerning the first item, it should be noted that in
our approach a 2D computational domain is mapped to

a 1D array of cells, and every thread treats one cell (e.g., see
Pseudocode 1).

For the parameters of kernels launch to be readily adapt-
able, we can apply “thread reuse”; namely, every thread treats
some uncoupled cells (see Pseudocode 2).

Besides, we can use several video adapters. In this case we
should resolve the problem of the distribution of computa-
tional cells between devices under the following restriction:
we do not know in advance how many cells of the previous
time level are required to calculate an actual value (e.g.,
varying-width shadow line).

The problem with registers in our case is related to
deep nesting level of functions calls in the item (2.3) for
determining the mutual arrangement of 𝑃𝑘−1

𝑖,𝑗
and cells of a

mesh of the previous time level. Indeed, this is a bottleneck
of our sequential algorithm. To resolve this issue, we should
modify the initial sequential algorithm, unfortunately.

In addition, the item (2.3) has many flow control instruc-
tions (“if ” statements, mainly), but we cannot say that this
branching creates some significant performance penalty in
terms of SIMT architecture. Indeed, in a CUDA kernel,
any flow control instruction (if, switch, do, for, while) can
significantly affect the instruction throughput by causing
threads of the same warp to diverge [32]. If this happens, the
different execution paths must be serialized, since all of the
threads of a warp share a program counter; this increases the
total number of instructions executed for this warp. When
all the different execution paths have completed, the threads
converge back to the same execution path.

Fortunately, this rule works in the cases where the control
flow depends on the thread ID only. However, in our case
we have many branches which do not depend on thread ID.
Inside our computational kernel, the main part of branches
looks like Pseudocode 3.

As we can see, our “IF” statement does not depend on
a thread ID. Thus, this type of branch does not affect the
performance of the CUDA kernel.
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global void vec foo (float∗ inA, float out, int size) {
for (int i=blockIdx.x∗blockDim.x+threadIdx.x;

i<size; i+=blockDim.x∗gridDim.x)
out[i] = do smb with(inA[i]);

}

Pseudocode 2

if ((indCurSqOx[1] >= 0) && (indCurSqOy[1] >= 0)) {
do smth();

} else {

do smth else();
}

Pseudocode 3

7. Conclusion

We present an unconditionally stable semi-Lagrangian
scheme of the first-order accuracy. The numerical exper-
iments confirm the theoretical studies. Performance of
sequential and several parallel algorithms implemented with
the OpenMP and CUDA technologies in the C language
was studied.The optimization potential of the CUDA-version
remains unexhausted yet.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

Thisworkwas supported by Project 14-11-00147 of theRussian
Scientific Foundation.

References

[1] S. K. Godunov, A. V. Zabrodin, M. Y. Ivanov, A. N. Kraiko,
and G. P. Prokopov, Numerical Solving of Multidimensional Gas
Dynamics Problems, Science Publisher, Moscow, Russia, 1976,
(In Russian).

[2] S. Godunov,Mathematical Physics Equations, Science Publisher,
Moscow, Russia, 1979, (In Russian).

[3] J. D. Anderson, Computational Fluid Dynamics: The Basics with
Applications, McGraw-Hill, New York, NY, USA, 1995.

[4] M. Lentine, J. T. Grétarsson, andR. Fedkiw, “An unconditionally
stable fully conservative semi-Lagrangian method,” Journal of
Computational Physics, vol. 230, no. 8, pp. 2857–2879, 2011.

[5] D. Levy, G. Puppo, and G. Russo, “Central WENO schemes
for hyperbolic systems of conservation laws,” Mathematical
Modelling and Numerical Analysis, vol. 33, no. 3, pp. 547–571,
1999.

[6] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,
Cambridge Texts in Applied Mathematics, Cambridge Univer-
sity Press, 2002.

[7] S. Clain, S. Diot, and R. Loubère, “A high-order finite vol-
ume method for systems of conservation laws with Multi-
dimensional Optimal Order Detection (MOOD),” Journal of
Computational Physics, vol. 230, no. 10, pp. 4028–4050, 2011.

[8] M. Kaser and A. Iske, “ADER schemes on adaptive triangular
meshes for scalar conservation laws,” Journal of Computational
Physics, vol. 205, no. 2, pp. 486–508, 2005.

[9] J. S. Scroggs and F. H. M. Semazzi, “A conservative semi-
Lagrangianmethod formultidimensional fluid dynamics appli-
cations,” Numerical Methods for Partial Differential Equations,
vol. 11, no. 5, pp. 445–452, 1995.

[10] J. Behrens, “A parallel adaptive finite-element semi- lagrangian
advection scheme for the shallow water equations,” inModeling
and Computation in Environmental Sciences, vol. 59 of Notes on
Numerical Fluid Mechanics (NNFM), pp. 49–60, 1997.
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