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Rotational translational actuator (RTAC) system, whose motions occur in horizontal planes, is a benchmark for studying of control
techniques.This paper presents dynamical analysis and stabilizing control design for theRTACsystemon a slope. Based onLagrange
equations, dynamics of the inclined RTAC system is achieved by selecting cart position and rotor angle as the general coordinates
and torque acting on the rotor as general force. The analysis of equilibriums and their controllability yields that controllability of
equilibriums depends on inclining direction of the inclined RTAC system. To stabilize the system to its controllable equilibriums, a
proper control Lyapunov function including system energy, which is used to show the passivity property of the system, is designed.
Consequently, a stabilizing controller is achieved directly based on the second Lyapunov stability theorem. Finally, numerical
simulations are performed to verify the correctness and feasibility of our dynamical analysis and control design.

1. Introduction

Underactuated systems are a class of mechanical control
systems whose control inputs are less than the number of
configuration variables [1–3].The RTAC system consisting of
an unactuated translational oscillation cart and an actuated
eccentric rotor attached to the cart is originally studied as a
simplified model of a dual-spin spacecraft to investigate the
resonance capture phenomenon [4]. Then, it is brought to us
as a benchmark problem for nonlinear control by Bupp et al.
[5]. The control objectives of RTAC system are to stabilize
the translational position of the cart around its equilibrium
and regulate the angular position of the rotor around one of
its multiple equilibriums with the only control input torque
acting on the rotor.

Stabilizing control design of RTAC has been extensively
studied. Jankovic et al. [6] proposed cascade-based control
designs for RTAC system. Bupp et al. [7] designed one inte-
grator backstepping controller and three passive nonlinear
controllers and implemented them on an experimental test
bed of RTAC. Lee and Chang [8] proposed an adaptive back-
stepping control scheme based on a wavelet-based neural

network for RTAC system, and a compensated controller has
been provided to enhance the control performance. Tsiotras
et al. [9] applied the theory of 𝐿

2
disturbance attenuation

for RTAC system. Petres et al. [10] employed RTAC to study
the approximation and complexity tradeoff capabilities of
the tensor product distributed compensation based control
design. In [11], an equivalent-input-disturbance approach
was developed to stabilize RTAC system with two steps
based on the state variables of position. Moreover, in [12–
14], controllers with only rotor angle feedback were designed
for RTAC system. Most of the above results were based on
simulation; however, approaches in [7, 8] had been validated
through experimental results.

RTAC system considered in all the above mentioned
papers is on horizontal planes; therefore, no gravity effect is
considered in the dynamics and control design. Gao [15] con-
sidered dynamics and energy based control of a RTAC system
with rotating motion appearing in a vertical plane, where
gravity affecting the rotor motion has to be included. Avis et
al. [16] presented an energy-based and entropy-based hybrid
control framework to stabilize RTAC system with rotating
motion in a vertical plane and compared the two controllers’
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Figure 1: The inclined RTAC system.

performance with experiments. However, it should be noted
that, in real applications, absolute horizontal or vertical plane
does not exist. In other words, the motions of RTAC system
will be in inclined planes because of the assembly or inherent
unlevel installation plane. In this paper, dynamical modeling
and equilibriums’ controllability of inclined RTAC systems
will be analyzed in detail. And according to the passivity of
the system, an energy-based control technique [15, 17–20] is
employed to design a simple PD (proportional derivative)
controller for the inclined RTAC system.

The rest of paper is organized as follows. Dynamics
of the inclined RTAC is developed according to Lagrange
equations in Section 2. Based on the developed dynamics, its
equilibriums and their controllability conditions are analyzed
in Section 3. After that, a proper Lyapunov function including
system energy is designed to generate a simple controller for
the system in Section 4. Simulation results and discussions
are provided in Section 5. And conclusions are summarized
in the last section.

2. Dynamics

According to the benchmark system RTAC on the horizontal
plane, inclined RTAC system is depicted as in Figure 1. A
coordinate frame 𝑜𝑥𝑦𝑧 is attached to the base of the RTAC
system, with the origin at the center of the cart when the
spring is with free status.The 𝑥-axis is along the translational
movement of the cart, and the 𝑧-axis is perpendicular to the
base plane of the RTAC system. According to the definition
of 𝑜𝑥𝑦𝑧, another world frame 𝑂𝑋𝑌𝑍 is defined, as shown
in Figure 1, for the slope on which the RTAC system locates.
Themotions of RTAC system occur in the inclined plane 𝑜𝑥𝑦
having an angle 𝛽 with respect to the horizontal plane 𝑂𝑋𝑌,
and inclining direction of the RTAC system is denoted with 𝛾
as shown in Figure 1. Parameters of the inclined RTAC system
are defined similarly as in [5] according to the coordinate
frame 𝑜𝑥𝑦𝑧. The cart of mass𝑀

𝑥
is connected to a fixed base

by a linear spring of stiffness 𝑘
𝑥
. The cart is constrained to

have one-dimensional translational motion with 𝑥 denoting
the travel distance.The actuated rotor attached to the cart has
mass 𝑚 and moment of inertia 𝐼 about its center of mass,
and the eccentric distance of the rotor is 𝑟. Control input
torque applied to the rotor is denoted by 𝜏. Let 𝑥 and �̇� denote

the translational position and velocity of the cart, respectively,
and let 𝜃 and ̇𝜃 denote angular position and its velocity of
the rotor rotating away from the negative 𝑦-axis, respectively.
Since the gravitational force has to be considered for the
inclined RTAC system, let 𝑔 be the gravity constant.

The total kinetic energy 𝑇 of the system is the sum of
kinetic energy 𝑇

𝑥
, corresponding to the equivalent mass of

translational cart and kinetic energy 𝑇
𝑚

of the rotational
rotor:

𝑇 = 𝑇
𝑥
+ 𝑇
𝑚

=
1

2
(𝑀
𝑥
+ 𝑚) �̇�

2
+ 𝑚𝑟 cos 𝜃�̇� ̇𝜃 +

1

2
(𝑚𝑟
2
+ 𝐼) ̇𝜃

2
.

(1)

To calculate the potential energy of the system, let zero
potential energy of the gravity be the center of the cart
when the spring is with free status, that is, the origin of
the coordinates frame 𝑜𝑥𝑦𝑧. According to Figure 1, the mass
points of cart 𝑜

1
and rotor 𝐴 on the slope can be depicted

as in Figure 2, where 𝑜𝑙 ⊥ 𝑜𝑠, 𝑜
1
𝑙
1
‖𝑜𝑙, 𝐹
1
𝑜
1
𝐹
2
‖𝑜𝑠, and 𝑎 is the

projection of point 𝐴 on line 𝑜𝑠. The planar coordinates 𝑜𝑥𝑦
are extracted from the coordinates frame 𝑜𝑥𝑦𝑧 in Figure 1.
The circle with center 𝑜

1
and radius 𝑟 denotes the rotating

trajectory of the rotor. Because, at point 𝑜, the system has
zero potential energy both for the spring and the gravity,
the total potential energy, which is the sum of the potential
energy 𝑃

𝑠
corresponding to the spring and potential energy

𝑃
𝑔
corresponding to the gravity, can be calculated as

𝑃 = 𝑃
𝑠
+ 𝑃
𝑔

=
1

2
𝑘
𝑥
𝑥
2
−𝑀
𝑥
𝑔
𝑜𝑝

 sin𝛽 + 𝑚𝑔 |𝑜𝑎| sin𝛽

=
1

2
𝑘
𝑥
𝑥
2
+ (𝑀
𝑥
+ 𝑚) 𝑔𝑥 cos 𝛾 sin𝛽

+ 𝑚𝑔𝑟 sin (𝛾 + 𝜃) sin𝛽,

(2)

where | ⋅ |means the length of the line segment.
Therefore, the Lagrangian 𝐿 can be calculated as

𝐿 = 𝑇 − 𝑃. (3)
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Figure 2: Mass points analysis of the inclined RTAC system.

By choosing 𝑥 and 𝜃 as the generalized coordinates and
𝜏 as the generalized force, the Lagrange equations of motion
for the inclined RTAC system are as follows:

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
= −𝑁
𝑥

(4)

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕 ̇𝜃

) −
𝜕𝐿

𝜕𝜃
= 𝜏 − 𝑁

𝑟
, (5)

where 𝑁
𝑥
and 𝑁

𝑟
denote the disturbance inputs acting on

the translational moving cart and rotating rotor, respectively.
Dynamics of the system can be calculated as

(𝑀
𝑥
+ 𝑚) �̈� + 𝑚𝑟 cos 𝜃 ̈𝜃 − 𝑚𝑟 sin 𝜃 ̇𝜃

2
+ 𝑘
𝑥
𝑥

+ (𝑀
𝑥
+ 𝑚) 𝑔 cos 𝛾 sin𝛽 + 𝑁

𝑥
= 0

(6)

𝑚𝑟 cos 𝜃�̈� + (𝑚𝑟2 + 𝐼) ̈𝜃 + 𝑚𝑔𝑟 cos (𝛾 + 𝜃) sin𝛽 + 𝑁
𝑟
= 𝜏.

(7)

By choosing the variable vector q = (𝑥, 𝜃), the above two
equations can be written in a compact form as follows:

M (q) q̈ + C (q, q̇) q̇ + G (q) + N = U, (8)

whereM(q),C(q, q̇),G(q),N, andU represent inertia matrix,
Coriolis and centrifugal force matrix, potential matrix,

disturbance force vector, and control input vector of the
inclined RTAC system, respectively,

M (q) = [
𝑀
𝑥
+ 𝑚 𝑚𝑟 cos 𝜃

𝑚𝑟 cos 𝜃 𝑚𝑟
2
+ 𝐼

] ,

C (q, q̇) = [0 −𝑚𝑟 ̇𝜃 sin 𝜃
0 0

] ,

G (q) = [𝑘𝑥𝑥 + (𝑀𝑥 + 𝑚) 𝑔 cos 𝛾 sin𝛽
𝑚𝑔𝑟 cos (𝛾 + 𝜃) sin𝛽 ] ,

N = [
𝑁
𝑥

𝑁
𝑟

] , U = [
0

𝜏
] .

(9)

Remark 1. It can be observed straightforwardly from dynam-
ics (8) that 𝜃 is the actuated variable and 𝑥 is the unactuated
variable in the configuration variable vector q. Because
the unactuated variable 𝑥 has to be stabilized around its
equilibrium and actuated variable 𝜃 has to be regulated
around one of its equilibriums with the only control input 𝜏,
the inclined RTAC system is an underactuated system.

Remark 2. The inclined angle𝛽 of the system could be caused
by assembly or unlevel installation plane. Without loss of
generality, it can be defined as 𝛽 ∈ [0

∘
, 90
∘
]. However, the

angle 𝛾 denoting inclining direction of the system could be
arbitrary. Therefore, it can be selected as 𝛾 ∈ [0∘, 360∘).

Remark 3. When the inclined angle 𝛽 is zero, that is, the
RTAC system on a horizontal plane, dynamics of inclined
RTAC system (8) can be deduced as (neglecting the friction
torque of rotor𝑁

𝑟
)

(𝑀
𝑥
+ 𝑚) �̈� + 𝑚𝑟 cos 𝜃 ̈𝜃 − 𝑚𝑟 sin 𝜃 ̇𝜃

2
+ 𝑘
𝑥
𝑥 = −𝑁

𝑥

𝑚𝑟 cos 𝜃�̈� + (𝑚𝑟2 + 𝐼) ̈𝜃 = 𝜏

(10)
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which is the same as the dynamics of RTAC system provided
in [5].

3. Analysis of Controllable Equilibriums

To derive the equilibriums of the system, we neglect the
disturbance force matrix N in the dynamics of the inclined
RTAC system. By choosing the system state x = (𝑥

1
, 𝑥
2
,

𝑥
3
, 𝑥
4
) = (𝑥, �̇�, 𝜃, ̇𝜃) and system input 𝑢 = 𝜏, the dynamics

(8) can be rewritten in general affine form as follows:

ẋ = 𝑓 (x) + 𝑔 (x) 𝑢, (11)

where

𝑓 (x) =

[
[
[
[
[
[
[

[

𝑥
2

𝑓
2

det (M)

𝑥
4

𝑓
4

det (M)

]
]
]
]
]
]
]

]

, 𝑔 (x) =

[
[
[
[
[
[
[

[

0

−𝑏 cos𝑥
3

det (M)

0

𝑎

det (M)

]
]
]
]
]
]
]

]

𝑓
2
= (𝑏 sin𝑥

3
𝑥
4

2
− 𝑘
𝑥
𝑥
1
− 𝑎𝑔 cos 𝛾 sin𝛽) 𝑐

+ 𝑏
2
𝑔 cos𝑥

3
cos (𝛾 + 𝑥

3
) sin𝛽

𝑓
4
= −𝑏 cos𝑥

3
(𝑏 sin𝑥

3
𝑥
4

2
− 𝑘
𝑥
𝑥
1
− 𝑎𝑔 cos 𝛾 sin𝛽)

− 𝑎𝑏𝑔 cos (𝛾 + 𝑥
3
) sin𝛽

det (M) = (𝑀
𝑥
+ 𝑚) 𝐼 +𝑀

𝑥
𝑚𝑟
2

+ 𝑚
2
𝑟
2sin2𝑥

3
> 0

𝑎 = 𝑀
𝑥
+ 𝑚, 𝑏 = 𝑚𝑟, 𝑐 = 𝑚𝑟

2
+ 𝐼.

(12)

To solve the equilibriums of the unforced system, let𝑢 = 0
and ẋ = 0. Therefore, we have 𝑥

2
= 𝑥
4
= 0 and 𝑓

2
= 𝑓
4
= 0

which can be expressed as

(−𝑘
𝑥
𝑥
1
− 𝑎𝑔 cos 𝛾 sin𝛽) 𝑐

+ 𝑏
2
𝑔 cos𝑥

3
cos (𝛾 + 𝑥

3
) sin𝛽 = 0

(13)

− 𝑏 cos𝑥
3
(−𝑘
𝑥
𝑥
1
− 𝑎𝑔 cos 𝛾 sin𝛽)

− 𝑎𝑏𝑔 cos (𝛾 + 𝑥
3
) sin𝛽 = 0.

(14)

Simplifying the above two equations by considering that
all the parameters 𝑘

𝑥
, 𝑎, 𝑏, 𝑐, and 𝑔 are positive, we have

det (M) 𝑏𝑔 cos (𝛾 + 𝑥
3
) sin𝛽 = 0. (15)

Notice that det(M) is also positive. When the inclined angle
𝛽 = 0, the equilibrium of the rotor angle cannot be decided
based on (15); that is, 𝑥

3
is an arbitrary angle. When 𝛽 ∈

(0, 90], the equilibrium of 𝑥
3
can be calculated as

𝑥
3
= 𝜃
𝑒
= (

2𝑘 + 1

2
)𝜋 − 𝛾, 𝑘 = 0, ±1, ±2, . . . . (16)

Therefore, the equilibrium of the rotor angle 𝜃
𝑒
can be

expressed as

𝑥
3
= 𝜃
𝑒
, 𝛽 = 0

𝑥
3
= 𝜃
𝑒
= (

2𝑘 + 1

2
)𝜋 − 𝛾, 𝑘 = 0, ±1, ±2, . . . , 0 < 𝛽 ≤ 90

(17)

Substituting (15) into (13), the equilibrium of the cart position
𝑥
𝑒
can be calculated as

𝑥
1
= 𝑥
𝑒
= −

𝑎𝑔 cos 𝛾 sin𝛽
𝑘
𝑥

. (18)

As a result, the equilibriums of the inclined RTAC system
can be achieved by combining (18) and (17):

x
𝑒
= [

−𝑎𝑔 cos 𝛾 sin𝛽
𝑘
𝑥

, 0, (
2𝑘 + 1

2
)𝜋 − 𝛾, 0] ,

𝑘 = 0, ±1, ±2, . . . .

(19)

Remark 4. When RTAC system is on a horizontal plane with-
out gravity affecting it, equilibriums of the benchmark system
are stable. However, the inclined RTAC system, similar to
pendulum-like systems, has two types of equilibriums, that
is, up equilibriums with high potential energy of gravity and
down equilibriums with low potential energy of gravity. The
up equilibriums are

x
𝑒 up = [

−𝑎𝑔 cos 𝛾 sin𝛽
𝑘
𝑥

, 0, (
4𝑘 + 1

2
)𝜋 − 𝛾, 0] , (20)

where the potential energy of gravity is −(1/

2)𝑎
2
𝑔
2cos2𝛾sin2𝛽 + 𝑚𝑔𝑟 sin𝛽. And the up equilibriums

are self-unstable which are not interesting in this paper. The
down equilibriums are

x
𝑒 down = [

−𝑎𝑔 cos 𝛾 sin𝛽
𝑘
𝑥

, 0, (
4𝑘 + 3

2
)𝜋 − 𝛾, 0] , (21)

where the potential energy of gravity is −(1/

2)𝑎
2
𝑔
2cos2𝛾sin2𝛽 − 𝑚𝑔𝑟 sin𝛽. In the next section, we

will develop a simple linear controller for the inclined RTAC
system to its typical down equilibrium from any initial
conditions.

To analyze controllability around equilibriums (19), we
can check if the following matrix is full rank:

C = [B,AB,A2B,A3B] , (22)

where

A := (
𝜕

𝜕x
)𝑓 (x

𝑒
) ,

B := 𝑔 (x
𝑒
) .

(23)
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Calculating A, B, and C, we can get

A =

[
[
[

[

0 1 0 0

𝑎
21

0 𝑎
23

0

0 0 1 0

𝑎
41

0 𝑎
43

0

]
]
]

]

, B =

[
[
[

[

0

𝑏
2

0

𝑏
4

]
]
]

]

,

C =

[
[
[

[

0 𝑏
2

0 𝑎
21
𝑏
2
+ 𝑎
23
𝑏
4

𝑏
2
0 𝑎
21
𝑏
2
+ 𝑎
23
𝑏
4

0

0 𝑏
4

0 𝑎
41
𝑏
2
+ 𝑎
43
𝑏
4

𝑏
4
0 𝑎
41
𝑏
2
+ 𝑎
43
𝑏
4

0

]
]
]

]

,

(24)

where

𝑎
21
= − 𝑐𝑘

𝑥[det (M)]
−1
,

𝑎
23
= − 𝑏

2
𝑔 sin (2𝜃

𝑒
+ 𝛾) sin𝛽[det (M)]

−1
,

𝑎
41
= 𝑏 cos 𝜃

𝑒
𝑘
𝑥[det (M)]

−1
,

𝑎
43
= 𝑎
43
= 𝑎𝑏𝑔 cos 𝜃

𝑒
sin 𝛾 sin𝛽[det (M)]

−1
,

𝑏
2
= − 𝑏 cos 𝜃

𝑒[det (M)]
−1
,

𝑏
4
= 𝑎[det (M)]

−1
.

(25)

To check the full rank condition of matrix C, one can
calculate its determination as follows:

det (C) =



𝑏
2
𝑎
21
𝑏
2
+ 𝑎
23
𝑏
4
0 0

𝑏
4
𝑎
41
𝑏
2
+ 𝑎
43
𝑏
4
0 0

0 0 𝑏
2
𝑎
21
𝑏
2
+ 𝑎
23
𝑏
4

0 0 𝑏
4
𝑎
41
𝑏
2
+ 𝑎
43
𝑏
4



=



C
2×2

0
2×2

0
2×2

C
2×2



.

(26)

Therefore, one can calculate the determination det(C) ̸= 0 to
find out full rank conditions of itself and C as follows:

det (C) = 𝑏 cos 𝜃
𝑒

[det (𝑀)]
3

× [−𝑘
𝑥
(𝑎𝑐 − 𝑏

2cos2𝜃
𝑒
) + 𝑎
2
𝑏𝑔 sin 𝜃

𝑒
cos 𝛾 sin𝛽] .

(27)

In the following, we discuss three cases to obtain the
conditions on full rank of matrix C.

Case 1. 𝛽 = 0; that is, the RTAC system is on the horizontal
plane.

Substituting the parameters 𝑎, 𝑏, 𝑐 into (27), determina-
tion of matrix C becomes

det (C) = −𝑚𝑟𝑘
𝑥
cos 𝜃
𝑒

[det (M)]
2
, (28)

where 𝑚, 𝑟, 𝑘
𝑥
, det(M) are all positive parameters. Therefore,

the full rank constrain for matrix C (also matrix C) will be
cos 𝜃
𝑒
̸= 0; that is,

𝜃
𝑒
̸=
2𝑘 + 1

2
𝜋, 𝑘 = 0, ±1, ±2, . . . . (29)

It can be observed from condition (29) that the equilibriums
will be uncontrollable once the rotor angles are aligned to the
moving direction of the translational cart.

Case 2. 0 < 𝛽 ≤ 90∘ and 𝜃
𝑒
= (2𝑘+1.5)𝜋−𝛾, that is, the down

stable equilibriums (21) of the inclined RTAC system.
Calculating the determination of matrix C similarly

renders

det (C) = −𝑚𝑟 cos 𝜃
𝑒

[det (M)]
3

× [𝑘
𝑥
⋅ det (M) + (𝑀

𝑥
+ 𝑚)
2

𝑚𝑟𝑔sin2𝜃
𝑒
sin𝛽]

=
𝑚𝑟 sin 𝛾
[det (M)]

3

× [𝑘
𝑥
⋅ det (M) + (𝑀

𝑥
+ 𝑚)
2

𝑚𝑟𝑔cos2𝛾 sin𝛽] ,
(30)

where 𝑀
𝑥
, 𝑚, 𝑟, 𝑘

𝑥
, 𝑔, det(M), sin𝛽 are all positive param-

eters. Therefore, for the down stable equilibriums of the
inclined RTAC system, the controllability condition becomes

𝛾 ̸= 𝑘𝜋, 𝑘 = 0, ±1, ±2, . . . . (31)

According to the relationship between 𝜃 and 𝛾 that 𝜃
𝑒
=

(2𝑘+1.5)𝜋−𝛾, for the down stable equilibriums of the inclined
RTAC system, controllability condition (31) still implies that
the equilibriums are uncontrollable when the rotor angles are
aligned to the moving direction of the translational cart.

Case 3. 0 < 𝛽 ≤ 90∘ and 𝜃
𝑒
= (2𝑘 + 0.5)𝜋 − 𝛾, that is, the up

unstable equilibriums of the inclined RTAC system.
Calculating determination of matrix C becomes as fol-

lows:

det (C) = 𝑚𝑟 cos 𝜃
𝑒

[det (M)]
3

× [−𝑘
𝑥
⋅ det (M) + (𝑀

𝑥
+ 𝑚)
2

𝑚𝑟𝑔sin2𝜃
𝑒
sin𝛽]

=
𝑚𝑟 sin 𝛾
[det (M)]

3

× [−𝑘
𝑥
⋅ det (M) + (𝑀

𝑥
+ 𝑚)
2

𝑚𝑟𝑔cos2𝛾 sin𝛽] .
(32)

Therefore, controllable conditions for the up unstable equilib-
riums of the inclined RTAC system on slopes are as follows:

sin 𝛾 ̸= 0, (33)

[(𝑀
𝑥
+ 𝑚)
2

𝑚𝑟𝑔 sin𝛽 − 𝑚2𝑟2𝑘
𝑥
] cos2𝛾

̸= (𝑀
𝑥
𝐼 + 𝑚𝐼 +𝑀𝑚𝑟

2
) 𝑘
𝑥
.

(34)

Comparing controllability conditions on the two cases of
inclined RTAC system, they have the same controllable
equilibriums. To meet the condition (34) for up unstable
equilibriums, proper physical parameters of the inclined
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RTAC system can be considered when inclining parameters
𝛽, 𝛾 are fixed. Since the up unstable equilibriums are not
interesting, condition (34) will not be studied in detail in this
paper.

Remark 5. It is straightforward that the actuated variable 𝜃
can be controlled directly by the input torque 𝜏; however,
the unactuated cart motion must be controlled through
dynamical coupling of the system. The controllable equilib-
riums for the (horizontal or inclined) RTAC system can be
explained based on (7) intuitively: the acceleration �̈� of cart’s
translational motion is controlled by input torque 𝜏 with a
coupling coefficient related to cos 𝜃. If we set 𝜃

𝑒
to ((2𝑘 +

1)/2)𝜋, rotor angle can always be brought to ((2𝑘 + 1)/2)𝜋
with a simple controller. Consequently, we have cos 𝜃 = 0,
whichmeans that the coupling item from input torque used to
control cart motion will disappear. In other words, the input
control torque 𝜏will lose control of the cart position𝑥 as soon
as the rotor angle 𝜃 is brought to ((2𝑘 + 1)/2)𝜋. Therefore,
the RTAC systems are uncontrollable when the desired rotor
angles are aligned to themoving direction of the translational
cart.

4. Energy Based Control Design

In this section, energy is employed to derive the passivity of
the inclined RTAC system. Based on the passivity property, a
simple PD controller is achieved for the inclined system to its
controllable equilibriums from initial conditions.

Overall energy of the inclined RTAC system can be
calculated with

𝐸 = 𝑇 + 𝑃

=
1

2
q̇𝑇M (q) q̇ + 𝑃

=
1

2
q̇𝑇M (q) q̇ + 1

2
𝑘
𝑥
𝑥
2
+ (𝑀
𝑥
+ 𝑚) 𝑔𝑥 cos 𝛾 sin𝛽

+ 𝑚𝑔𝑟 sin (𝛾 + 𝜃) sin𝛽.

(35)

Differentiating 𝐸, we can get

�̇� = q̇𝑇M (q) q̈ + 1

2
q̇𝑇Ṁ (q) q̇ + q̇𝑇G (q)

= q̇𝑇 [−C (q, q̇) q̇ − G (q) + U +
1

2
Ṁ (q) q̇] + q̇𝑇G (q)

= q̇𝑇U = ̇𝜃𝜏.

(36)

Integrating both sides of (36), we have

∫

𝑡

0

̇𝜃 (𝑡) 𝜏𝑑𝑡 = 𝐸 (𝑡) − 𝐸 (0) ≥ −𝐸 (0) . (37)

Therefore, based on the definition of passivity [3], the system
having 𝜏 as input and ̇𝜃 as output is passive.

Table 1: Simulation parameters.

Parameter (Units) Value Description
𝑀
𝑥
(kg) 1.3608 Cart mass of axis 𝑥

𝑚 (kg) 0.096 Rotor mass
𝑘
𝑥
(N/m) 186.3 Spring stiffness of axis 𝑥

𝑟 (m) 0.0592 Eccentric distance of rotor
𝐼 (kg⋅m2) 0.0002175 Rotor inertia

According to the derived passivity property of the
inclined RTAC system, a control Lyapunov function candi-
date including system energy 𝐸 is designed as

𝑉 = 𝑘
1
(𝐸 − 𝐸

0
) +

𝑘
2

2
(𝜃 − 𝜃

0
)
2

, (38)

where 𝑘
1
> 0, 𝑘

2
> 0, and

𝐸
0
= −

1

2
𝑘
−1

𝑥
(𝑀
𝑥
+ 𝑚)
2

𝑔
2cos2𝛾sin2𝛽 − 𝑚𝑔𝑟 sin𝛽

𝜃
0
= 𝑘𝜋 +

3

2
𝜋 − 𝛾

(39)

are potential energy and rotor angle (here we choose 𝜃
0
∈

(−𝜋, 𝜋]) at the down stable equilibrium, respectively. Because
the smallest system energy is 𝐸

0
, the designed Lyapunov

function (38) is positive definite.
Differentiating 𝑉, we have

�̇� (𝑞, ̇𝑞) = 𝑘
1
�̇� + 𝑘
2
(𝜃 − 𝜃

0
) ̇𝜃 = ̇𝜃 [𝑘

1
𝜏 + 𝑘
2
(𝜃 − 𝜃

0
)] .

(40)

According to the second Lyapunov stability theorem, the
controller should guarantee the negative defined �̇�. By
choosing

𝑘
1
𝜏 + 𝑘
2
(𝜃 − 𝜃

0
) = −𝑘

3
̇𝜃, (41)

where 𝑘
3
> 0, we get

�̇� (𝑞, ̇𝑞) = −𝑘
3
̇𝜃
2
. (42)

Therefore, a simple PD controller for the inclined RTAC
system is derived as

𝜏 = −
1

𝑘
1

[𝑘
2
(𝜃 − 𝜃

0
) + 𝑘
3
̇𝜃] . (43)

Finally, by using LaSalle’s stability theorem [3], the global
asymptotic stability of the closed-loop system consisting of
dynamics (8) and controller (43) can be concluded.

5. Simulations

In order to verify the dynamical analysis and control design
for the inclined RTAC system, simulations were programmed
and performed with Matlab/Simulink. Following [5], the
physical parameters of the inclined RTAC system are chosen
as shown in Table 1.
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Figure 3: Simulation results on dynamics: x(0) = (0, 0, 0, 0), 𝜏 = 0, and 𝛾 = 𝛽 = 45; left column: no friction; right column: friction coefficients,
𝑑
𝑥
= 0.05, 𝑑

𝑟
= 0.03.

Figure 3 shows the simulation results to verify the system
dynamics (8) and its equilibriums (19), where the left column
is without friction and the right column is with friction. In the
simulations, the initial conditions of the system are selected
as (𝑥, �̇�, 𝜃, ̇𝜃) = (0, 0, 0, 0), 𝜏 = 0, and 𝛾 = 𝛽 = 45

∘ which
guarantees that the equilibriums are controllable according to
(31) and the disturbance friction forces are modeled as𝑁

𝑥
=

𝑑
𝑥
�̇� and 𝑁

𝑟
= 𝑑
𝑟
̇𝜃, where 𝑑

𝑥
, 𝑑
𝑟
are the friction constants

and are set as 𝑑
𝑥
= 0.005 and 𝑑

𝑟
= 0.03. For the inclined RTAC

system without disturbances, whose simulation results are
shown as left column of Figure 3, cart oscillates along 𝑥-axis
about its equilibrium (18); however, the trajectory of rotor
angle 𝜃 is a combination of rounds of rotation and oscillation
within one round, which can be imaged because of period
feature of its equilibrium (17). Once frictions are injected into
the system, simulation results being shown as right column of
Figure 3, both cart position and rotor angle will damp to their
equilibriums: cart motion of 𝑥-axis is damped oscillations
with respect to its equilibrium 𝑥 = −0.0383m, and the rotor
angle will be stuck to 𝜃 = −135∘, one of its equilibriums, and
damped quickly under friction.

Figure 4 shows the simulation results to illustrate the
performance of the closed-loop control system consisting
of system dynamics (8) and designed controller (43). Initial
conditions for the simulation are (𝑥, �̇�, 𝜃, ̇𝜃) = (0, 0, 0, 0),
𝛾 = 𝛽 = 45

∘, and𝑑
𝑥
= 𝑑
𝑟
= 0. Parameters of the controller are

selected as 𝑘
1
= 440, 𝑘

2
= 5.4, and 𝑘

3
= 1. As one can see from

the simulation results shown in Figure 4, the designed PD
controller (43) can bring the states of inclined RTAC system
from (0, 0, 0, 0) to its equilibrium (−0.0383, 0, 225, 0) in 30 s.
And the stabilized rotor angle 225∘ here has a 360∘ difference
compared to the rotor angle −135∘ as shown in Figure 3,
which means the same rotor position in real physical system.
From Figure 4, one also can observe that the system energy
will be brought to −0.1761 J which is the lowest level. During
the stabilizing process, the peak value of control torque is no
more than 0.05Nm, and the continuous control torque is no
more than 0.02Nm.

To validate the controllable condition (31) of down
equilibriums of the inclined RTAC system, performance of
the close-loop control system consisting of system dynamics
(8) and designed controller (43) under the same initial
conditions and controller parameters other than 𝛾 = 0 is
simulated and shown as Figure 5. The condition 𝛾 = 0 which
leads to the equilibrium of the rotor angle is aligned to the
moving direction of the cart, which violates the controllable
condition (31). One can see that the rotor angle is stabilized by
the same controller in 5 s; however, the cart position is out of
control and oscillates about its equilibrium −0.0542m. Once
the rotor angle is stabilized, the control output 𝜏 becomes
zero, and system energy is about −0.1 J which is much higher
than the lowest potential energy −0.3192 J.
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Figure 4: Simulation results on closed-loop control system: x(0) = (0, 0, 0, 0), 𝛾 = 𝛽 = 45, 𝑑
𝑥
= 𝑑
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= 0, 𝑘
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Figure 5: Simulation results on closed-loop control system: x(0) = (0, 0, 0, 0), 𝛾 = 0, 𝛽 = 45, 𝑑
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As a result, three sets of simulation results validate the
dynamical analysis and control design for the inclined RTAC
system in the previous sections.

6. Conclusion

Due to the assembly or unleveled installation base, RTAC
system cannot be on an absolute horizontal plane, which is
used as a benchmark for evaluating nonlinear design tech-
niques. This paper extends the standardized RTAC system to
a more general case, that is, inclined RTAC system. Detailed
dynamical modeling and analysis on equilibriums show that
the down stable equilibriums are controllable when the
inclined direction is not aligned to the oscillating direction
of the cart. And a simple PD controller was developed based
on passivity of the system. Simulation results verified the
correctness and feasibility of the dynamical analysis and
control design for the inclined RTAC system. The dynamical
analyzing result and designed controller for the inclined
RTAC system can be reduced and applied to the benchmark
RTAC system.
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