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We use the fractional derivatives in modified Riemann-Liouville derivative sense to construct exact solutions of time fractional
simplified modified Camassa-Holm (MCH) equation. A generalized fractional complex transform is properly used to convert this
equation to ordinary differential equation and, as a result, many exact analytical solutions are obtained with more free parameters.
When these free parameters are taken as particular values, the traveling wave solutions are expressed by the hyperbolic functions,
the trigonometric functions, and the rational functions. Moreover, the numerical presentations of some of the solutions have been
demonstrated with the aid of commercial software Maple. The recital of the method is trustworthy and useful and gives more new
general exact solutions.

1. Introduction

The class of fractional calculus is one of the most convenient
classes of fractional differential equations which were viewed
as generalized differential equations [1]. In the sense that
much of the theory and, hence, applications of differential
equations can be extended smoothly to fractional differential
equations with the same flavor and spirit of the realm of
differential equation, the seeds of fractional calculus were
planted over three hundred years ago from a gracious idea
of L’Hopital, who wrote a letter to Leibniz on 1695, asking
about a rigorous description of the derivative of order 𝑛 =

0.5. Fractional calculus is the theory of differentiation and
integration of noninteger order and embodies the generality
of the conventional differential and integral calculus. There-
fore, some of the properties of the fractional integral and
derivatives differ from the conventional ones in order to
allow its implementation in a broader assortment of cases,
which cannot be appropriately illustrated by the conventional
integer-order calculus. Fractional calculus is painstaking to
be a very authoritative tool to help scientists to unearth
the concealed properties of the dynamics of multifaceted
systems in all fields of sciences and engineering. In recent

years, fractional calculus played an imperative role of a pro-
ficient, expedient, and elementary theoretical structure for
more adequate modeling of multifaceted dynamic processes.
Therefore, mounting applications of fractional calculus can
be seen in modeling, signal processing, electromagnetism,
mechanics, physics, biology, medicine, chemistry, bioengi-
neering, biological systems, and in many other areas [2, 3].
Recently, it has turned out that those differential equations
are involving derivatives of noninteger [4]. For example,
the nonlinear oscillation of earthquakes can be modeled
with fractional derivatives [5]. More recently, applications
have included classes of nonlinear equation with multiorder
fractional derivatives. We apply a generalized fractional
complex transform [6–9] to convert fractional order dif-
ferential equation to ordinary differential equation. Many
important phenomena in electromagnetic, viscoelasticity,
electrochemistry, and material science are well described by
differential equations of fractional order [10–14]. A physical
interpretation of the fractional calculus was given in [15–
19].With the development of symbolic computation software,
likeMaple, many numerical and analytical methods to search
for exact solutions of NLEEs have attracted more attention.
As a result, the researchers developed and established many
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methods, for example, the Cole-Hopf transformation [20],
the Tanh-function method [21–24], the inverse scattering
transform method [25], the variational iteration method [26,
27], Exp-function method [28–31], and 𝐹-expansion method
[32, 33] that are used for searching the exact solutions.

Recently, a straightforward and concise method, called
(𝐺
󸀠
/𝐺)-expansion method, was introduced by Wang et al.

[34] and demonstrated that it is a powerful method for
seeking analytic solutions of NLEEs. (𝐺󸀠/𝐺)-expansion is
a reliable technique, which gives various types of the soli-
tary wave solutions including the hyperbolic functions, the
trigonometric functions, and the rational functions. It is also
evident from the literature that such solutions always satisfy
the given nonlinear differential equations. For additional
references, see the articles [35–40]. In order to establish the
efficiency and assiduousness of (𝐺󸀠/𝐺)-expansion method
and to extend the range of applicability, further research has
been carried out by several researchers. For instance, Zhang
et al. [41] made a generalization of (𝐺󸀠/𝐺)-expansionmethod
for the evolution equations with variable coefficients. Zhang
et al. [42] also presented an improved (𝐺

󸀠
/𝐺)-expansion

method to seek more general traveling wave solutions. Zayed
[43] presented a new approach of (𝐺󸀠/𝐺)-expansion method
where 𝐺(𝜉) satisfies the Jacobi elliptic equation, [𝐺󸀠(𝜉)]2 =
𝑒
2
𝐺
4
(𝜉) + 𝑒

1
𝐺
2
(𝜉) + 𝑒

0
, where 𝑒

2
, 𝑒
1
, 𝑒
0
are arbitrary constants

and obtained new exact solutions. Zayed [44] again presented
an alternative approach of this method in which𝐺(𝜉) satisfies
the Riccati equation 𝐺󸀠(𝜉) = 𝐴𝐺(𝜉) + 𝐵𝐺

2
(𝜉), where 𝐴 and 𝐵

are arbitrary constants.
In this paper, we will apply novel (𝐺󸀠/𝐺)-expansion

method introduced by Alam et al. [45] to solve the time
fractional simplified modified Camassa-Holm (MCH) equa-
tion in the sense ofmodified Riemann-Liouville derivative by
Jumarie [46] and abundant new families of exact solutions are
found.The JumariemodifiedRiemann-Liouville derivative of
order 𝛼 is defined by the following expression:

𝐷
𝛼

𝑡
𝑓 (𝑡)

=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

1

Γ (1 − 𝛼)

×
𝑑

𝑑𝑡

∫

𝑡

0

(𝑡 − 𝜉)
−𝛼

(𝑓 (𝜉) − 𝑓 (0)) 𝑑𝜉, 0 < 𝛼 < 1,

(𝑓
(𝑛)

(𝑡))

(𝛼−𝑛)

, 𝑛 ≤ 𝛼 < 𝑛 + 1,

𝑛 ≥ 1.

(1)

Some important properties of Jumarie’s derivative are

𝐷
𝛼

𝑡
𝑓 (𝑡) =

Γ (1 + 𝜏)

Γ (1 + 𝜏 − 𝛼)

𝑡
𝜏−𝛼

, (2)

𝐷
𝛼

𝑡
(𝑓 (𝑡) 𝑔 (𝑡)) = 𝑔 (𝑡)𝐷

𝛼

𝑡
𝑓 (𝑡) + 𝑓 (𝑡)𝐷

𝛼

𝑡
𝑔 (𝑡) , (3)

𝐷
𝛼

𝑡
𝑓 [𝑔 (𝑡)] = 𝑓

󸀠

𝑔
[𝑔 (𝑡)]𝐷

𝛼

𝑡
𝑔 (𝑡) = 𝐷

𝛼

𝑔
𝑓 [𝑔 (𝑡)] (𝑔

󸀠

(𝑡))

𝛼

.

(4)

2. Description of the Method

Suppose that a fractional partial differential equation in the
independent variables, say 𝑡, is given by

𝑆 (𝑢, 𝑢
𝑥
, 𝑢
𝑡
, 𝐷
𝛼

𝑡
𝑢, . . .) = 0, 0 < 𝛼 ≤ 1, (5)

where 𝐷𝛼
𝑡
𝑢 is Jumarie’s modified Riemann-Liouville deriva-

tives of 𝑢, 𝑢(𝑥, 𝑡) is an unknown function, 𝑆 is a polynomial
in 𝑢, and its various partial derivatives including fractional
derivatives in which the highest order derivatives and non-
linear terms are involved.

The main steps of the method are as follows.

Step 1. Li and He [7] proposed a fractional complex trans-
formation to convert fractional partial differential equations
into ordinary differential equations (ODE), so all analytical
methods devoted to the advanced calculus can be easily
applied to the fractional calculus.The traveling wave variable

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝐿𝑥 + 𝑉
𝑡
𝛼

Γ (1 + 𝛼)

, (6)

where 𝐿, 𝑉 are arbitrary constants with 𝐿, 𝑉 ̸= 0, permits us
to convert (5) into an ordinary differential equation of integer
order in the form

𝑃 (𝑢, 𝑢
󸀠
, 𝑢
󸀠󸀠
, 𝑢
󸀠󸀠󸀠
, . . .) = 0, (7)

where the superscripts stand for the ordinary derivatives with
respect to 𝜉.

Step 2. Integrating (7) term by term one or more times
if possible yields constant(s) of integration which can be
calculated later on.

Step 3. Assume that the solution of (7) can be represented as

𝑢 (𝜉) =

𝑚

∑

𝑖=−𝑚

𝛼
𝑖
(𝑘 + Φ(𝜉))

𝑖

, (8)

where

Φ (𝜉) =
𝐺
󸀠
(𝜉)

𝐺 (𝜉)

, (9)

where both𝛼
−𝑚

and𝛼
𝑚
cannot be zero simultaneously.𝛼

𝑖
(𝑖 =

0, ±1, ±2, . . . , ±𝑚) and 𝑘 are constants to be determined later
and 𝐺 = 𝐺(𝜉) satisfies the second order nonlinear ordinary
differential equation as an auxiliary equation

𝐺𝐺
󸀠󸀠
= 𝐴𝐺𝐺

󸀠
+ 𝐵𝐺
2
+ 𝐶(𝐺

󸀠
)

2

, (10)

where 𝐴, 𝐵, and 𝐶 are real constants.
Equation (10) can be reduced to the following Riccati

equation by making use of the Cole-Hopf transformation
Φ(𝜉) = ln (𝐺(𝜉))

𝜉
= 𝐺
󸀠
(𝜉)/𝐺(𝜉) as

Φ
󸀠

(𝜉) = 𝐵 + 𝐴Φ (𝜉) + (𝐶 − 1)Φ
2

(𝜉) . (11)

Equation (11) has twenty five solutions [47].
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Step 4. The positive integer 𝑚 can be determined by balanc-
ing the highest order linear term with the nonlinear term of
the highest order come out in (7).

Step 5. Substituting (8) together with (9) and (10) into (7), we
obtain polynomials in (𝑘 + (𝐺

󸀠
/𝐺))
𝑖 and (𝑘 + (𝐺

󸀠
/𝐺))
−𝑖

(𝑖 =

0, 1, 2, . . . , 𝑚). Collecting each coefficient of the resulted
polynomials to zero yields an overdetermined set of algebraic
equations for 𝛼

𝑖
(𝑖 = 0, ±1, ±2, . . . , ±𝑚), 𝑘, 𝐿, and 𝑉.

Step 6. The values of the arbitrary constants can be obtained
by solving the algebraic equations obtained in Step 4. The
obtained values of the arbitrary constants and the solutions
of (10) yield abundant exact traveling wave solutions of the
nonlinear evolution equation (5).

3. Application of the Method to the Time
Fractional Simplified (MCH) Equation

Now, consider the following time fractional simplified modi-
fied Camassa-Holm (MCH) equation:

𝐷
𝛼

𝑡
𝑢 + 2𝛿𝑢

𝑥
− 𝑢
𝑥𝑥𝑡

+ 𝛾𝑢
2
𝑢
𝑥
= 0,

where 𝛿 ∈ R, 𝛾 > 0, 0 < 𝛼 ≤ 1,

(12)

which is the variation of the equation

𝑢
𝑡
+ 2𝛿𝑢

𝑥
− 𝑢
𝑥𝑥𝑡

+ 𝛾𝑢
2
𝑢
𝑥
= 0,

where 𝛿 ∈ R, 𝛾 > 0.

(13)

Many researchers investigated the simplified MCH equa-
tion by using different methods to establish exact solutions.
For example, Liu et al. [48] were concerned about the (𝐺󸀠/𝐺)-
expansion method to solve the simplified MCH equation,
whereas the second order linear ordinary differential equa-
tion (LODE) is considered as an auxiliary equation. Wazwaz
[49] studied this equation by using the sine-cosine algorithm.
Zaman and Sultana [50] used the (𝐺󸀠/𝐺)-expansion method
together with the generalized Riccati equation to MCH
equation to find the exact solutions. Alam and Akbar [51]
applied the generalized (𝐺󸀠/𝐺)-expansionmethod to look for
the exact solutions via the simplifiedMCH equation. Further
details of MCH equation can be found in references [52, 53].

By the use of (4), (12) is converted into an ordinary
differential equation of integer order and after integrating
once, we obtain

(𝑉 + 2𝛿𝐿) 𝑢 − 𝑉𝐿
2
𝑢
󸀠󸀠
+ 𝛾𝐿

𝑢
3

3

+ 𝐶
1
= 0, (14)

where 𝐶
1
is an integral constant which is to be determined

later.
Considering the homogeneous balance between 𝑢

󸀠󸀠 and
𝑢
3 in (14), we obtain 3𝑚 = 𝑚 + 2; that is, 𝑚 = 2. Therefore,

the trial solution formula (8) becomes

𝑢 (𝜉) = 𝛼
−1
(𝑘 + Φ (𝜉))

−1

+ 𝛼
0
+ 𝛼
1
(𝑘 + Φ (𝜉)) . (15)

Using (15) into (14), left hand side is converted into
polynomials in (𝑘 + (𝐺

󸀠
/𝐺))
𝑖 and (𝑘 + (𝐺

󸀠
/𝐺))
−𝑖

(𝑖 =

0, 1, 2, . . . , 𝑚). Equating the coefficients of same power of the
resulted polynomials to zero, we obtain a system of algebraic
equations for 𝛼

0
, 𝛼
1
, 𝛼
−1
, 𝑘, 𝐶
1
, 𝐿, and 𝑉 (which are omitted

for the sake of simplicity). Solving the overdetermined set
of algebraic equations by using the symbolic computation
software, such as Maple 13, we obtain the following four
solution sets.

Set 1. Consider

𝛼
0
= ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

,

𝛼
1
= ±𝑖

2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

,

𝑉 = −
4𝛿𝐿

𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2

,

𝐿 = 𝐿, 𝑘 = 𝑘, 𝛼
−1

= 0, 𝐶
1
= 0,

(16)

where 𝑘, 𝐿, 𝐴, 𝐵, and 𝐶 are arbitrary constants.

Set 2. Consider

𝛼
0
= ∓𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

,

𝛼
−1

= ±𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

,

𝑉 = −
4𝛿𝐿

𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2

,

𝐿 = 𝐿, 𝑘 = 𝑘, 𝛼
1
= 0, 𝐶

1
= 0,

(17)

where 𝑘, 𝐿, 𝐴, 𝐵, and 𝐶 are arbitrary constants.

Set 3. Consider

𝛼
1
= ±2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

,

𝛼
−1

= ±𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

,

𝑉 = −
2𝛿𝐿

2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1

,

𝑘 =
𝐴

2 (𝐶 − 1)

, 𝐿 = 𝐿, 𝛼
0
= 0, 𝐶

1
= 0,

(18)

where 𝐿, 𝐴, 𝐵, and 𝐶 are arbitrary constants.
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Set 4. Consider

𝛼
−1

= ±𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

,

𝑉 = −
4𝛿𝐿

𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2

,

𝑘 =
𝐴

2 (𝐶 − 1)

, 𝐿 = 𝐿, 𝛼
0
= 0, 𝛼

1
= 0, 𝐶

1
= 0,

(19)

where 𝐿, 𝐴, 𝐵, and 𝐶 are arbitrary constants.

Substituting (16)–(19) into (15), we obtain

𝑢
1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× (𝑘 + (
𝐺
󸀠

𝐺

)) ,

(20)

where

𝜉 = 𝐿𝑥 − (
4𝛿𝐿

𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2

)
𝑡
𝛼

Γ (1 + 𝛼)

,

𝑢
2
(𝜉) = ∓ 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× (𝑘 + (
𝐺
󸀠

𝐺

))

−1

,

(21)

where

𝜉 = 𝐿𝑥 − (
4𝛿𝐿

𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2

)
𝑡
𝛼

Γ (1 + 𝛼)

,

𝑢
3
(𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

× (
𝐴

2 (𝐶 − 1)

+ (
𝐺
󸀠

𝐺

))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
𝐴

2 (𝐶 − 1)

+ (
𝐺
󸀠

𝐺

))

−1

,

(22)

where

𝜉 = 𝐿𝑥 − (
2𝛿𝐿

2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1

)
𝑡
𝛼

Γ (1 + 𝛼)

,

𝑢
4
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
𝐴

2 (𝐶 − 1)

+ (
𝐺
󸀠

𝐺

))

−1

,

(23)

where

𝜉 = 𝐿𝑥 − (
4𝛿𝐿

𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2

)
𝑡
𝛼

Γ (1 + 𝛼)

. (24)

Substituting the solutions 𝐺(𝜉) of (10) into (20) and
simplifying, we obtain the following solutions.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 > 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0) (Figure 1),

𝑢
1

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

(𝐴 + √Δ tanh(
√Δ𝜉

2

))} ,

𝑢
2

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

(𝐴 + √Δ coth(
√Δ𝜉

2

))} ,

𝑢
3

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× (𝐴 + √Δ (tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉))) } ,
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Figure 1: (a)–(d) show the kink solution for 𝑢1
1
for different values of parameters.

𝑢
4

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× (𝐴 + √Δ (coth (√Δ𝜉) ± csch (√Δ𝜉))) } ,

𝑢
5

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

4 (𝐶 − 1)

× (2𝐴 + √Δ



6 Abstract and Applied Analysis

× (tanh(
√Δ𝜉

4

) + coth(
√Δ𝜉

4

)))} ,

𝑢
6

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√Δ (𝐹
2
+ 𝐻
2
)

−𝐹√Δ cosh (√Δ𝜉) )

× (𝐹 sinh (√Δ𝜉) + 𝐵)

−1

} ] ,

𝑢
7

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√Δ (𝐹
2
+ 𝐻
2
)

+𝐹√Δ cosh (√Δ𝜉) )

× (𝐹 sinh (√Δ𝜉) + 𝐵)

−1

} ] ,

(25)

where 𝐹 and𝐻 are real constants (Figure 2). Consider

𝑢
8

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +

2𝐵 cosh (√Δ𝜉/2)
√Δ sinh (√Δ𝜉/2) − 𝐴 cosh (√Δ𝜉/2)

} ,

𝑢
9

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +

2𝐵 sinh (√Δ𝜉/2)
√Δ cosh (√Δ𝜉/2) − 𝐴 sinh (√Δ𝜉/2)

} ,

𝑢
10

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +

2𝐵 cosh (√Δ𝜉)
√Δ sinh (√Δ𝜉) − 𝐴 cosh (√Δ𝜉) ± 𝑖√Δ

} ,

𝑢
11

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +

2𝐵 sinh (√Δ𝜉)
√Δ cosh (√Δ𝜉) − 𝐴 sinh (√Δ𝜉) ± √Δ

} .

(26)

WhenΔ = 𝐴
2
−4𝐵𝐶+4𝐵 < 0 and𝐴(𝐶−1) ̸= 0 (or𝐵(𝐶−1) ̸= 0),

𝑢
12

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
1

2 (𝐶 − 1)

×(−𝐴 + √−Δ tan(
√−Δ𝜉

2

))} ,

𝑢
13

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

×(𝐴 + √−Δcot(
√−Δ𝜉

2

))} ,
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𝑢
14

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× ( − 𝐴 + √−Δ

× (tan (√−Δ𝜉) ± sec (√−Δ𝜉))) } ,

𝑢
15

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× (𝐴 + √−Δ

× (cot (√−Δ𝜉) ± csch (√−Δ𝜉))) } ,

𝑢
16

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√−Δ (𝐹
2
− 𝐻
2
)

− 𝐹√−Δ cos (√−Δ𝜉) )

× (𝐹 sin (√−Δ𝜉) + 𝐵)

−1

} ] ,

𝑢
17

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√−Δ (𝐹
2
− 𝐻
2
)

− 𝐹√−Δ cos (√−Δ𝜉) )

× (𝐹 sin (√−Δ𝜉) + 𝐵)

−1

} ] ,

𝑢
18

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√−Δ (𝐹
2
− 𝐻
2
)

+𝐹√−Δ cos (√−Δ𝜉) )

×(𝐹 sin (√−Δ𝜉) + 𝐵)

−1

} ] ,

(27)

where 𝐹 and𝐻 are real constants such that 𝐹2 − 𝐻
2
> 0.

Consider

𝑢
19

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −

2𝐵 cos (√−Δ𝜉/2)
√−Δ sin (√−Δ𝜉/2) + 𝐴 cos (√−Δ𝜉/2)

} ,

𝑢
20

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +

2𝐵 sin (√−Δ𝜉/2)
√−Δ cos (√−Δ𝜉/2) − 𝐴 sin (√−Δ𝜉/2)

} ,

𝑢
21

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)
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Figure 2: (a)–(d) show the singular solution for 𝑢2
1
for different values of parameters.

× {𝑘 − (2𝐵 cos (√−Δ𝜉))

× (√−Δ sin (√−Δ𝜉)

+𝐴 cos (√−Δ𝜉) ± √−Δ)

−1

} ,

𝑢
22

1
(𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 + (2𝐵 sin(
√−Δ𝜉

2

))

×(√−Δ cos(
√−Δ𝜉

2

)

−𝐴 sin(
√−Δ𝜉

2

) ± √−Δ)

−1

} .

(28)

When 𝐵 = 0 and 𝐴(𝐶 − 1) ̸= 0,

𝑢
23

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)
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± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
𝐴𝑐
1

(𝐶 − 1) {𝑐
1
+ cosh (𝐴𝜉) − sinh (𝐴𝜉)}

} ,

𝑢
24

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
𝐴 (cosh (𝐴𝜉) + sinh (𝐴𝜉))

(𝐶 − 1) {𝑐
1
+ cosh (𝐴𝜉) + sinh (𝐴𝜉)}

} ,

(29)

where 𝑐
1
is an arbitrary constant.

When 𝐴 = 𝐵 = 0 and (𝐶 − 1) ̸= 0, the solution of (12) is

𝑢
25

1
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

(𝐶 − 1) 𝜉 + 𝑐
2

} ,

(30)

where 𝑐
2
is an arbitrary constant.

Substituting the solutions 𝐺(𝜉) of (10) in (21) and simpli-
fying, we obtain the following solutions.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 > 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0),

𝑢
1

2
(𝜉) = ∓ 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

(𝐴 + √Δ tanh(
√Δ𝜉

2

))}

−1

,

𝑢
2

2
(𝜉) = ∓ 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

(𝐴 + √Δ coth(
√Δ𝜉

2

))}

−1

,

𝑢
3

2
(𝜉) = ∓ 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× (𝐴 + √Δ (tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉))) }
−1

.

(31)

The other families of exact solutions of (12) are omitted
for convenience.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 < 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0) (Figure 3),

𝑢
12

2
(𝜉) = ∓𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
1

2 (𝐶 − 1)

×(−𝐴 + √−Δ tan(
√−Δ𝜉

2

))}

−1

,

𝑢
13

2
(𝜉) = ∓𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

×(𝐴 + √−Δcot(
√−Δ𝜉

2

))}

−1

,

𝑢
14

2
(𝜉) = ∓𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)
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Figure 3: (a)–(d) show the periodic solution for 𝑢12
2
for different values of parameters.

× {𝑘 +
1

2 (𝐶 − 1)

× ( − 𝐴 + √−Δ

× (tan (√−Δ𝜉) ± sec (√−Δ𝜉)) )}
−1

.

(32)

When 𝐴 = 𝐵 = 0 and (𝐶 − 1) ̸= 0, the solution of (12) is

𝑢
25

2
(𝜉) = 𝑢

2
(𝜉)

= ∓ 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖

2√6𝛿𝐿 (𝑘𝐴 + 𝑘
2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

(𝐶 − 1)𝜉 + 𝑐
2

}

−1

,

(33)

where 𝑐
2
is an arbitrary constant.

We can write down the other families of exact solutions
of (12) which are omitted for practicality.

Similarly, by substituting the solutions 𝐺(𝜉) of (10) into
(22) and simplifying, we obtain the following solutions.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 > 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0),
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𝑢
1

3
(𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)

(√Δ tanh(
√Δ𝜉

2

)))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

(√Δ tanh(
√Δ𝜉

2

)))

−1

,

𝑢
2

3
(𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)

(√Δ coth(
√Δ𝜉

2

)))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

(√Δ coth(
√Δ𝜉

2

)))

−1

,

𝑢
3

3
(𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)

× {√Δ tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉)} )

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

× {√Δ tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉)} )
−1

.

(34)

Others families of exact solutions are omitted for the sake
of simplicity.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 < 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0) (Figure 4),

𝑢
12

3
(𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)

(√−Δ tan(
√−Δ𝜉

2

)))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

(√−Δ tan(
√−Δ𝜉

2

)))

−1

,

𝑢
13

3
(𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)

(√−Δcot(
√−Δ𝜉

2

)))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

(√−Δcot(
√−Δ𝜉

2

)))

−1

,

𝑢
14

3
(𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)

× {√−Δ tan (√−Δ𝜉) ± sec (√−Δ𝜉)} )

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

× {√−Δ tan (√−Δ𝜉) ± sec (√−Δ𝜉)} )
−1

.

(35)

When (𝐶 − 1) ̸= 0 and 𝐴 = 𝐵 = 0, the solution of (12) is

𝑢
25

3
(𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1)

× (
𝐴

2 (𝐶 − 1)

−
1

(𝐶 − 1) 𝜉 + 𝑐
2

)

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
𝐴

2(𝐶 − 1)

−
1

(𝐶 − 1)𝜉 + 𝑐
2

)

−1

,

(36)

where 𝑐
2
is an arbitrary constant.

Other exact solutions of (12) are omitted here for conve-
nience.
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Figure 4: (a)–(d) show singular kink solution for 𝑢12
3
for different values of parameters.

Finally, by substituting the solutions𝐺(𝜉) of (10) into (23)
and simplifying, we obtain the following solutions.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 > 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0) (Figure 5),

𝑢
1

4
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

(√Δ tanh(
√Δ𝜉

2

)))

−1

,

𝑢
2

4
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

(√Δ coth(
√Δ𝜉

2

)))

−1

,

𝑢
3

4
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

× {√Δ tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉)} )
−1

.

(37)

Others families of exact solutions are omitted for the sake
of ease.
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Figure 5: (a)–(d) show traveling wave solution for 𝑢3
4
for different values of parameters.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 < 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0),

𝑢
12

4
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

(√−Δ tan(
√−Δ𝜉

2

)))

−1

,

𝑢
13

4
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

(√−Δcot(
√−Δ𝜉

2

)))

−1

,

𝑢
14

4
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

× {√−Δ tan (√−Δ𝜉) ± sec (√−Δ𝜉)} )
−1

.

(38)

When (𝐶 − 1) ̸= 0 and 𝐴 = 𝐵 = 0, the solution of (12) is

𝑢
25

4
(𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿
2
(𝐴
2
− 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
𝐴

2(𝐶 − 1)

−
1

(𝐶 − 1)𝜉 + 𝑐
2

)

−1

,

(39)

where 𝑐
2
is an arbitrary constant.
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Table 1: Comparison between our solutions and Liu et al. [48] solutions.

Obtained solutions Liu et al. [48] solutions
(i) If 𝐿 = 1, 𝐴 = 2, 𝐵 = 0, 𝐶 = 2, 𝛿 = −1, 𝛾 = 1, 𝑘 = 0, 𝛼 = 1,
and 𝑢1

1
(𝜉) = 𝑢

1,2
(𝑥, 𝑡), then the solution is

𝑢
1,2
(𝑥, 𝑡) = ±2 tanh(𝑥 + 2

3

𝑡).

(i) If 𝐶
1
= 1, 𝐶

2
= 0, 𝜆 = 2, 𝜇 = 0, 𝑎 = 1, and 𝑘 = 1,

then the solution is
𝑢
1,2
(𝑥, 𝑡) = ±2 tanh(𝑥 + 2

3

𝑡).

(ii) If 𝐿 = 1, 𝐴 = 2, 𝐵 = 1, 𝐶 = 3, 𝛿 = −1, 𝛾 = 1, 𝑘 = 0, 𝛼 = 1,
and 𝑢12

1
(𝜉) = 𝑢

3,4
(𝑥, 𝑡), then the solution is

𝑢
3,4
(𝑥, 𝑡) = ±2√3 tan (𝑥 + 2 𝑡).

(ii) If 𝐶
1
= 1, 𝐶

2
= 0, 𝜆2 − 4 𝜇 = −4, 𝑎 = 1, and 𝑘 = 1,

then the solution is
𝑢
3,4
(𝑥, 𝑡) = ±2√3 tan (𝑥 + 2 𝑡).

(iii) If 𝐿 = 1, 𝐴 = 0, 𝐵 = 0, 𝐶 = 2, 𝛿 = −1, 𝛾 = 1, 𝑘 = 0,
𝛼 = 1, 𝑐

2
= 0, and 𝑢25

1
(𝜉) = 𝑢

3,4
(𝑥, 𝑡), then the solution is

𝑢
3,4
(𝑥, 𝑡) = ±2√3

1

𝑥 + 2 𝑡

.

(iii) If 𝐶
1
= 1, 𝐶

2
= 1, 𝜆 = 2, 𝜇 = 1, 𝑎 = 1, and 𝑘 = −1,

then the solution is
𝑢
3,4
(𝑥, 𝑡) = ± 2√3

1

𝑥 + 2 𝑡

.

(iv) If 𝐿 = 1, 𝐴 = 2, 𝐵 = 0, 𝐶 = 2, 𝛿 = 1, 𝛾 = 1, 𝑘 = 0 , 𝛼 = 1,
and 𝑢1

1
(𝜉) = 𝑢

1,2
(𝑥, 𝑡), then the solution is

𝑢
3,4
(𝑥, 𝑡) = ±2𝑖 tanh(𝑥 − 2

3

𝑡).

(iv) If 𝐶
1
= 1, 𝐶

2
= 0, 𝜆 = 2, 𝜇 = 0, 𝑎 = 1, and 𝑘 = 1,

then the solution is
𝑢
3,4
(𝑥, 𝑡) = ±2𝑖 tanh(𝑥 − 2

3

𝑡).

(v) If 𝐿 = 1, 𝐴 = 1, 𝐵 =
1

2

, 𝐶 = 3, 𝛿 = −1, 𝛾 = 1, 𝑘 = 0, 𝛼 = 1,
and 𝑢12

1
(𝜉) = 𝑢

3,4
(𝑥, 𝑡), then the solution is

𝑢
3,4
(𝑥, 𝑡) = ± √6𝑖 tan 1

2

(𝑥 − 4 𝑡).

(v) If 𝐶
1
= 1, 𝐶

2
= 0, 𝜆 = 0, 𝜇 =

1

4

, 𝑎 = 1, and 𝑘 = 1,
then the solution is
𝑢
3,4
(𝑥, 𝑡) = ± √6 𝑖 tan 1

2

(𝑥 − 4 𝑡) .

(vi) If 𝐿 = 1, 𝐴 = 0, 𝐵 = 0, 𝐶 = 2, 𝛿 = 1, 𝛾 = 1, 𝑘 = 0,
𝛼 = 1, 𝑐

2
= 0, and 𝑢25

1
(𝜉) = 𝑢

3,4
(𝑥, 𝑡), then the solution is

𝑢
3,4
(𝑥, 𝑡) = ±𝑖2√3

1

𝑥 − 2 𝑡

.

(vi) If 𝐶
1
= 1, 𝐶

2
= 1, 𝜆 = 2, 𝜇 = 1, 𝑎 = 1, and 𝑘 = 1,

then the solution is
𝑢
3,4
(𝑥, 𝑡) = ±𝑖2√3

1

𝑥 − 2 𝑡

.

Other exact solutions of (12) are omitted here for expedi-
ency.

4. Conclusions

A novel (𝐺󸀠/𝐺)-expansion method is applied to fractional
partial differential equation successfully. As applications,
abundant new exact solutions for the time fractional sim-
plified modified Camassa-Holm (MCH) equation have been
successfully obtained. The nonlinear fractional complex
transformation for 𝜉 is very important, which ensures that
a certain fractional partial differential equation can be con-
verted into another ordinary differential equation of integer
order. The obtained solutions are more general with more
parameters. Also comparison has been made in the form
of table (Table 1), which shows that some of our solutions
are in full agreement with the results obtained previously.
Thus, novel (𝐺󸀠/𝐺)-expansion method would be a powerful
mathematical tool for solving nonlinear evolution equations.
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