
Research Article
A Memetic Differential Evolution Algorithm Based on Dynamic
Preference for Constrained Optimization Problems

Ning Dong1 and Yuping Wang2

1 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
2 School of Computer Science and Technology, Xidian University, Xi’an 710071, China

Correspondence should be addressed to Ning Dong; dongning@snnu.edu.cn

Received 9 February 2014; Revised 8 May 2014; Accepted 14 May 2014; Published 4 June 2014

Academic Editor: Hak-Keung Lam

Copyright © 2014 N. Dong and Y. Wang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The constrained optimization problem (COP) is converted into a biobjective optimization problem first, and then a new memetic
differential evolution algorithmwith dynamic preference is proposed for solving the converted problem. In thememetic algorithm,
the global search, which uses differential evolution (DE) as the search scheme, is guided by a novel fitness function based on
achievement scalarizing function (ASF). The novel fitness function constructed by a reference point and a weighting vector
adjusts preference dynamically towards different objectives during evolution, in which the reference point and weighting vector
are determined adapting to the current population. In the local search procedure, simplex crossover (SPX) is used as the search
engine, which concentrates on the neighborhood embraced by both the best feasible and infeasible individuals and guides the search
approaching the optimal solution fromboth sides of the boundary of the feasible region. As a result, the search can efficiently explore
and exploit the search space. Numerical experiments on 22 well-known benchmark functions are executed, and comparisons with
five state-of-the-art algorithms are made. The results illustrate that the proposed algorithm is competitive with and in some cases
superior to the compared ones in terms of the quality, efficiency, and the robustness of the obtained results.

1. Introduction

In many science and engineering fields, there often occurs
a kind of optimization problems which are subject to dif-
ferent types of constraints, and they are called constrained
optimization problems (COPs). Due to the presence of
constraints, COPs are well known as a challenging task [1] in
optimization fields. Evolutionary algorithms (EAs), inspired
by nature, are a class of stochastic and population-based opti-
mization techniques, which have been widely applied to solve
global optimization problems. In the last decades, researchers
applied EAs for COP and proposed a large number
of constrained optimization EAs (COEAs) [2–4].

As is well known, the goal of COEAs is to find the
optimal solution which satisfies all constraints. So constraint
satisfaction is the primary requirement and the technique of
constraints handling will greatly affect the performance of
COEAs. The most common methods to handle constraints
are penalty function based methods [4, 5], which transform

a COP into an unconstrained one by adding a penalty term
into the original objective function in order to penalize the
infeasible solutions. The main drawback of the methods
based on penalty function is to preset an appropriate penalty
factor, which greatly influences the performance of these
methods. However, as indicated in [2], deciding an optimal
penalty factor is a very difficult problem. To avoid the use
of penalty factor, Powell and Skolnick [6] suggested a fitness
function, which maps feasible solutions into the interval
(−∞, 1) and infeasible solutions into the interval (1, +∞).
The method considered that the feasible solutions are always
superior to infeasible ones. Inspired by Powell and Skolnick
[6], Deb [3] proposed three feasibility rules for binary
tournaments selection without introducing new parameters.
Thebinary tournament selection based on the three feasibility
rules is as follows: (1) any feasible solution is preferred to
any infeasible one; (2) between two feasible solutions, the
one with better objective value is preferred; (3) between two
infeasible solutions, the one with smaller constraint violation

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 606019, 15 pages
http://dx.doi.org/10.1155/2014/606019

http://dx.doi.org/10.1155/2014/606019


2 Journal of Applied Mathematics

is preferred. However, the feasibility rules always prefer fea-
sible solutions to infeasible ones, which makes the promising
infeasible solutions which carry more important information
than its feasible counterparts have little opportunity to go into
next population. Therefore, the diversity of the population
degrades, which makes the algorithm prone to trapping into
local optima.

In recent years, some researchers suggested transforming
a COP into a biobjective optimization problem based on
the penalty function [7–9]. For the converted biobjective
optimization problem, if the Pareto dominance is used as
the unique strategy for individuals comparison, then the
objective function and constraint violation function are seen
of the same significance. This will result in the situation that
some solutions being far away from the feasible region but
with small objective function value will be retained in the
evolution process. However, these solutions have little help
in searching the optimal solution of the original problem,
especially for problemswhose optimal solutions are inside the
feasible region.

From the above analysis, it can be concluded that not only
the methods which consistently prefer feasible solutions to
infeasible ones are arguable, but also the methods which treat
the objective function as equally important as the constraint
satisfaction are ineffective. Instead, the methods that can
balance the objective function and the constraint satisfaction
will be effective. Nevertheless, how to balance both objectives
during the evolution needs to be further considered carefully.

Runarsson and Yao [2] proposed the stochastic ranking
(SR) method which used a comparison probability 𝑃𝑓 to
balance the objective function and constraint violation. The
SR based comparison prefers some good infeasible solutions
with the probability 1−𝑃𝑓, which not onlymakes the promis-
ing infeasible solutions have the opportunity to survive into
the next population, but also enhances the diversity of the
population. Wang et al. [9] proposed an adaptive tradeoff
model (ATM) with evolution strategy to solve COP, which
can adaptively adjust the proportion of infeasible solutions
survived into the next generation. Takahama and Sakai
[10] transformed a COP into an unconstrained numerical
optimization problem with novel constraint-handling tech-
niques, so called 𝜀-constrained method. The method relaxes
the limit to consider a solution as feasible, based on its sum
of constraint violation, with the aim of using its objective
function value as a comparison criterion whereas the extent
of the relaxation is dynamic in the evolution.

As is indicated in [11], besides the constraints handling
technique, the performance of COEAs depends on another
crucial factor: the search mechanism of EAs. The current
popular search algorithms involve evolution strategy (ES)
[2, 9, 12], particle swarm optimization (PSO) [13], differential
evolution (DE) [14–17], electromagnetism-like mechanism
algorithm [18], and so forth. Among these search algorithms,
DE is a more recent and simple search engine. In competition
on constrained real-parameter optimization at IEEE CEC
2006 Special session, among the top five best algorithms,
there are three algorithms with DE as a search engine,
which shows the efficiency of DE and much attention has
been attracted by DE in various practical cases. Wang and

Cai [19] combined multiobjective optimization with DE to
solve COP, in which DE was used as a search mechanism,
and Pareto dominance was used to update the evolution
population. Zhang et al. [20] proposed a dynamic stochastic
selection scheme based on SR [2] and combined it with the
multimember DE [21]. Jia et al. [22] presented an improved
(𝜇 + 𝜆) DE for COPs, in which a multimember DE [21]
is also used as the search engine, and an improved ATM
[9] version is applied as the comparison criterion between
individuals. In recent years, the combination of different DE
variants and the adaptive parameters setting is popular in
the algorithm designing [1, 23, 24]. In [1], the modified basic
mutation strategy is combined with a new directed mutation
scheme, which is based on the weighting difference vector
between the best and the worst individual at a particular
generation. Moreover, the scaling factor and crossover rate
are also dynamically set to balance the global search and local
search. Huang et al. [23] also proposed a self-adaptive DE
for COPs. In the methods, the mutation strategies and the
parameters settings are self-adapted during the evolution.
Elsayed et al. [24] proposed an evolutionary framework
that utilizes existing knowledge to make logical changes for
better performance. In the proposed algorithm, 8 mutation
schemes are tested on a suit of benchmark instances, and the
performance of each scheme is analyzed.Then a self-adaptive
multistrategy differential evolution algorithm, using the best
several variants, is exhibited.The proposed algorithm divides
the population into a number of subpopulations, where each
subpopulation evolves with its own mutation and crossover,
and also the population size, scaling factor, and crossover rate
are adaptive to the search progresses. Furthermore, the SQP
based local search is used to speed up the convergence of
the algorithm. Moreover, DE or its mutation operator is also
combined with other algorithms to improve the performance
of methods [11, 25]. In [11], Runarsson and Yao improved
SR [2] by combining ES with the mutation operator adopted
in DE, which results in great promotion in the quality
of solutions. In [25], the authors proposed biogeography-
based optimization (BBO) approaches for COP, in which one
version is combined with DE mutation operators, instead
of the conventional BBO-based operators. The experiment
results show that the version combined with DE mutation
operators outperforms the other variants of BBO, which
confirms the efficiency of DE operators.

In this paper, we proposed a memetic differential evolu-
tion algorithm with dynamic preference (MDEDP) to solve
COP. In the proposedmethod, DE is used as the global search
engine, and the simplex crossover (SPX) is incorporated to
encourage the local search in the promising region in the
search space. In the constraint-handling technique, COP is
first transformed into a biobjective optimization problem
with original objective function and constraint violation
function as two objectives, in which the constraint viola-
tion function is constructed by constraints. Then, for the
converted biobjective problem, an achievement sacralizing
function (ASF) based fitness function is presented to balance
the objective function and constraints violation in the evo-
lution. The reference point and the weighting vector used
in constituting the ASF are dynamically adopted to achieve
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a good balance between objective and constraint violation
function.

The rest of this paper is organized as follows. COP trans-
formation and some related concepts are briefly introduced in
Section 2. In Section 3, DE algorithm and simplex crossover
operator are briefly presented. The novel memetic DE with
dynamic preference for COP is proposed in Section 4.
Section 5 gives experimental results and comparisons with
other state-of-the-art algorithms for 22 standard test prob-
lems. Finally, we summarize the paper in Section 6.

2. COPs and Some Related Concepts

2.1. Constrained Optimization Problem. In general, a con-
strained optimization problem can be stated as follows:

min 𝑓 (𝑥)

s.t. 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑝

ℎ𝑗 (𝑥) = 0, 𝑗 = 𝑝 + 1, . . . , 𝑞,

(1)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑆 is decision variable and 𝑆 is
an 𝑛-dimension rectangular search space in 𝑅𝑛 defined by
𝑆 = {𝑥 | 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑛}. 𝑓 : 𝑆 → 𝑅 is an
objective function, 𝑔𝑖(𝑥) ≤ 0 (𝑖 = 1, 2, . . . , 𝑝) are inequality
constraints, and ℎ𝑗(𝑥) = 0 (𝑗 = 𝑝 + 1, . . . , 𝑞) are equality
constraints. The feasible region Ω ⊂ 𝑆 is defined as Ω = {𝑥 ∈

𝑆 | 𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1, . . . , 𝑝, ℎ𝑗(𝑥) = 0, 𝑗 = 𝑝 + 1, . . . , 𝑞}.
Solutions inΩ are feasible solutions.

2.2. Problem Transformation and Related Concepts. Penalty
functionmethods are the common constraints handling tech-
nique for solving COPs; however, the methods are sensitive
to the penalty factor, and the tuning of penalty parameters is
very difficult [2]. Reformulating a constrained optimization
problem as a biobjective problem is a recently effective
constraints handling method [7–9]. In general, the degree of
constraint violation of 𝑥 on the 𝑖th constraint is defined as

𝐺𝑖 (𝑥) = {
max {0, 𝑔𝑖 (𝑥)} , 𝑖 = 1, 2, . . . , 𝑝

max {0, ℎ𝑖 (𝑥)
 − 𝛿} , 𝑖 = 𝑝 + 1, . . . , 𝑞,

(2)

where 𝛿 is a small positive tolerance value for equality
constraints. Then 𝐺(𝑥) = ∑

𝑞
𝑖=1 𝐺𝑖(𝑥) reflects the degree of

violation of all constraints at 𝑥 and also denotes the distance
of 𝑥 to a feasible region. Obviously, 𝐺(𝑥) ≥ 0.

Based on the constraint violation function 𝐺(𝑥), COP
is converted into a biobjective optimization problem, which
minimizes the original objective function 𝑓(𝑥) and the con-
straint violation function𝐺(𝑥) simultaneously.The converted
biobjective problem is as follows:

min (𝑓 (𝑥) , 𝐺 (𝑥))

s.t. 𝑥 ∈ 𝑆.
(3)

For simplicity, the two objectives of (3) are denoted by
𝑓1(𝑥) = 𝑓(𝑥), 𝑓2(𝑥) = 𝐺(𝑥).

Though COP is converted into a biobjective optimization
problem (3), they are different essentially (see Figure 1).

Feasible
solutions

f(x)

x∗

PF

O G(x)

Figure 1: Relationship of solutions between COPs (1) and biobjec-
tive problem (3).

Biobjective problem (3) intends to find a set of representation
solutions uniformly distributed on Pareto front (PF), while
COP (1) is to find a solution which satisfies all constraints
(𝐺(𝑥) = 0) and also minimizes 𝑓(𝑥), that is, to find the point
in the intersection of PF and the feasible region.

3. Differential Evolution and Simplex
Crossover Operator

3.1. Differential Evolution [26]. Differential evolution, pro-
posed by Storn and Price [26], is a parallel direction search
method and also follows the general procedure of an EA. For
its simplicity and efficiency, DE has been widely employed to
solve constraints optimization problem [1, 14–16, 19–21]. In
the DE process, initial population 𝑃 with NP individuals is
produced randomly in decision space. For each target vector
𝑥𝑖 ∈ 𝑃 (𝑖 = 1, 2, . . . ,NP) at each generation, DE then employs
the three operations below in turn (there are more than 10
variants of DE schemes in the related references; in this paper,
the most often used DE scheme “DE/rand/1/bin” is employed
in the search process and its details are as follows: where
“rand” denotes that the vector to be mutated is randomly
selected in the current population, “1” specifies the number of
difference vectors, and “bin” denotes the binomial crossover
scheme).

Mutation. A trial vector V𝑖 = (V𝑖,1, V𝑖,2, . . . , V𝑖,𝑛) for each target
vector 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑛) is generated based on the
current parent population via the “rand/1” mutation strategy:

V𝑖 = 𝑥𝑟1 + 𝐹 ⋅ (𝑥𝑟2 − 𝑥𝑟3) , (4)

where 𝑟1, 𝑟2, and 𝑟3 are mutually different integers randomly
selected from {1, 2, . . . ,NP} \ {𝑖} and 𝐹 ∈ [0, 2] is a scaling
factor which controls the amplification of the differential
variation (𝑥𝑟2 − 𝑥𝑟3).
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Crossover. To increase the diversity, the offspring vector 𝑢𝑖 =
(𝑢𝑖,1, 𝑢𝑖,2, . . . , 𝑢𝑖,𝑛) is then generated by the binomial crossover
between target vector and trial vector, in which

𝑢𝑖,𝑗 = {
V𝑖,𝑗, if rand (0, 1) < Cr or 𝑗 = 𝑗rand
𝑥𝑖,𝑗, else

(5)

for 𝑗 = 1, 2, . . . , 𝑛, where Cr ∈ [0, 1] is crossover probability
and 𝑗rand ∈ {1, 2, . . . , 𝑛} is a randomly chosen index, which
ensures that offspring 𝑢𝑖 is different from its parent 𝑥𝑖 in at
least one component.

Selection. The offspring 𝑢𝑖 is compared to its parent 𝑥𝑖 using
greedy criterion, and the one with smaller fitness will be
selected into the next population.

3.2. Simplex Crossover Operator (SPX) [27]. Simplex cross-
over (SPX) is one of the most common used recombination
operators in EAs,which generates offspring based onuniform
distribution. The search region of SPX is adaptively adjusted
with the evolution, which ensures that SPX has the good
ability of exploration in the earlier stages and the good ability
of exploitation in the later stages of evolution. Moreover, SPX
is very simple and easy to realize.

In 𝑅𝑛, 𝑛 + 1 mutually independent parent vectors 𝑥𝑖 (𝑖 =
1, 2, . . . , 𝑛+1) form a simplex. Offspring is generated through
the following two steps: (1) expand the original simplex along
each direction 𝑥𝑖 − 𝑜 (𝑖 = 1, 2, . . . , 𝑛 + 1) by (1 + 𝜀) (𝜀 > 0)

times to form a new simplex, where 𝑜 is the center of original
simplex, that is, 𝑜 = Σ𝑛+1𝑖=1 𝑥𝑖/(𝑛 + 1) and the vertexes of the
new simplex are 𝑦𝑖 = (1 + 𝜀)(𝑥𝑖 − 𝑜), (𝑖 = 1, 2, . . . , 𝑛 + 1)

and (2) choose a point uniformly from the new simplex as the
offspring, that is, offspring 𝑧 = 𝑘1𝑦1+𝑘2𝑦2+⋅ ⋅ ⋅+𝑘𝑛+1𝑦𝑛+1+𝑜,
where 𝑘𝑖 (𝑖 = 1, 2, . . . , 𝑛+1) is a random number in [0, 1] and
satisfies the condition 𝑘1 + 𝑘2 + ⋅ ⋅ ⋅ + 𝑘𝑛+1 = 1.

In general, the SPX is specified as SPX-𝑛-𝑚-𝜀, where 𝑛 is
the dimension of search space, 𝑚 is the number of parents
to constitute the simplex which is selected in [2, 𝑛 + 1], and
𝜀 is a control parameter that defines the expanding rate. In
the above procedure of producing offspring, the number of
parents 𝑚 is set to 𝑛 + 1, and the crossover scheme SPX is
denoted by SPX-𝑛-(𝑛 + 1)-𝜀.

4. Memetic DE Based on Dynamic Preference
for Solving COPs

4.1. Novel Fitness Function Based on Dynamic Preference.
Pareto dominance is the most often used rule in multiobjec-
tive optimization to sort individuals. However, if two individ-
uals are not dominated by each other, the better one of them
cannot be determined. To solve the converted biobjective
problem (3), we intend to find the solution which not only
satisfies the constraints (𝐺(𝑥) = 0), but also optimizes the
original objective function 𝑓(𝑥); therefore, problem (3) is
substantially a biobjective problem with preference. Among
methods in solvingmultiobjective problem, weightedmetrics
method [28] scalarizes themultiobjectives into a single objec-
tive by the weighting distance from individuals to a reference

f1
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𝜔2

𝜔1

z

z

Figure 2: Illustration of weighted metric function ASF.

point. One of the single objective functions obtained by
scalarizing is called achievement scalarizing function (ASF)
[28], which implies the preference to different objectives via
different weighting vectors and reference points. For general
biobjective optimization problems, ASF is defined as follows:

𝐹 (𝑥) = max
𝑖=1,2

{𝜔𝑖 (𝑓𝑖 (𝑥) − 𝑧𝑖)} , (6)

where 𝑧 = (𝑧1, 𝑧2) is a reference point (it may be inside
the objective space or not), which determines the preferred
region on Pareto front (curve between A and B on PF), 𝜔 =

(𝜔1, 𝜔2), satisfying 𝜔1, 𝜔2 ≥ 0 and 𝜔1 + 𝜔2 = 1, is a weighting
vector, which points to the certain Pareto optimal point 𝑧
in the preferred region (see Figure 2). From Figure 2, 𝐹(𝑥) is
the 𝜔-weighted distance from individual 𝑥 to the reference
point 𝑧, and the value 𝜔1, 𝜔2 realizes the extent of preference
to the two objectives 𝑓1 and 𝑓2. 𝜔1 > 𝜔2 means that ASF
(4) prefers the Pareto optimal solution with small 𝑓1 between
A and B, and conversely, it prefers the solution with small
𝑓2. The advantage of ASF is that arbitrary (weakly) Pareto
optimal solution can be obtained by moving the reference
point 𝑧 only. Moreover, the different (weakly) Pareto optimal
solutions between A and B can be found by various weighting
vectors [28].

For the converted biobjective problem, the evolution
procedure usually experiences three stages. In the first stage,
there is no feasible solution in the population; therefore,
the individuals with small constraint violations should be
selected in priority to help the population be close to
the feasible region. With the population evolution, some
individuals go into the feasible region. In this stage, the
feasible individuals are preferred, and some nondominated
infeasible individuals with small constraints violation are also
maintained to increase the diversity. In the third stage, there
are only feasible individuals in population, and the feasible
individuals with small objective function value are preferred.
According to the characteristics of ASF and the above
analysis, in different stages of evolution, the proper reference
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Figure 3: Contours of the fitness function in different stages and the selection.

point 𝑧 andweighting vector𝜔 should be chosen adaptively to
construct the fitness function 𝐹(𝑥) and realize the preference
to different objectives.

In the first stage, there are only infeasible solutions in
the population; that is, 𝜌 = 0 (where 𝜌 is the proportion of
feasible solutions in population). Therefore, constraint satis-
faction is more important than objective minimization in the
individuals comparison. However, if constraint satisfaction is
the only condition considered, dominated individuals with
small constraint violations and large objective function value
will also access into the next population with priority, and
these individuals have little effect on finding the optimal
solution. On the other hand, the individuals with smaller
objective function value and slightly bigger constraint vio-
lations would be neglected. Furthermore, some algorithms
adopted Pareto ranking which put the same importance
on all objectives and assigned the same best fitness value
to all the Pareto optimal solutions in population first. But,
for some problems (e.g., problems whose optimal solution

is inside the feasible region), infeasible individuals which
are far away from the boundaries of the feasible region
have little effect on searching optimal solution. Thus, in this
stage, the small constraint violation should be guaranteed in
priority, and meanwhile the objective function value should
be guaranteed not too large. In the absence of feasible solution
in the population, the nondominated infeasible solution with
the smallest constraint violation (it is also called the best
infeasible solution) is the best solution, and it is chosen as
the reference point 𝑧. Moreover, in this stage, the constraint
satisfaction is a key issue; thus, the weighting vector can
be set to 𝜔 = (0.1, 0.9). This choice of the reference point
and the weighting vector demonstrates that the smaller the
weighting distance from an individual to the reference point,
the better the individual. Figure 3(a) illustrates the fitness
value of individuals in population.

In the second stage, there are both feasible and infeasible
solutions in the population; that is, 0 < 𝜌 < 1. In this stage,
the evolution should adjust preference according to the
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proportion of feasibility in current population. If the pro-
portion is low, it is possible that the evolution is in the
early time of the search, or the feasible region is very small
compared to the search space and it is difficult to obtain
feasible individuals in the evolution. Therefore, the feasible
individuals are preferred. If the proportion is high, some
nondominated infeasible individuals with small constraint
violations are more useful than some feasible individuals
with large objective function value, especially for the problem
whose optimal solution is located exactly on or nearby the
boundaries of the feasible region. From the above analysis, the
reference point 𝑧 is determined as the best feasible individual,
and the weighting vector is determined according to the
proportion 𝜌. If the proportion 𝜌 is small, the evolution
should prefer the individuals with small value of 𝐺(𝑥)
(i.e., individuals which are feasible or with small constraint
violations). Conversely, if 𝜌 is big, the evolution should
prefer the individuals with small value of 𝑓(𝑥). Because the
original COP is to find the optimal solution which satisfies
all constraints, then the constraint satisfaction is primary, so
the preference to the objective function cannot be too large,
and the maximum of the preference weighting value to the
objective function is set to 0.5; that is,𝜔max

1 = 0.5.Theweight-
ing vector can be determined as 𝜔1 = min{𝜌, 𝜔max

1 }, and
𝜔2 = 1 − 𝜔1. Figures 3(b) and 3(c) illustrate the preference
in this stage.

In the third stage, there are only feasible solutions in the
population; that is, 𝜌 = 1. It is obvious that the comparison
of individuals is based on their objective function values.
Actually, the criterion is the special case of formula (4), in
which 𝑧 is the best feasible solution and weighting vector
𝜔 = (1, 0).

In the comparison among individuals, 𝐹(𝑥) is used as the
fitness function. The smaller the value of 𝐹(𝑥), the better the
individual 𝑥. Fitness function 𝐹(𝑥) is the weighted distance
from individual to the reference point which is the best in
the population. Obviously, the fitness 𝐹(𝑥) is nonnegative
and has the minimal value 0 at the best individual; therefore,
the elitist strategy is taken to prevent the population from
degenerating. To avoid the biases in 𝐹(𝑥) caused by the mag-
nitude of𝑓1(𝑥) and𝑓2(𝑥), both of them are normalized firstly.
For simplicity, we still use 𝑓1(𝑥) and 𝑓2(𝑥) to denote the
normalized objective functions and

𝑓1 (𝑥) =
𝑓 (𝑥) − 𝑓min
𝑓max − 𝑓min

, 𝑓2 (𝑥) =
𝐺 (𝑥) − 𝐺min
𝐺max − 𝐺min

, (7)

where 𝑓max, 𝑓min, 𝐺max, and 𝐺min are the maximum and
minimum values of 𝑓(𝑥) and 𝐺(𝑥), respectively. Besides the
minimum of 𝐺(𝑥) is known as 0, and the other three values
are unknown.Therefore,𝑓max, 𝑓min, and𝐺max are updated by
the maximum and minimum values of 𝑓(𝑥) and 𝐺(𝑥) in the
population. Moreover, in the normalization, we do not use
theminimumvalue of𝐺(𝑥) in the population because if there
is no feasible solution, the infeasible solution with smallest
constraint violation will be normalized to feasible one.

4.2. Local Search Based on SPX. In this paper, DE/rand/1/bin
is used as the global search engine, which has good ability of

exploration in the early phases, and can explore the search
space fully. However, its exploitation ability is weak in the
early stage, which results in slow convergence. To balance
the exploration and exploitation in optimizing process, local
search (LS) based on simplex crossover (SPX) is employed.
For many COPs in practice, especially those with equality
constraints, the optimal solution is situated on the boundary
of the feasible region or nearby. Thus searching from both
sides of the boundary of the feasible region is effective. From
Figure 1, one can conclude that the solutions in the lower-left
part of the objective space, which are feasible solutions with
small objective values or nondominated infeasible ones with
small constraint violation, are promising. Thus, the neigh-
borhood embraced by the promising solutions and nearby
deserves more computing resources. Therefore, the LS will
be efficient when focusing on the promising region. Besides
the neighborhood the LS is concentrating on, other issues
influencing the LS are the solutions on which the LS engine
will work and the number of solutions used to participate
the LS. From the conclusion in [27], SPX with a large number
of parents, 𝑚, has sampling biases that reflect biases in the
population distribution too much. So a medium number of
parents are a good choice to overcome the oversampling
biases. Furthermore, [27] concluded that SPXworkswell with
𝑚 = 3 on a low dimensional function and 𝑚 = 4 on high
dimensional functions. Based on the conclusion, in the
proposed SPX based local search, the number of parents, 𝑚,
is set to 3. Furthermore, the three parents selected to perform
SPX in LS are demonstrated in Figure 4.

In the first stage, there is no feasible solution in the
population; that is, 𝜌 = 0. The nondominated solutions with
small constraint violation are located in the lower-left part in
the objective space; therefore, the top three nondominated
solutions with small constraint violation are selected as
parents 𝑥1, 𝑥2, and 𝑥3 to perform SPX (Figure 4(a)).

In the second stage, there are feasible and infeasible
solutions simultaneously in the population; that is, 0 < 𝜌 < 1.
If there is only one feasible solution, it is the first selected
parent 𝑥1. And then, the solutions which are nondominated
with it are checked. If there is no nondominated solution,
then the top two solutions with small constraint violation
are selected as the second parent and the third parent 𝑥2
and 𝑥3 (Figure 4(b)); otherwise, the nondominated solution
with the smallest constraint violation is selected as the second
parent 𝑥2, and then the infeasible solution with smallest
constraint violation in the population excluding 𝑥2 is selected
as the third parent 𝑥3 (Figure 4(c)). If there is more than
one feasible solution, the top two feasible solutions with
small objective value are selected as the parents 𝑥1 and 𝑥2.
Moreover, if there is no solution which is nondominated with
the best feasible solution, then the infeasible solution with the
smallest constraint violation is selected as the third parent 𝑥3
(Figure 4(d)); otherwise, the nondominated one with small-
est constraint violation is the third parent 𝑥3 (Figure 4(e)).

In the last stage, all solutions in the population are
feasible, that is, 𝜌 = 1. It is obvious that the top three solutions
with small objective value are selected as parents 𝑥1, 𝑥2, and
𝑥3.
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Figure 4: Solutions selected to perform SPX in different cases.
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Table 1: Statistical results obtained byMDEDPover 30 independent runs and the comparisonwithVar2 [24], SAMSDE-2 [24], SR [2], ATMES
[9], and BBO-DM [25]. The result in boldface indicates that the proposed MDEDP obtained the global optimum.The bold-face values mean
they are optimal solutions. NA means not available in related reference.

fcn/opt. Status MDEDP Var2 [24] SAMSDE-2 [24] SR [2] ATMES [9] BBO-DM [25] DEDP

g01/−15.0000

Best −15.000 −15.0000 −15.0000 −15.000 −15.000 −15 −14.9999
Median −15.000 −15.0000 −15.0000 −15.000 −15.000 NA −14.9998
Mean −15.000 −15.0000 −15.0000 −15.000 −15.000 −15 −14.9999
Worst −15.000 −15.0000 −15.0000 −15.000 −15.000 −15 −14.9998
Std. 0 0 0 0.0𝐸 + 00 1.6𝐸 − 14 8.2𝐸 − 14 3.9𝐸 − 05

g02/−0.803619

Best −0.803616 −0.803616 −0.803619 −0.803515 −0.803388 −0.803557 −0.604182
Median −0.763716 −0.785259 −0.783053 −0.785800 −0.792420 NA −0.554816
Mean −0.757713 −0.779414 −0.774917 −0.781975 −0.790148 −0.802774 −0.553601
Worst −0.616138 −0.729905 −0.729398 −0.726288 −0.756986 −0.792576 −0.511070
Std. 1.9𝐸 − 02 1.9𝐸 − 02 2.5𝐸 − 02 2.0𝐸 − 02 1.3𝐸 − 02 2.7𝐸 − 03 2.0𝐸 − 02

g03/−1.0005

Best −1.0005 −1.0005 −1.0005 −1.000 −1.000 −1.000 −1.0005
Median −1.0005 −1.0005 −1.0005 −1.000 −1.000 NA −1.0005
Mean −1.0005 −1.0005 −1.0005 −1.000 −1.000 −1.000 −1.0005
Worst −1.0005 −1.0005 −1.0005 −1.000 −1.000 −1.000 −1.0005
Std. 2.9𝐸 − 07 1.3𝐸 − 05 8.2𝐸 − 06 1.9𝐸 − 04 5.9𝐸 − 05 6.0𝐸 − 16 9.4𝐸 − 14

g04/
−30665.53867

Best −30665.53867 −30665.53867 −30665.53867 −30665.539 −30665.539 −30665.539 −30665.53867
Median −30665.53867 −30665.53867 −30665.53867 −30665.539 −30665.539 NA −30665.53867
Mean −30665.53867 −30662.69876 −30665.53867 −30665.539 −30665.539 −30665.539 −30665.53867
Worst −30665.53867 −30634.93399 −30665.53867 −30665.539 −30665.539 −30665.539 −30665.53867
Std. 1.4𝐸 − 11 8.7𝐸 + 00 0 2.0𝐸 − 05 4.6𝐸 − 13 1.7𝐸 − 11 1.1𝐸 − 11

g05/5126.49671

Best 5126.49671 5126.49674 5126.49671 5126.497 5126.498 5126.498 5126.49671
Median 5126.49671 5126.98662 5126.49674 5127.372 5126.776 NA 5126.49671
Mean 5126.49671 5133.70682 5126.63543 5128.881 5127.648 5126.498 5126.49671
Worst 5126.49671 5217.94796 5128.80623 5142.472 5135.256 5126.498 5126.49671
Std. 3.0𝐸 − 12 2.0𝐸 + 01 5.0𝐸 − 01 3.5𝐸 + 00 1.8𝐸 + 00 2.2𝐸 − 04 9.3𝐸 − 13

g06/−6961.814

Best −6961.814 −6961.83188 −6961.83188 −6961.814 −6961.814 −6961.814 −6961.814
Median −6961.814 −6961.80882 −6961.83188 −6961.814 −6961.814 NA −6961.814
Mean −6961.814 −6937.41732 −6961.83188 −6875.940 −6961.814 −6961.814 −6961.814
Worst −6961.814 −6804.36991 −6961.83188 −6350.262 −6961.814 −6961.814 −6961.814
Std. 1.8𝐸 − 12 4.8𝐸 + 01 0 1.6𝐸 + 02 4.6𝐸 − 12 4.6𝐸 − 12 1.9𝐸 − 02

g07/24.306

Best 24.306 24.3069 24.3069 24.307 24.306 24.326 24.330
Median 24.306 24.3205 24.3287 24.357 24.313 NA 24.340
Mean 24.306 24.3289 24.3330 24.374 24.316 24.345 24.342
Worst 24.306 24.4085 24.3881 24.642 24.359 24.378 24.360
Std. 4.6𝐸 − 06 2.5𝐸 − 02 2.5𝐸 − 02 6.6𝐸 − 02 1.1𝐸 − 02 1.3𝐸 − 02 8.7𝐸 − 03

g08/−0.095825

Best −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Median −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 NA −0.095825
Mean −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Worst −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Std. 8.4𝐸 − 17 0 0 2.6𝐸 − 17 2.8𝐸 − 17 2.8𝐸 − 17 2.8𝐸 − 17

g09/680.630

Best 680.630 680.630 680.630 680.630 680.630 680.630 680.630
Median 680.630 680.633 680.631 680.641 680.633 NA 680.630
Mean 680.630 680.634 680.631 680.656 680.639 680.630 680.630
Worst 680.630 680.646 680.632 680.763 680.673 680.630 680.630
Std. 3.6𝐸 − 10 4.0𝐸 − 03 6.8𝐸 − 04 3.4𝐸 − 02 1.0𝐸 − 02 4.3𝐸 − 13 1.5𝐸 − 11
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Table 1: Continued.

fcn/opt. Status MDEDP Var2 [24] SAMSDE-2 [24] SR [2] ATMES [9] BBO-DM [25] DEDP

g10/7049.248

Best 7049.249 7049.570 7049.378 7054.316 7052.253 7059.802 7052.473
Median 7049.257 7071.060 7105.992 7372.613 7215.357 NA 7054.639
Mean 7049.258 7105.844 7112.012 7559.192 7250.437 7075.832 7054.623
Worst 7049.311 7347.264 7191.295 8835.655 7560.224 7098.254 7058.081
Std. 1.1𝐸 − 02 7.3𝐸 + 01 7.0𝐸 + 01 5.3𝐸 + 02 1.2𝐸 + 02 8.5𝐸 + 00 1.5𝐸 + 00

g11/0.7499

Best 0.7499 0.7499 0.7499 0.750 0.75 0.750 0.7499
Median 0.7499 0.7499 0.7499 0.750 0.75 NA 0.7499
Mean 0.7499 0.7499 0.7499 0.750 0.75 0.750 0.7499
Worst 0.7499 0.7499 0.7499 0.750 0.75 0.750 0.7499
Std. 3.4𝐸 − 16 0 0 8.0𝐸 − 05 3.4𝐸 − 04 0 1.0𝐸 − 16

g12/−1.000

Best −1 −1.0000 −1.0000 −1.000000 −1.000 −1.000000 −1
Median −1 −1.0000 −1.0000 −1.000000 −1.000 NA −1
Mean −1 −1.0000 −1.0000 −1.000000 −1.000 −1.000000 −1
Worst −1 −1.0000 −1.0000 −1.000000 −0.994 −1.000000 −1
Std. 0 0 0 0.0𝐸 + 00 1.0𝐸 − 03 0 0

g13/0.0539415

Best 0.0539415 0.0539452 0.0539415 0.053957 0.053950 NA 0.0539415
Median 0.0539415 0.0546893 0.0539415 0.057006 0.053952 NA 0.0588605
Mean 0.0539415 0.0602843 0.0539417 0.067543 0.053959 NA 0.1586557
Worst 0.0539415 0.0828200 0.0539428 0.216915 0.053999 NA 0.4461180
Std. 1.3𝐸 − 12 9.9𝐸 − 03 3.0𝐸 − 07 3.1𝐸 − 02 1.3𝐸 − 05 NA 1.6𝐸 − 01

In the above LS procedure, the best feasible and infeasible
solutions are selected to form the simplex which crosses
the feasible and infeasible region in the search space. Fur-
thermore, the neighborhood that the LS engine works on
is dynamically adjusted with the evolution and the search
will focus on the promising region in search space, and the
strategy encourages exploitation adaptively from both sides
of the boundary of the feasible region.

4.3. Memetic DE Based on Dynamic Preference for COPs. For
biobjective problem (3) with preference, the proposed EA,
denoted by MDEDP, is described as follows.

Algorithm 1. Consider the following.

Step 1 (initialization). Randomly generate the initial popula-
tion 𝑃(0) with size NP in the search space 𝑆, and set 𝑘 = 0.

Step 2 (global search). Apply DE/rand/1/bin as the global
search engine to evolve the population𝑃(𝑘), and the offspring
set is denoted by 𝑂1.

Step 3 (local search). Perform the local search on the promis-
ing region according to the details in Section 3.2. The LS
based on SPX generates 𝜇 offspring, which are randomly
selected from the enlarged simplex. The offspring constitute
set 𝑂2.

Step 4 (selection). Select the next population from
𝑃(𝑘)⋃𝑂1⋃𝑂2 according to the fitness function value
𝐹(𝑥) in Section 3.1.

Step 5 (stopping criterion). If stopping criterion is met
(usually the maximum number of function evaluations is
used), stop; else let 𝑘 = 𝑘 + 1, and go to Step 2.

5. Simulation Results

5.1. Test Functions and Parameters Setting. In this section, we
apply the proposed MDEDP to 22 standard test functions
from [1, 2, 24]. The parameters used in simulations are given
below. Population size, NP = 200, the scale factor 𝐹 in DE
mutation, and the probability of crossover CR are uniformly
random number in [0.8, 0.9] and [0.9, 0.95], respectively. In
the SPX based LS, the expanding ratio is 𝜀 = 3, and the
number of offspring is 𝜇 = 10. The maximum number of
function evaluations (FEs) is set to 240000. In the constraint
handling technique, the equality constraints are converted to
inequality constrains by a tolerance value 𝛿. In the experi-
ments, the tolerance value 𝛿 is dynamically set as proposed
in [29] and used in the [9, 12]. The tolerance value 𝛿 is

𝛿 (𝑡 + 1) =

{{

{{

{

𝛿 (𝑡)

1.0168
, if 𝛿 > 10−4,

10−4, else.
(8)

The initial 𝛿(0) is set to 3. The initial value and the propor-
tional decreasing factor 𝛿 are the same as those in [9]. For
each test function, 30 independent trials are executed, and
the statistical results of 30 trials are recorded. The statistical
results include the “best,” “median,” “mean,” and “worst” of
the obtained optimal solutions and the standard deviations
(Std.).
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5.2. Experimental Results and Comparison. Theexperimental
results are compared with the state-of-the-art algorithms:
Var2 [24] and SAMSDE-2 [24], SR [2], ATMES [9], and
CBBO-DM [25]. Among the comparison algorithms, Var2
[24] used DE/rand/3/bin as search engine and used feasi-
bility rules [3] as comparison criteria, ASMSDE-2 combines
adaptively two DE mutation schemes as search engine and
also used feasibility rules [3] as comparison criteria, SR
employed ES as the search engine and designed stochastic
ranking to make comparison, ATMES used ES as the search
engine and proposed an adaptive tradeoff fitness as selec-
tion operator, and CBBO-DM combines the BBO and DE
mutation operators together. It is mentioned here that our
algorithmsMDEDP, ATMES, Var2 [24], and SAMSDE-2 [24]
used 240000 FEs, while SR and CBBO-DM used 350000 FEs.
The tolerance of equality constraints 𝛿 for Var2 [24] and
SAMSDE-2 [24] is 1.0𝐸 − 04, while it was set to 1.0𝐸 − 03

for CBBO-DM, and for MDEDP and ATMES, both tolerance
values are dynamically decreased. ForMDEDP, it is decreased
from initial value 3 to 1.0𝐸−04 eventually, while for ATMES,
it is decreased from initial value of 3 to 5.0𝐸 − 06 in the end.

Table 1 gives the results of six algorithms, our MDEDP,
Var2 [24], SAMSDE-2 [24], SR [2], ATMES [9], and CBBO-
DM [25] for the first 13 test instances since SR, ATMES,
and CBBO-DM solved only the first 13 problems. The results
and comparisons with Var2 [24] and SAMSDE-2 [24] for the
remaining nine test instances are given in Table 2.

In order to illustrate the significant difference, the approx-
imate two-sample 𝑡-tests between the comparison algorithms
and our MDEDP have been done according to [18]:

𝑡0 =
𝑦1 − 𝑦2

√𝑆21/𝑛1 + 𝑆
2
2/𝑛2

, (9)

where 𝑦1 and 𝑦2 denote the mean values, 𝑆1 and 𝑆2 are
the standard deviations of the results obtained by the two
algorithms, and 𝑛1 and 𝑛2 are the independent runs of two
algorithms, respectively. The value of degrees of freedom is
calculated as follows:

𝑓 = ⌊
1

𝑘2/𝑛1 + (1 − 𝑘)
2
/𝑛2

⌋ , where 𝑘 =
𝑆21/𝑛1

𝑆21/𝑛1 + 𝑆
2
2/𝑛2

.

(10)

For the first 13 test instances, the 𝑡-tests are done between
our MDEDP and three algorithms, SR, ATMES, and CBBO-
DM, on 6 instances (g02, g05, g07, g10, and g13). The 𝑡-test
is not done on other instances since the optimal solutions are
foundby at least three algorithms in all runs.Thedata used for
𝑡-test is from the related references and the results of 𝑡-tests
are calculated and showed inTable 3. In the table, “NA”means
no available data in the related references, “−” means both
approaches have obtained the optimal solutions in all runs
on the given functions, and “NF” means no feasible solutions
found in the algorithm. Superscript “a” means the difference
between MDEDP and the compared algorithm with the
corresponding degrees of freedom is significant at 𝛼 = 0.05

and MDEDP is better than the compared algorithm, while

Table 2: Statistical results obtained byMDEDPover 30 independent
runs and the comparison with Var2 [24] and SAMSDE-2 [24] for the
remaining 9 test instances. “NF”means no feasible solution is found.

fcn/opt. Status MDEDP Var2 [24] SAMSDE-2 [24]

g14/
−47.76489

Best −47.76489 −47.76206 −46.66291
Median −47.76489 −47.52454 −46.63655
Mean −47.76487 −47.46548 −46.43386
Worst −47.76478 −46.53409 −46.00211
Std. 2.9𝐸 − 05 3.0𝐸 − 01 3.7𝐸 − 01

g15/
961.715022

Best 961.715022 961.715022 961.715022
Median 961.715022 961.715022 961.715022
Mean 961.715022 961.716603 961.715022
Worst 961.715022 961.757371 961.715022
Std. 6.9𝐸 − 13 7.9𝐸 − 03 4.1𝐸 − 08

g16/
−1.9051553

Best −1.9051553 −1.9051553 −1.9051553
Median −1.9051553 −1.9051553 −1.9051553
Mean −1.9051553 −1.9051553 −1.9051553
Worst −1.9051553 −1.9051553 −1.9051553
Std. 6.6𝐸 − 16 3.2𝐸 − 10 0

g17/
8853.5339

Best 8853.5339 8853.5398 8853.5397
Median 8853.5339 8949.0383 8927.5977
Mean 8858.4711 8937.0179 8914.0841
Worst 8927.5917 8956.7443 8941.2845
Std. 1.9𝐸 + 01 2.7𝐸 + 01 3.1𝐸 + 01

g18/
−0.8660254

Best −0.8660254 −0.866025 −0.866025
Median −0.8660254 −0.866024 −0.866024
Mean −0.8405529 −0.866020 −0.866018
Worst −0.6749814 −0.865983 −0.865959
Std. 6.6𝐸 − 02 9.8𝐸 − 06 1.4𝐸 − 05

g19/
32.65559

Best 32.65559 32.69440 32.67473
Median 32.65559 32.85972 32.88680
Mean 32.65559 32.93035 32.92857
Worst 32.65567 33.46296 33.37313
Std. 1.6𝐸 − 05 2.1𝐸 − 01 2.0𝐸 − 01

g21/
193.72451

Best 193.72451 NF 308.90899
Median 193.72451 NF 324.71234
Mean 220.35875 NF 324.10440
Worst 330.18271 NF 329.54888
Std. 5.4𝐸 + 01 NF 6.7𝐸 + 01

g23/
−400.05510

Best −400.05510 −382.522771 −374.201398
Median −400.05510 −191.134573 −262.684823
Mean −400.05509 −199.903075 −265.241202
Worst −400.05505 −6.556980 −176.606485
Std. 1.3𝐸 − 05 9.7𝐸 + 01 5.3𝐸 + 01

g24/
−5.5080133

Best −5.5080133 −5.5080133 −5.5080133
Median −5.5080133 −5.5080133 −5.5080133
Mean −5.5080133 −5.5080133 −5.5080133
Worst −5.5080133 −5.5080133 −5.5080133
Std. 1.8𝐸 − 15 0 0

superscript “b” means that the MDEDP is worse than the
compared algorithm.

As Table 3 shows, most of the differences are significant
except the differences between ATMES and MDEDP on
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Table 3: Results of the approximate two-sample 𝑡-test between the other three algorithms and our MDEDP for six instances.

Algorithms 𝑡-test g02 g05 g07 g09 g10 g13

SR-MDEDP 𝑡0 −3.09b 3.73a 5.64a 4.19a 5.27a 2.40a

𝑓 45 30 30 30 30 30

ATMES-MDEDP 𝑡0 −4.42b 3.50a 4.98a 5.26a 9.18a 2.04
𝑓 36 30 30 30 30 30

CBBO-MDEDP 𝑡0 −5.01b 32.12a 16.43a — 17.12a NA
𝑓 30 30 30 — 30 NA

Table 4: Results of the approximate two-sample 𝑡-test between the other two algorithms and our MDEDP for 12 instances.

Algorithms 𝑡-test g02 g05 g07 g09 g10 g13 g14 g17 g18 g19 g21 g23

Var2-MDEDP 𝑡0 −2.80b 1.97 5.02a 5.48a 4.25a 3.51a 5.47a 13.03a −2.11a 7.17a — 11.30a

𝑓 44 30 30 30 30 30 30 53 30 30 — 30

SAMSDE-MDEDP 𝑡0 −2.07b 1.52 5.92a 8.05a 4.91a 3.65a 19.70a 8.38a −2.11a 7.48a 6.60a 13.93a

𝑓 51 30 30 30 30 30 30 49 30 30 57 30

problem g13, which illustrates that our MDEDP is competi-
tive comparedwith other algorithms for themost widely used
13 benchmark problems.

For all the 22 test instances, the 𝑡-tests are done between
our MDEDP and Var2, SAMSDE-2 on 12 instances (g02, g05,
g07, g09, g10, g13, g14, g17, g18, g19, g21, and g23). The 𝑡-test
is not done on other instances since the optimal solutions are
found by at least two algorithms in all runs. The results of 𝑡-
test are showed in Table 4, in which it is clear that most of
the differences are significant except the differences between
either one of the compared algorithms and MDEDP on
problem g05. Therefore, it is concluded that our MDEDP is
competitive with the other two state-of-the-art algorithms for
the 22 test instances.

In summary, compared with other five algorithms for
constrained optimization problems,MDEDP is very compet-
itive.

In the proposed MDEDP, SPX based local search is
incorporated to speed up the convergence of the algorithm.
To test the efficiency of the SPX based local search, the com-
parisons are done on the most widely used 13 test instances
between the proposed algorithm with local search and
without local search (the algorithm without local search is
denoted by DEDP). The parameters setting is the same as
MDEDPwith the exception of discarding the SPX based local
search. It is mentioned here that the proposed algorithm
without local search also performed 240000 FEs, which is the
same as that ofMDEDP.The results forDEDPare also showed
in the last column of the Table 1. From Table 1, it is clear that
DEDP can find nine optimal solutions (g03, g04, g05, g06,
g08, g09, g11, g12, and g13) among 13 test instances, which
shows that the used DE search engine is powerful and the
proposed fitness function based on ASF can achieve a good
balance between objective function and constraint violation.
However, the DEDP is poor on the other four test instances
which have difficulties of high dimension of variables, many
local optimal solutions, and so forth. Compared with DEDP,
MDEDPperforms clearly better than that of theDEDP,which
illustrates that the SPX based local search can obviously
improve the efficiency of the DEDP.

5.3. Effect of the Weighting Vector. In this subsection, the
effect of the weighting vector which reflects the preference is
discussed through various experiments on the most widely
used 13 test instances.

In stage one, that is, 𝜌 = 0, there is no feasible solution
in the population, and the weighting vector 𝜔 is set to (0.1,
0.9). A big component of 𝜔2 illustrates that, in this stage, the
search biases to the constraint satisfaction are much more.
Meanwhile, 𝜔1 that is not set to zero means that the objective
function should not be ignored absolutely.

In further experiments, the weighting vector is set to (0.2,
0.8), (0.3, 0.7), (0.4, 0.6), and (0.5, 0.5), and the results are
shown in Table 5. The results are only for 10 out of the most
widely used 13 test functions except for g02, g04, and g12
since the feasible regions for g02, g04, and g12 are relatively
large which makes the populations seldom or not experience
phase one and the value of𝜔 almost does affect the evolution.
For convenient comparison, the results with 𝜔 = (0.1, 0.9)

are also shown in Table 5. From Table 5, it can be seen
that, with the four different weighting vectors, the proposed
algorithm can converge consistently to the global optimum
in 30 independent runs for the 10 test functions which all
experience phase one at least once. Therefore, the proposed
algorithm is not sensitive to the preset parameter vector 𝜔 in
stage one. The results and the above analysis demonstrated
that MDEDP is robust.

In stage two, that is, 0 < 𝜌 < 1, there are feasible
and infeasible solutions in the population at the same time.
With the evolution, the feasible solution proportion increases
accordingly. In this phase, parameter 𝜔max

1 , the upper bound
of the first component of 𝜔, is used to limit the bias
to the objective function in evolution. In the numerical
experiments, 𝜔max

1 = 0.5. The given upper bound means
that the preference to the objective function is at most the
same to the constraint satisfaction, which is the primary goal.
Further experiments are performed on all test functions with
different upper bound values, 0.4, 0.45, 0.6, and 0.7.Theupper
bound values of 0.4 and 0.45 represent that the preference to
objective function is slightly less than that to the constraint
satisfaction when there are more feasible solutions in the
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Table 5: Statistical results obtained by MDEDP for 10 among 13 test functions over 30 independent runs with different weighting vectors in
stage one.

fcn/opt. Status 𝜔 = (0.1, 0.9) 𝜔 = (0.2, 0.8) 𝜔 = (0.3, 0.7) 𝜔 = (0.4, 0.6) 𝜔 = (0.5, 0.5)

g01/−15.0000

Best −15 −15 −15 −15 −15
Median −15 −15 −15 −15 −15
Mean −15 −15 −15 −15 −15
Worst −15 −15 −15 −15 −15
Std. 0 2.1𝐸 − 14 1.4𝐸 − 14 1.2𝐸 − 14 1.6𝐸 − 14

g03/−1.0005

Best −1.0005 −1.0005 −1.0005 −1.0005 −1.0005
Median −1.0005 −1.0005 −1.0005 −1.0005 −1.0005
Mean −1.0005 −1.0005 −1.0005 −1.0005 −1.0005
Worst −1.0005 −1.0005 −1.0005 −1.0005 −1.0005
Std. 2.9𝐸 − 07 2.4𝐸 − 06 3.3𝐸 − 06 4.0𝐸 − 06 1.3𝐸 − 06

g05/5126.49671

Best 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671
Median 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671
Mean 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671
Worst 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671
Std. 3.0𝐸 − 12 4.8𝐸 − 12 3.9𝐸 − 12 4.0𝐸 − 12 3.0𝐸 − 12

g06/−6961.814

Best −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
Median −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
Mean −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
Worst −6961.814 −6952.814 −6961.814 −6961.814 −6961.814
Std. 1.8𝐸 − 12 1.8𝐸 − 12 1.8𝐸 − 12 1.8𝐸 − 12 1.9𝐸 − 12

g07/24.306

Best 24.306 24.306 24.306 24.306 24.306
Median 24.306 24.306 24.306 24.306 24.306
Mean 24.306 24.306 24.306 24.306 24.306
Worst 24.306 24.306 24.306 24.306 24.306
Std. 4.6𝐸 − 06 3.5𝐸 − 06 7.6𝐸 − 06 3.2𝐸 − 06 5.3𝐸 − 06

g08/−0.095825

Best −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Median −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Mean −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Worst −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Std. 8.4𝐸 − 17 8.4𝐸 − 17 8.4𝐸 − 17 8.4𝐸 − 17 8.4𝐸 − 17

g09/680.630

Best 680.630 680.630 680.630 680.630 680.630
Median 680.630 680.630 680.630 680.630 680.630
Mean 680.630 680.630 680.630 680.630 680.630
Worst 680.630 680.630 680.630 680.630 680.630
Std. 5.2𝐸 − 10 1.1𝐸 − 11 5.5𝐸 − 08 3.2𝐸 − 07 5.2𝐸 − 10

g10/7049.248

Best 7049.249 7049.258 7049.252 7049.258 7049.249
Median 7049.257 7049.357 7049.372 7049.344 7049.250
Mean 7049.258 7049.382 7049.405 7049.370 7049.258
Worst 7049.311 7049.901 7049.773 7049.785 7049.311
Std. 1.1𝐸 − 02 1.3𝐸 − 01 1.3𝐸 − 01 1.0𝐸 − 01 2.8𝐸 − 02

g11/0.7499

Best 0.7499 0.7499 0.7499 0.7499 0.7499
Median 0.7499 0.7499 0.7499 0.7499 0.7499
Mean 0.7499 0.7499 0.7499 0.7499 0.7499
Worst 0.7499 0.7499 0.7499 0.7499 0.7499
Std. 3.4𝐸 − 16 3.4𝐸 − 16 3.4𝐸 − 16 3.4𝐸 − 16 3.4𝐸 − 16

g13/0.0539415

Best 0.05395415 0.05395415 0.05395415 0.05395415 0.05395415
Median 0.05395415 0.05395415 0.05395415 0.05395415 0.05395415
Mean 0.05395415 0.05395415 0.05395415 0.05395415 0.05395415
Worst 0.05395415 0.05395415 0.05395415 0.05395415 0.05395415
Std. 1.3𝐸 − 12 6.1𝐸 − 11 4.4𝐸 − 12 3.8𝐸 − 10 1.3𝐸 − 12
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Table 6: Statistical results obtained by MDE-DP over 30 independent runs with different upper bound values of the first component in
weighting vector 𝜔 in stage two.

fcn/opt. Status 𝜔
max
1 = 0.4 𝜔

max
1 = 0.45 𝜔

max
1 = 0.5 𝜔

max
1 = 0.6 𝜔

max
1 = 0.7

g01/−15.0000

Best −15 −15 −15 −15 −15
Median −15 −15 −15 −15 −15
Mean −15 −15 −15 −15 −15
Worst −15 −15 −15 −15 −15
Std. 1.3𝐸 − 14 2.4𝐸 − 14 0 1.8𝐸 − 14 1.8𝐸 − 14

g02/−0.803619

Best −0.794882 −0.803617 −0.803616 −0.803615 −0.803613
Median −0.757723 −0.771748 −0.763716 −0.771840 −0.773241
Mean −0.750477 −0.758338 −0.757713 −0.761655 −0.764268
Worst −0.640313 −0.590475 −0.616138 −0.601025 −0.647718
Std. 4.0𝐸 − 02 4.4𝐸 − 02 1.9𝐸 − 02 3.8𝐸 − 02 3.5𝐸 − 02

g03/−1.0005

Best −1.0005 −1.0005 −1.0005 −1.0005 −1.0005
Median −1.0005 −1.0005 −1.0005 −1.0005 −1.0005
Mean −1.0005 −1.0005 −1.0005 −1.0005 −1.0005
Worst −1.0005 −1.0005 −1.0005 −1.0005 −1.0005
Std. 2.9𝐸 − 06 1.8𝐸 − 06 2.9𝐸 − 07 2.7𝐸 − 06 2.9𝐸 − 06

g04/30665.539

Best 30665.539 30665.539 30665.539 30665.539 30665.539
Median 30665.539 30665.539 30665.539 30665.539 30665.539
Mean 30665.539 30665.539 30665.539 30665.539 30665.539
Worst 30665.539 30665.539 30665.539 30665.539 30665.539
Std. 1.5𝐸 − 11 1.5𝐸 − 11 1.4𝐸 − 11 1.5𝐸 − 11 1.5𝐸 − 11

g05/5126.49671

Best 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671
Median 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671
Mean 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671
Worst 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671
Std. 4.7𝐸 − 12 4.0𝐸 − 12 3.0𝐸 − 12 4.0𝐸 − 12 4.8𝐸 − 12

g06/−6961.814

Best −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
Median −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
Mean −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
Worst −6961.814 −6952.814 −6961.814 −6961.814 −6961.814
Std. 1.8𝐸 − 12 1.8𝐸 − 12 1.8𝐸 − 12 1.8𝐸 − 12 1.8𝐸 − 12

g07/24.306

Best 24.306 24.306 24.306 24.306 24.306
Median 24.306 24.306 24.306 24.306 24.306
Mean 24.306 24.306 24.306 24.306 24.306
Worst 24.307 24.306 24.306 24.307 24.307
Std. 1.2𝐸 − 04 8.5𝐸 − 06 4.6𝐸 − 06 6.1𝐸 − 05 1.4𝐸 − 04

g08/−0.095825

Best −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Median −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Mean −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Worst −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Std. 8.5𝐸 − 17 8.4𝐸 − 17 8.4𝐸 − 17 8.4𝐸 − 17 8.4𝐸 − 17

g09/680.630

Best 680.630 680.630 680.630 680.630 680.630
Median 680.630 680.630 680.630 680.630 680.630
Mean 680.630 680.630 680.630 680.630 680.630
Worst 680.630 680.630 680.630 680.630 680.630
Std. 1.7𝐸 − 12 1.2𝐸 − 12 3.6𝐸 − 10 6.2𝐸 − 12 1.1𝐸 − 08

g10/7049.248

Best 7049.260 7049.270 7049.249 7049.259 7049.257
Median 7049.350 7049.364 7049.257 7049.328 7049.356
Mean 7049.397 7049.410 7049.258 7049.360 7049.370
Worst 7049.864 7049.954 7049.311 7049.703 7049.696
Std. 1.3𝐸 − 02 1.4𝐸 − 01 1.1𝐸 − 02 9.6𝐸 − 02 7.4𝐸 − 02
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Table 6: Continued.

fcn/opt. Status 𝜔max
1 = 0.4 𝜔max

1 = 0.45 𝜔max
1 = 0.5 𝜔max

1 = 0.6 𝜔max
1 = 0.7

g11/0.7499

Best 0.7499 0.7499 0.7499 0.7499 0.7499
Median 0.7499 0.7499 0.7499 0.7499 0.7499
Mean 0.7499 0.7499 0.7499 0.7499 0.7499
Worst 0.7499 0.7499 0.7499 0.7499 0.7499
Std. 3.4𝐸 − 16 3.4𝐸 − 16 3.4𝐸 − 16 3.4𝐸 − 16 3.4𝐸 − 16

g12/−1

Best −1 −1 −1 −1 −1
Median −1 −1 −1 −1 −1
Mean −1 −1 −1 −1 −1
Worst −1 −1 −1 −1 −1
Std. 0 0 0 0 0

g13/0.0539415

Best 0.05395415 0.05395415 0.05395415 0.05395415 0.05395415
Median 0.05395415 0.05395415 0.05395415 0.05395415 0.05395415
Mean 0.05395415 0.05395415 0.05395415 0.05395415 0.06163874
Worst 0.05395415 0.05395415 0.05395415 0.05395415 0.43880261
Std. 2.7𝐸 − 13 5.6𝐸 − 10 1.3𝐸 − 12 5.6𝐸 − 10 5.4𝐸 − 02

population, while upper bound values of 0.6 and 0.7 represent
that the preference to objective function is slightly more than
that to the constraint satisfaction. The experimental results
are shown in Table 6. It can be seen from the results in Table 6
that MDEDP can obtain similar results with different upper
bound values of the preference to objective function. From
the final results to g02, we can see that the algorithm is the
most robust with the upper bound 0.7. This is because the
whole search space is almost feasible, and the search biasing
to the objective function is helpful to find optimal solution
and coincides with a larger value of the first component of
the weight vector. The obtained results indicated that the
different upper bounds have little effect on the efficiency and
robustness of the proposed algorithm.

From the above experimental results, we can conclude
that the proposed MDEDP is robust to find the optimal
solutions for the test functions with the different preset
parameters.

6. Conclusion

The constrained optimization problem is converted into a
biobjective optimization problem first and then solved by a
new designed memetic differential evolution algorithm with
dynamic preference. DE is used as the search engine in
global search, which is guided by a novel fitness function
based on ASF used in multiobjective optimization. The
fitness function ASF dynamically adjusted the preference to
different objectives through the adaptive reference point and
weighting vector. In local search, SPX is used as the search
mechanism and concentrates on the neighborhood the best
feasible and infeasible solutions constituted, whichmakes the
algorithm approach the promising region in objective space
and accelerates the convergence. Experimental results and
comparison with the state-of-the-art algorithms demonstrate
that the proposed algorithm is efficient on these standard test
problems. Further experiments with different preset parame-
ters also show the robustness of the proposed algorithm.
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