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In this paper we consider a subclass of strongly spirallike functions on the unit disk 𝐷 in the complex plane C, namely, strongly
almost spirallike functions of type 𝛽 and order 𝛼. We obtain the growth results for strongly almost spirallike functions of type 𝛽 and
order 𝛼 on the unit disk𝐷 inC by using subordination principles and the geometric properties of analytic mappings. Furthermore
we get the growth theorems for strongly almost starlike functions of order 𝛼 and strongly starlike functions on the unit disk 𝐷 of
C. These growth results follow the deviation results of these functions.

1. Introduction

Growth theorems for univalent analytic functions are impor-
tant parts in geometric function theories of one complex
variable. In 1983, Duren [1] obtained the following well-
known growth and deviation theorem.

Theorem 1 (see [1]). If 𝑓(𝑧) is a normalized biholomorphic
function on the unit disk 𝐷, then

|𝑧|

(1 + |𝑧|)
2
≤
𝑓 (𝑧)

 ≤
|𝑧|

(1 − |𝑧|)
2
,

1 − |𝑧|

(1 + |𝑧|)
3
≤

𝑓

(𝑧)

≤

1 + |𝑧|

(1 − |𝑧|)
3
.

(1)

Many scholars tried to extend the beautiful results to
the cases in several complex variables. However, Cartan [2]
pointed out that the corresponding growth theorem does
not hold in several complex variables. He suggested that
we may consider the biholomorphic mappings with special
geometrical characteristic, such as convex mappings and
starlike mappings.

In 1991, Barnard et al. [3] obtained the growth theorems
for starlike mappings on the unit ball 𝐵𝑛 in C𝑛 firstly. After
that, there are a lot of followup studies. Gong et al. [4] ex-
tended the results to the cases on 𝐵𝑛 and obtained the growth
theorems for starlike mappings on the bounded convex
Reinhardt domains 𝐵

𝑝
. Graham and Varolin [5] obtained the

growth and covering theorems for normalized biholomor-
phic convex functions on the unit disk and also obtained
the growth and covering theorems for normalized biholo-
morphic starlike functions on the unit disk by Alexander’s
theorem. Liu and Ren [6] obtained the growth theorems
for starlike mappings on the general bounded starlike and
circular domains in C𝑛. Liu and Lu [7] obtained the growth
theorems for starlike mappings of order 𝛼 on the bounded
starlike and circular domains. Feng and Lu [8] obtained the
growth theorems for almost starlike mappings of order 𝛼
on the bounded starlike and circular domains. Honda [9]
obtained the growth theorems for normalized biholomorphic
𝑘-symmetric convex mappings on the unit ball in complex
Banach spaces. In recent years, there are a lot of new results
about the growth and covering theorems for the subclasses of
biholomorphic mappings in several complex variables [10–
12].

It can be seen that we can make a great breakthrough
in the growth and covering theorems for the subclasses of
biholomorphic mappings in several complex variables if we
restrict the biholomorphic mappings with the geometrical
characteristic. The mappings discussed focus on starlike
mappings, convex mappings, and their subclasses.

In 1974, Suffridge extended starlike mappings and convex
mappings and gave the definition of spirallike mappings.
Gurganus [13] gave the definition of spirallike mappings of
type 𝛽 in several complex variables. Hamada and Kohr [14]
obtained the growth theorems for spirallike mappings on
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some domains. Later Feng [15] gave the definition of almost
spirallike mappings of type 𝛽 and order 𝛼 on the unit ball
𝐵
𝑛 in C𝑛. Feng et al. [16] obtained the growth theorems for

almost spirallike mappings of type 𝛽 and order 𝛼 on the unit
ball in complex Banach spaces.

However, when we introduce the definition of the new
subclasses of starlike mappings, convex mappings, and spi-
rallike mappings, we always discuss them in C firstly.

In [17], Cai and Liu gave the definition of strongly almost
spirallike functions of type 𝛽 and order 𝛼 on the unit disk.
They also discussed their coefficient estimates.

In this paper, we mainly discuss the growth theorems for
strongly almost spirallike functions of type 𝛽 and order 𝛼 on
𝐷, where 𝐷 is the unit disk. Moreover we get the growth
theorems for strongly almost starlike functions of order 𝛼
and strongly starlike functions on 𝐷. At last, we obtain the
deviation results of these functions.

Definition 2 (see [17]). Suppose that 𝑓(𝑧) is an analytic
function on𝐷, 𝛼 ∈ [0, 1), 𝛽 ∈ (−𝜋/2, 𝜋/2), 𝑐 ∈ (0, 1), and



−𝛼 + 𝑖 tan𝛽
1 − 𝛼

+
1 − 𝑖 tan𝛽
1 − 𝛼

⋅
𝑓 (𝑧)

𝑧𝑓 (𝑧)
−
1 + 𝑐
2

1 − 𝑐2



<
2𝑐

1 − 𝑐2
, 𝑧 ∈ 𝐷 \ {0} .

(2)

Then 𝑓(𝑧) is called a strongly almost spirallike function of
type 𝛽 and order 𝛼 on𝐷.

We can get the definition of strongly spirallike functions
of type 𝛽 [18], strongly almost starlike functions of order 𝛼
[19], and strongly starlike functions on𝐷 [19] by setting𝛼 = 0,
𝛽 = 0, and 𝛼 = 𝛽 = 0, respectively, in Definition 2.

In order to give the main results, we need the following
lemmas.

Lemma 3 (see [1]). Let 𝑔(𝑧) be an univalent analytic function
on 𝐷. Then 𝑓(𝑧) ≺ 𝑔(𝑧) if and only if 𝑓(0) = 𝑔(0), 𝑓(𝐷) ⊂
𝑔(𝐷).

Lemma 4 (see [20]). |(𝑧 − 𝑧
1
)/(𝑧 − 𝑧

2
)| = 𝑘 (0 < 𝑘 ̸= 1, 𝑧

1
̸=

𝑧
2
) represents a circle whose center is 𝑧

0
and whose radius is 𝜌

in C, where

𝑧
0
=
𝑧
1
− 𝑘
2
𝑧
2

1 − 𝑘2
, 𝜌 =

𝑘
𝑧1 − 𝑧2



1 − 𝑘2
. (3)

Lemma 5 (see [20]). Let 𝑓(𝑧) : 𝐷 → 𝐷 be an analytic
function on𝐷 and 𝑓(0) = 0. Then |𝑓(0)| ≤ 1 and |𝑓(𝑧)| ≤ |𝑧|
for ∀𝑧 ∈ 𝐷.

2. Main Results

Theorem6. Let𝑓(𝑧) be a strongly almost spirallike function of
type 𝛽 and order 𝛼 on𝐷 and 𝛼 ∈ [1/2, 1), 𝛽 ∈ (−𝜋/2, 𝜋/2), 𝑐 ∈
(0, 1). Then

1 − 𝑐
2
|𝑧|
2

1 + 𝑚
1|𝑧|
2
+ 𝑛 |𝑧|

≤



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑚

1|𝑧|
2
+ 𝑛 |𝑧|

1 − 𝑚
2|𝑧|
2

, (4)

where

𝑚
1
= 𝑐
2
[2 (1 − 𝛼) cos𝛽 (sin𝛽

 + cos𝛽) − 1] ,

𝑛 = 2𝑐 (1 − 𝛼) cos𝛽, 𝑚
2
= 𝑐
2
[1 − 4𝛼 (1 − 𝛼) cos2𝛽] .

(5)

Proof. Since 𝑓(𝑧) is a strongly almost spirallike function of
type 𝛽 and order 𝛼 on𝐷, we get



−𝛼 + 𝑖 tan𝛽
1 − 𝛼

+
1 − 𝑖 tan𝛽
1 − 𝛼

⋅
𝑓 (𝑧)

𝑧𝑓 (𝑧)
−
1 + 𝑐
2

1 − 𝑐2



<
2𝑐

1 − 𝑐2
.

(6)

Let

𝑝 (𝑧) =
−𝛼 + 𝑖 tan𝛽
1 − 𝛼

+
1 − 𝑖 tan𝛽
1 − 𝛼

⋅
𝑓 (𝑧)

𝑧𝑓 (𝑧)
. (7)

Then

𝑝 (0) = 1,



𝑝 (𝑧) −
1 + 𝑐
2

1 − 𝑐2



<
2𝑐

1 − 𝑐2
, (8)

so we have𝑝(𝑧) ≺ (1+𝑐𝑧)/(1−𝑐𝑧).Therefore we get that there
exists an analytic function 𝑤(𝑧) on 𝐷 which satisfies 𝑝(𝑧) =
(1 + 𝑐𝑤(𝑧))/(1 − 𝑐𝑤(𝑧)), where 𝑤(0) = 0, |𝑤(𝑧)| < 1. Then

−𝛼 + 𝑖 tan𝛽
1 − 𝛼

+
1 − 𝑖 tan𝛽
1 − 𝛼

⋅
𝑓 (𝑧)

𝑧𝑓 (𝑧)
=
1 + 𝑐𝑤 (𝑧)

1 − 𝑐𝑤 (𝑧)
. (9)

Immediately, we have

𝑐𝑤 (𝑧)

=

(𝑓 (𝑧) /𝑧𝑓

(𝑧)) − 1

(𝑓 (𝑧) /𝑧𝑓

(𝑧)) + ((1 − 2𝛼 + 𝑖 tan𝛽) / (1 − 𝑖 tan𝛽))

.

(10)

It follows that


[
𝑓 (𝑧)

𝑧𝑓 (𝑧)
− 1] [

𝑓 (𝑧)

𝑧𝑓 (𝑧)
−
2𝛼 − 1 − 𝑖 tan𝛽
1 − 𝑖 tan𝛽

]

−1

= 𝑐 |𝑤 (𝑧)| .

(11)

From Lemma 3, we deduce that the image of the unit disk 𝐷
under the mapping 𝑓(𝑧)/𝑧𝑓(𝑧) is the disk whose center is 𝑎
and whose radius is 𝜌, where

𝑎 = [1 − 𝑐
2
|𝑤 (𝑧)|

2
⋅
2𝛼 − 1 − 𝑖 tan𝛽
1 − 𝑖 tan𝛽

]
1

1 − 𝑐2|𝑤 (𝑧)|
2

=
1

1 − 𝑐2|𝑤 (𝑧)|
2
{1 − 𝑐

2
|𝑤 (𝑧)|

2
[2𝛼cos2𝛽 − cos (2𝛽)

+ 𝑖 (𝛼 − 1) sin (2𝛽)]} ,

𝜌 =
𝑐 |𝑤 (𝑧)| ⋅ 2 (1 − 𝛼) cos𝛽

1 − 𝑐2|𝑤 (𝑧)|
2

.

(12)
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So we have



𝑓 (𝑧)

𝑧𝑓 (𝑧)
− 𝑎



≤ 𝜌. (13)

Then

|𝑎| − 𝜌 ≤



𝑓 (𝑧)

𝑧𝑓 (𝑧)



≤ |𝑎| + 𝜌. (14)

On the one hand, in view of (14), we have



𝑓 (𝑧)

𝑧𝑓 (𝑧)



≤
1

1 − 𝑐2|𝑤 (𝑧)|
2

× {

1 − 𝑐
2
|𝑤 (𝑧)|

2
(2𝛼cos2𝛽 − cos (2𝛽))

+ 𝑐
2
|𝑤 (𝑧)|

2
(1 − 𝛼)

sin (2𝛽)


+𝑐 |𝑤 (𝑧)| ⋅ 2 (1 − 𝛼) cos𝛽} .

(15)

Observing that

2𝛼cos2𝛽 − cos (2𝛽) = 2𝛼cos2𝛽 − 2cos2𝛽 + 1

= 2 (𝛼 − 1) cos2𝛽 + 1

= 1 − 2 (1 − 𝛼) cos2𝛽

(16)

and 1−2(1−𝛼)cos2𝛽 < 1 for𝛼 ∈ [1/2, 1) and𝛽 ∈ (−𝜋/2, 𝜋/2),
we get

1 − 𝑐
2
|𝑤 (𝑧)|

2
(2𝛼cos2𝛽 − cos (2𝛽)) > 0 (17)

for 𝑐 ∈ (0, 1) and |𝑤(𝑧)| < 1. Thus, in view of (15), (16), and
(17), we obtain



𝑓 (𝑧)

𝑧𝑓 (𝑧)



≤
1

1 − 𝑐2|𝑤 (𝑧)|
2

× {1 − 𝑐
2
|𝑤 (𝑧)|

2
(2𝛼cos2𝛽 − cos (2𝛽))

+ 𝑐
2
|𝑤 (𝑧)|

2
(1 − 𝛼)

sin (2𝛽)


+𝑐 |𝑤 (𝑧)| ⋅ 2 (1 − 𝛼) cos𝛽}

=
1

1 − 𝑐2|𝑤 (𝑧)|
2

× {1 + 𝑐
2
|𝑤 (𝑧)|

2

× [(1 − 𝛼)
sin (2𝛽)



− (2𝛼cos2𝛽 − cos (2𝛽))]

+𝑐 |𝑤 (𝑧)| ⋅ 2 (1 − 𝛼) cos𝛽}

=
1

1 − 𝑐2|𝑤 (𝑧)|
2

× {1 + 𝑐
2
|𝑤 (𝑧)|

2

× [2 (1 − 𝛼)
sin𝛽

 cos𝛽

− (1 − 2 (1 − 𝛼) cos2𝛽)]

+𝑐 |𝑤 (𝑧)| ⋅ 2 (1 − 𝛼) cos𝛽}

=
1

1 − 𝑐2|𝑤 (𝑧)|
2

× {1 + 𝑐
2
|𝑤 (𝑧)|

2

× [2 (1 − 𝛼) cos𝛽 (sin𝛽
 + cos𝛽) − 1]

+𝑐 |𝑤 (𝑧)| ⋅ 2 (1 − 𝛼) cos𝛽} .
(18)

Let

𝑐
2
[2 (1 − 𝛼) cos𝛽 (sin𝛽

 + cos𝛽) − 1] = 𝑚
1
,

2𝑐 (1 − 𝛼) cos𝛽 = 𝑛.
(19)

Then we have



𝑓 (𝑧)

𝑧𝑓 (𝑧)



≤
1 + 𝑚

1|𝑤 (𝑧)|
2
+ 𝑛 |𝑤 (𝑧)|

1 − 𝑐2|𝑤 (𝑧)|
2

. (20)

This means that


𝑧𝑓

(𝑧)

𝑓 (𝑧)



≥
1 − 𝑐
2
|𝑤 (𝑧)|

2

1 + 𝑚
1|𝑤 (𝑧)|

2
+ 𝑛 |𝑤 (𝑧)|

. (21)

Let

|𝑤 (𝑧)| = 𝑥,
1 − 𝑐
2
𝑥
2

1 + 𝑚
1
𝑥2 + 𝑛𝑥

= 𝑔 (𝑥) . (22)

Obviously, we have

𝑔

(𝑥) = −

𝑛𝑐
2
𝑥
2
+ 2 (𝑚

1
+ 𝑐
2
) 𝑥 + 𝑛

(1 + 𝑚
1
𝑥2 + 𝑛𝑥)

2
. (23)

Observing that

𝑚
1
+ 𝑐
2
= 𝑐
2
⋅ 2 (1 − 𝛼) cos𝛽 (sin𝛽

 + cos𝛽) > 0 (24)

and 𝑛 > 0, 𝑥 = |𝑤(𝑧)| ≥ 0, we deduce that 𝑔(𝑥) < 0. So 𝑔(𝑥)
is a monotone decreasing function for 𝑥 ∈ [0,1). Also we have
|𝑤(𝑧)| ≤ |𝑧| from Lemma 4. Then



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≥
1 − 𝑐
2
|𝑤 (𝑧)|

2

1 + 𝑚
1|𝑤 (𝑧)|

2
+ 𝑛 |𝑤 (𝑧)|

≥
1 − 𝑐
2
|𝑧|
2

1 + 𝑚
1|𝑧|
2
+ 𝑛 |𝑧|

.

(25)
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On the other hand, by direct computations, we have

|𝑎|
2
=

1

(1 − 𝑐2|𝑤 (𝑧)|
2
)
2

× {[1 − 𝑐
2
|𝑤 (𝑧)|

2
(1 + 2 (𝛼 − 1) cos2𝛽)]

2

+ 𝑐
4
|𝑤 (𝑧)|

4
[2 (𝛼 − 1) cos𝛽 sin𝛽]2}

=
1

(1 − 𝑐2|𝑤 (𝑧)|
2
)
2

× {1 − 2𝑐
2
|𝑤 (𝑧)|

2
[1 + 2 (𝛼 − 1) cos2𝛽]

+ 𝑐
4
|𝑤 (𝑧)|

4
[1 + 4𝛼 (𝛼 − 1) cos2𝛽]} ,

𝜌


2

=
1

(1 − 𝑐2|𝑤 (𝑧)|
2
)
2
⋅ 4𝑐
2
|𝑤 (𝑧)|

2
(1 − 𝛼)

2cos2𝛽.

(26)

It follows that

(|𝑎|
2
− 𝜌
2
) (1 − 𝑐

2
|𝑤 (𝑧)|

2
)
2

= 1 − 2𝑐
2
|𝑤 (𝑧)|

2
[1 + 2 (𝛼 − 1) cos2𝛽 + 2(1 − 𝛼)2cos2𝛽]

+ 𝑐
4
|𝑤 (𝑧)|

4
[1 + 4𝛼 (𝛼 − 1) cos2𝛽]

= 1 − 2𝑐
2
|𝑤 (𝑧)|

2
[1 + 2𝛼 (𝛼 − 1) cos2𝛽]

+ 𝑐
4
|𝑤 (𝑧)|

4
[1 + 4𝛼 (𝛼 − 1) cos2𝛽]

= [1 − 2𝑐
2
|𝑤 (𝑧)|

2
+ 𝑐
4
|𝑤 (𝑧)|

4
] + 𝑐
4
|𝑤 (𝑧)|

4

⋅ 4𝛼 (𝛼 − 1) cos2𝛽 − 2𝑐2|𝑤 (𝑧)|2 ⋅ 2𝛼 (𝛼 − 1) cos2𝛽

= (1 − 𝑐
2
|𝑤 (𝑧)|

2
)
2

+ 4𝛼 (𝛼 − 1) cos2𝛽

⋅ 𝑐
2
|𝑤 (𝑧)|

2
(𝑐
2
|𝑤 (𝑧)|

2
− 1) > 0.

(27)

This means that |𝑎| > 𝜌. By (14) we know that



𝑓 (𝑧)

𝑧𝑓 (𝑧)



≥ |𝑎| − 𝜌. (28)

In view of (15) and (19), we have



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1

|𝑎| − 𝜌
=
|𝑎| + 𝜌

|𝑎|
2
− 𝜌2

= ((1 − 𝑐
2
|𝑤 (𝑧)|

2
)
2

(|𝑎| + 𝜌))

× ((1 − 𝑐
2
|𝑤 (𝑧)|

2
)
2

+ 4𝛼 (𝛼 − 1) cos2𝛽

⋅ 𝑐
2
|𝑤 (𝑧)|

2
(𝑐
2
|𝑤 (𝑧)|

2
− 1))

−1

≤
1 + 𝑚

1|𝑤 (𝑧)|
2
+ 𝑛 |𝑤 (𝑧)|

1 − 𝑐2|𝑤 (𝑧)|
2
+ 4𝛼 (1 − 𝛼) cos2𝛽 ⋅ 𝑐2|𝑤 (𝑧)|2

=
1 + 𝑚

1|𝑤 (𝑧)|
2
+ 𝑛 |𝑤 (𝑧)|

1 + [4𝛼 (1 − 𝛼) cos2𝛽 − 1] 𝑐2|𝑤 (𝑧)|2
.

(29)

Let

𝑐
2
[1 − 4𝛼 (1 − 𝛼) cos2𝛽] = 𝑚

2
. (30)

Then


𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑚

1|𝑤 (𝑧)|
2
+ 𝑛 |𝑤 (𝑧)|

1 − 𝑚
2|𝑤 (𝑧)|

2
. (31)

Let

|𝑤 (𝑧)| = 𝑥,
1 + 𝑚

1
𝑥
2
+ 𝑛𝑥

1 − 𝑚
2
𝑥2

= ℎ (𝑥) . (32)

Immediately, we have

ℎ

(𝑥)

=

(2𝑚
1
𝑥 + 𝑛) (1 − 𝑚

2
𝑥
2
) + (1 + 𝑚

1
𝑥
2
+ 𝑛𝑥) ⋅ 2𝑚

2
𝑥

(1 − 𝑚
2
𝑥2)
2

=
𝑛𝑚
2
𝑥
2
+ 2 (𝑚

1
+ 𝑚
2
) 𝑥 + 𝑛

(1 − 𝑚
2
𝑥2)
2

=
𝑛𝑚
2

(1 − 𝑚
2
𝑥2)
2

× [(𝑥 +
𝑚
1
+ 𝑚
2

𝑛𝑚
2

)

2

+
𝑛
2
𝑚
2
− (𝑚
1
+ 𝑚
2
)
2

𝑛2𝑚
2

2

] .

(33)

Also, we can get

𝑛
2
𝑚
2
− (𝑚
1
+ 𝑚
2
)
2

= −4𝑐
2
(1 − 𝛼)

2cos2𝛽 ⋅ 2 (1 − 2𝛼) sin𝛽
 cos𝛽 ≥ 0

(34)

for 𝛼 ∈ [1/2, 1), 𝛽 ∈ (−𝜋/2, 𝜋/2). Moreover, it is obvious that
𝑚
2
> 0 and 𝑛 > 0. So we obtain ℎ(𝑥) > 0. Therefore ℎ(𝑥) is

a monotone increasing function for 𝑥 ∈ [0,1). In addition, we
have |𝑤(𝑧)| ≤ |𝑧| from Lemma 4. Hence


𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑚

1|𝑤 (𝑧)|
2
+ 𝑛 |𝑤 (𝑧)|

1 − 𝑚
2|𝑤 (𝑧)|

2
≤
1 + 𝑚

1|𝑧|
2
+ 𝑛 |𝑧|

1 − 𝑚
2|𝑧|
2

.

(35)
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From the above results, we obtain

1 − 𝑐
2
|𝑧|
2

1 + 𝑚
1|𝑧|
2
+ 𝑛 |𝑧|

≤



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑚

1|𝑧|
2
+ 𝑛 |𝑧|

1 − 𝑚
2|𝑧|
2

. (36)

This completes the proof.

Theorem 7. Suppose that 𝑓(𝑧) is a strongly almost starlike
function of order 𝛼 on𝐷 and 𝛼 ∈ [0, 1), 𝑐 ∈ (0, 1). Then

1 − 𝑐
2
|𝑧|
2

1 + 𝑐2 (1 − 2𝛼) |𝑧|
2
+ 2𝑐 (1 − 𝛼) |𝑧|

≤



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑐
2
(1 − 2𝛼) |𝑧|

2
+ 2𝑐 (1 − 𝛼) |𝑧|

1 − 𝑐2(1 − 2𝛼)
2
|𝑧|
2

.

(37)

Proof. Let𝛽 = 0 and𝛼 ∈ [0, 1) inTheorem 6.Then (34) holds,
so we can obtain the same result; that is,

1 − 𝑐
2
|𝑧|
2

1 + 𝑚
1|𝑧|
2
+ 𝑛 |𝑧|

≤



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑚

1|𝑧|
2
+ 𝑛 |𝑧|

1 − 𝑚
2|𝑧|
2

, (38)

where

𝑚
1
= 𝑐
2
(1 − 2𝛼) , 𝑛 = 2𝑐 (1 − 2𝛼) ,

𝑚
2
= 𝑐
2
(1 − 2𝛼)

2
.

(39)

Therefore we get the conclusion.

Let 𝛼 = 0 in Theorem 7; we can get the following result
for strongly starlike functions.

Corollary 8. Let 𝑓(𝑧) be a strongly starlike function on𝐷 and
𝑐 ∈ (0, 1). Then

1 − 𝑐 |𝑧|

1 + 𝑐 |𝑧|
≤



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑐 |𝑧|

1 − 𝑐 |𝑧|
. (40)

Theorem9. Let𝑓(𝑧) be a strongly almost spirallike function of
type 𝛽 and order 𝛼 on𝐷 and 𝛼 ∈ (1/2, 1), 𝛽 ∈ (−𝜋/2, 𝜋/2), 𝑐 ∈
(0, 1). Then

𝑓 (𝑧)
 ≤ |𝑧| (1 + √𝑚2 |𝑧|)

(𝑚
1
+𝑚
2
−𝑛√𝑚2)/−2𝑚2

⋅ (1 − √𝑚2 |𝑧|)
(𝑚
1
+𝑚
2
+𝑛√𝑚2)/−2𝑚2

,

(41)

where

𝑚
1
= 𝑐
2
[2 (1 − 𝛼) cos𝛽 (sin𝛽

 + cos𝛽) − 1] ,

𝑛 = 2𝑐 (1 − 𝛼) cos𝛽,

𝑚
2
= 𝑐
2
[1 − 4𝛼 (1 − 𝛼) cos2𝛽] .

(42)

Proof. FromTheorem 6, we have

Re(
𝑧𝑓

(𝑧)

𝑓 (𝑧)
) ≤



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑚

1|𝑧|
2
+ 𝑛 |𝑧|

1 − 𝑚
2|𝑧|
2

. (43)

Let 𝑧 = 𝑟𝑒𝑖𝜃. Since

Re(
𝑧𝑓

(𝑧)

𝑓 (𝑧)
) = 𝑟

𝜕 ln 𝑓 (𝑧)


𝜕𝑟
, (44)

we get

𝑟
𝜕 ln 𝑓 (𝑧)



𝜕𝑟
≤
1 + 𝑚

1|𝑧|
2
+ 𝑛 |𝑧|

1 − 𝑚
2|𝑧|
2

. (45)

Thus

∫

|𝑧|

𝜀

𝜕 ln 𝑓 (𝑧)


𝜕𝑟
d𝑟 ≤ ∫

|𝑧|

𝜀

1 + 𝑚
1
𝑟
2
+ 𝑛𝑟

(1 − 𝑚
2
𝑟2) 𝑟

d𝑟. (46)

Furthermore,

∫

|𝑧|

𝜀

1 + 𝑚
1
𝑟
2
+ 𝑛𝑟

(1 − 𝑚
2
𝑟2) 𝑟

d𝑟

= (𝑚
1
+ 𝑚
2
) ∫

|𝑧|

𝜀

𝑟

1 − 𝑚
2
𝑟2
d𝑟

+ 𝑛∫

|𝑧|

𝜀

d𝑟
1 − 𝑚

2
𝑟2
+ ∫

|𝑧|

𝜀

d𝑟
𝑟

=
𝑚
1
+ 𝑚
2

−2𝑚
2

ln 1 − 𝑚2𝑟
2



𝑟=|𝑧|

𝑟=𝜀

+
𝑛

2√𝑚2

ln


−2𝑚
2
𝑟 − 2√𝑚2

−2𝑚
2
𝑟 + 2√𝑚2





𝑟=|𝑧|

𝑟=𝜀

+ ln 𝑟|𝑟=|𝑧|
𝑟=𝜀

.

(47)

It follows that

ln 𝑓 (𝑟𝑒
𝑖𝜃
)




𝑟=|𝑧|

𝑟=𝜀

≤
𝑚
1
+ 𝑚
2

−2𝑚
2

ln 1 − 𝑚2𝑟
2



𝑟=|𝑧|

𝑟=𝜀

+
𝑛

2√𝑚2

ln


√𝑚2𝑟 + 1

√𝑚2𝑟 − 1





𝑟=|𝑧|

𝑟=𝜀

+ ln 𝑟|𝑟=|𝑧|
𝑟=𝜀

.

(48)

Let 𝜀 → 0; we have

ln 𝑓 (𝑧)
 ≤

𝑚
1
+ 𝑚
2

−2𝑚
2

ln 1 − 𝑚2|𝑧|
2

+
𝑛

2√𝑚2

ln


√𝑚2 |𝑧| + 1

√𝑚2 |𝑧| − 1



+ ln |𝑧| .
(49)

Consequently,

𝑓 (𝑧)
 ≤ |𝑧| ⋅


1 − 𝑚

2|𝑧|
2

(𝑚
1
+𝑚
2
)/−2𝑚

2

⋅



√𝑚2 |𝑧| + 1

√𝑚2 |𝑧| − 1



𝑛/2√𝑚2

.

(50)
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Observing that𝑚
2
< 1, we have

𝑓 (𝑧)


≤ |𝑧| ⋅ (1 − 𝑚
2|𝑧|
2
)
(𝑚
1
+𝑚
2
)/−2𝑚

2

⋅ (
1 + √𝑚2 |𝑧|

1 − √𝑚2 |𝑧|
)

𝑛/2√𝑚2

= |𝑧| (1 + √𝑚2 |𝑧|)
((𝑚
1
+𝑚
2
)/−2𝑚

2
)+(𝑛/2√𝑚2)

⋅ (1 − √𝑚2 |𝑧|)
((𝑚
1
+𝑚
2
)/−2𝑚

2
)−(𝑛/2√𝑚2)

= |𝑧| (1 + √𝑚2 |𝑧|)
(𝑚
1
+𝑚
2
−𝑛√𝑚2)/−2𝑚2

⋅ (1 − √𝑚2 |𝑧|)
(𝑚
1
+𝑚
2
+𝑛√𝑚2)/−2𝑚2

.

(51)

This completes the proof.

Similar to Theorem 9, by Theorem 7, we can get the
following results.

Theorem 10. Let 𝑓(𝑧) be a strongly almost starlike function of
order 1/2 on𝐷 and 𝑐 ∈ (0, 1). Then

𝑓 (𝑧)
 ≤ e𝑐 |𝑧| . (52)

Theorem 11. Let 𝑓(𝑧) be a strongly almost starlike function of
order 𝛼 on𝐷 and 𝛼 ∈ [0, 1) \ {1/2}, 𝑐 ∈ (0, 1). Then

𝑓 (𝑧)
 ≤ |𝑧| ⋅ [1 + 𝑐 |1 − 2𝛼| |𝑧|]

((1−𝛼)/(2𝛼−1))+((1−𝛼)/|1−2𝛼|)

⋅ [1 − 𝑐 |1 − 2𝛼| |𝑧|]
((1−𝛼)/(2𝛼−1))−((1−𝛼)/|1−2𝛼|)

.

(53)

Remark 12. Let 1/2 < 𝛼 < 1 in Theorem 11. Then we have

𝑓 (𝑧)
 ≤ |𝑧| ⋅ [1 + 𝑐 (2𝛼 − 1) |𝑧|]

(2(1−𝛼))/(2𝛼−1)
. (54)

Let 0 < 𝛼 < 1/2 in Theorem 10. Then we have

𝑓 (𝑧)
 ≤ |𝑧| ⋅ [1 − 𝑐 (1 − 2𝛼) |𝑧|]

(2(1−𝛼))/(2𝛼−1)
. (55)

Let 𝛼 = 0 in Theorem 11; we can get the following result.

Corollary 13. Let𝑓(𝑧) be a strongly starlike function on𝐷 and
𝑐 ∈ (0, 1). Then

𝑓 (𝑧)
 ≤

|𝑧|

(1 − 𝑐 |𝑧|)
2
. (56)

Proof. According to Corollary 8, we obtain

Re(
𝑧𝑓

(𝑧)

𝑓 (𝑧)
) ≤



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
1 + 𝑐 |𝑧|

1 − 𝑐 |𝑧|
. (57)

Let 𝑧 = 𝑟𝑒𝑖𝜃. Since

Re(
𝑧𝑓

(𝑧)

𝑓 (𝑧)
) = 𝑟

𝜕 ln 𝑓 (𝑧)


𝜕𝑟
, (58)

we have

𝑟
𝜕 ln 𝑓 (𝑧)



𝜕𝑟
≤
1 + 𝑐 |𝑧|

1 − 𝑐 |𝑧|
. (59)

Thus

∫

|𝑧|

𝜀

𝜕 ln 𝑓 (𝑧)


𝜕𝑟
d𝑟 ≤ ∫

|𝑧|

𝜀

1 + 𝑐𝑟

(1 − 𝑐𝑟) 𝑟
d𝑟

= ∫

|𝑧|

𝜀

2𝑐

1 − 𝑐𝑟
d𝑟 + ∫

|𝑧|

𝜀

d𝑟
𝑟
.

(60)

So we get

ln 𝑓 (𝑟𝑒
𝑖𝜃
)




𝑟=|𝑧|

𝑟=𝜀
≤ 2𝑐

ln (1 − 𝑐𝑟)
−𝑐



𝑟=|𝑧|

𝑟=𝜀

+ ln |𝑟||𝑟=|𝑧|
𝑟=𝜀

. (61)

Letting 𝜀 → 0, it follows that

ln 𝑓 (𝑧)
 ≤ −2 ln (1 − 𝑐 |𝑧|) + ln |𝑧| . (62)

Therefore we obtain

𝑓 (𝑧)
 ≤

|𝑧|

(1 − 𝑐 |𝑧|)
2
. (63)

Also, we can get the conclusion by letting 𝛼 = 0 in
Theorem 11. This completes the proof.

Theorem 14. Suppose that 𝑓(𝑧) is a strongly starlike function
on𝐷 and 𝑐 ∈ (0, 1); then

𝑒
(4(2𝑐
2
|𝑧|
2
−1))/(1+𝑐|𝑧|)

2

⋅
|𝑧|

(1 + 𝑐 |𝑧|)
2
<
𝑓 (𝑧)

 ≤
|𝑧|

(1 − 𝑐 |𝑧|)
2
.

(64)

Proof. On the one hand, from Corollary 13, we obtain
|𝑓(𝑧)| ≤ (|𝑧|)/(1 − 𝑐|𝑧|)

2.
On the other hand, by 𝑎 and 𝜌 in the proof ofTheorem 6,

we can obtain

Re 𝑎 − 𝜌
(|𝑎| + 𝜌)

2
=
(1 − 𝑐 |𝑤 (𝑧)|)

3

(1 + 𝑐 |𝑤 (𝑧)|)
3

(65)

for 𝛼 = 𝛽 = 0. Let 𝜆(𝑥) = (1 − 𝑐𝑥)3/(1 + 𝑐𝑥)3. Then we have

𝜆

(𝑥) =

−6𝑐(1 − 𝑐𝑥)
2

(1 + 𝑐𝑥)
4

< 0. (66)

Therefore (1 − 𝑐|𝑤(𝑧)|)
3
/(1 + 𝑐|𝑤(𝑧)|)

3 is a monotone
increasing function with respect to |𝑤(𝑧)|. Also we can know
that |𝑤(𝑧)| ≤ |𝑧| from Lemma 4. Hence

Re 𝑎 − 𝜌
(|𝑎| + 𝜌)

2
=
(1 − 𝑐 |𝑤 (𝑧)|)

3

(1 + 𝑐 |𝑤 (𝑧)|)
3
>
(1 − 𝑐 |𝑧|)

3

(1 + 𝑐 |𝑧|)
3
. (67)

By (14) we obtain

Re
𝑓 (𝑧)

𝑧𝑓 (𝑧)
≥ Re 𝑎 − 𝜌. (68)
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Furthermore, |𝑓(𝑧)/𝑧𝑓(𝑧)| ≤ |𝑎| + 𝜌, so

Re
𝑧𝑓

(𝑧)

𝑓 (𝑧)
=

Re (𝑓 (𝑧) /𝑧𝑓 (𝑧))
𝑓(𝑧)/𝑧𝑓

(𝑧)


2
>

Re 𝑎 − 𝜌
(|𝑎| + 𝜌)

2
. (69)

Let 𝑧 = 𝑟𝑒𝑖𝜃. Since Re (𝑧𝑓(𝑧)/𝑓(𝑧)) = 𝑟(𝜕 ln |𝑓(𝑧)|)/𝜕𝑟, we
have

𝑟
𝜕 ln 𝑓 (𝑧)



𝜕𝑟
>
(1 − 𝑐 |𝑧|)

3

(1 + 𝑐 |𝑧|)
3
. (70)

Therefore we obtain

∫

|𝑧|

𝜀

𝜕 ln 𝑓 (𝑧)


𝜕𝑟
d𝑟 > ∫

|𝑧|

𝜀

(1 − 𝑐𝑟)
3

(1 + 𝑐𝑟)
3
⋅
d𝑟
𝑟
. (71)

Then we have

ln 𝑓 (𝑧)


> −
4

𝑐 |𝑧|
⋅

1

(1 + 𝑐 |𝑧|)
2

+
4

𝑐
[
1

|𝑧|
+

𝑐

1 + 𝑐 |𝑧|
− 𝑐 + 2𝑐 ln |𝑧| − 2𝑐 ln (1 + 𝑐 |𝑧|)] .

(72)

So

𝑓 (𝑧)
 > 𝑒
(4(2𝑐
2
|𝑧|
2
−1))/(1+𝑐|𝑧|)

2

⋅
|𝑧|

(1 + 𝑐 |𝑧|)
2
. (73)

Therefore we obtain

𝑒
(4(2𝑐
2
|𝑧|
2
−1))/(1+𝑐|𝑧|)

2

⋅
|𝑧|

(1 + 𝑐 |𝑧|)
2

<
𝑓 (𝑧)

 ≤
|𝑧|

(1 − 𝑐 |𝑧|)
2
.

(74)

This completes the proof.

FromTheorems 6 and 9, we can get the following result.

Theorem 15. Let 𝑓(𝑧) be a strongly almost spirallike function
of type 𝛽 and order 𝛼 on 𝐷 and 𝛼 ∈ (1/2, 1), 𝛽 ∈

(−𝜋/2, 𝜋/2), 𝑐 ∈ (0, 1). Then

𝑓

(𝑧)


≤ (1 + 𝑚
1|𝑧|
2
+ 𝑛 |𝑧|) (1 + √𝑚2 |𝑧|)

(𝑚
1
+3𝑚
2
−𝑛√𝑚2)/−2𝑚2

⋅ (1 − √𝑚2 |𝑧|)
(𝑚
1
+3𝑚
2
+𝑛√𝑚2)/−2𝑚2

,

(75)

where

𝑚
1
= 𝑐
2
[2 (1 − 𝛼) cos𝛽 (sin𝛽

 + cos𝛽) − 1] ,

𝑚
2
= 𝑐
2
[1 − 4𝛼 (1 − 𝛼) cos2𝛽] ,

𝑛 = 2𝑐 (1 − 𝛼) cos𝛽.

(76)

FromTheorems 7 and 11, we can get the following result.

Theorem 16. Let 𝑓(𝑧) be a strongly almost starlike function of
order 𝛼 on𝐷 and 𝛼 ∈ [0, 1) \ {1/2}, 𝑐 ∈ (0, 1). Then

𝑓

(𝑧)

≤ [1 + 𝑐

2
(1 − 2𝛼) |𝑧|

2
+ 2𝑐 (1 − 𝛼) |𝑧|]

× [1 + 𝑐 |1 − 2𝛼| |𝑧|]
((2−3𝛼)/(2𝛼−1))+((1−𝛼)/|1−2𝛼|)

⋅ [1 − 𝑐 |1 − 2𝛼| |𝑧|]
((2−3𝛼)/(2𝛼−1))−((1−𝛼)/|1−2𝛼|)

.

(77)

Let 𝛼 = 0 in Theorem 16; we can get the following result.

Corollary 17. Let𝑓(𝑧) be a strongly starlike function on𝐷 and
𝑐 ∈ (0, 1). Then


𝑓

(𝑧)

≤

1 + 𝑐 |𝑧|

(1 − 𝑐 |𝑧|)
3
. (78)
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