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By constructing some general type conditions and using fixed point theorem of cone, this paper investigates the existence of at
least one and at least two positive solutions for systems of nonlinear higher order differential equations with integral boundary
conditions. As application, some examples are given.

1. Introduction

In this paper, we consider the following systems of nonlin-
ear mixed higher order differential equations with integral
boundary conditions:

𝑢
(𝑛
1
)
(𝑡) + 𝑎1 (𝑡) 𝑓1 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

V(𝑛2) (𝑡) + 𝑎2 (𝑡) 𝑓2 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛
1
−2)

(0) = 0,

𝑢 (1) = ∫

1

0

𝑛1 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

V (0) = V (0) = ⋅ ⋅ ⋅ = V(𝑛2−2) (0) = 0,

V (1) = ∫

1

0

𝑛2 (𝑡) V (𝑡) 𝑑𝑡,

(1)

where 𝑓1 ∈ 𝐶([0, 1] × [0, +∞) × [0, +∞), [0, +∞)), 𝑓2 ∈

𝐶([0, 1] × [0, +∞), [0, +∞)), 𝑎𝑖 ∈ 𝐶([0, 1], [0, +∞)), 𝑛𝑖 ≥ 3,
and 𝑛𝑖(𝑡) ∈ 𝐿

1
[0, 1] is nonnegative, 𝑖 = 1, 2; 𝑓1(𝑡, 0, 0) ≡

𝑓2(𝑡, 0) ≡ 0.
Boundary value problems with integral boundary con-

ditions arise naturally in thermal conduction problems [1],
semiconductor problems [2], and hydrodynamic problems
[3]. Such problems include two-, three-, and multipoint

boundary value problems as special cases and attracted
much attention (see [4–12] and the references therein). In
particular, we would like to mention the result of Pang et al.
[9]. In [9], by applying fixed point index theory, Pang et al.
study the expression and properties of Green’s function and
obtained the existence of positive solutions for 𝑛th-order 𝑚-
point boundary value problems:

𝑢
(𝑛)

(𝑡) + 𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0,

𝑢 (1) =

𝑚−2

∑

𝑖=1

𝛼𝑖𝑢 (𝜂𝑖) .

(2)

Yang and Wei [10], Feng and Ge [11], and Li and Wei [12]
improved and generalized the results of [9] by using different
methods.

On the other hand, much effort has been devoted to
the study of the existence of positive solutions for systems
of nonlinear differential equations (see [13–16] and the
references therein). In [13], by applying Krasnoselskii fixed
point theorem in a cone, Hu and Wang obtained multiple
positive solutions of boundary value problems for systems
of nonlinear second-order differential equations. In [14],
Henderson and Ntouyas extended the results of [13] to
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systems of nonlinear 𝑛th-order three-point boundary value
problems:

𝑢
(𝑛)

(𝑡) + 𝜆𝑎 (𝑡) 𝑓 (𝑡, V (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

V(𝑛) (𝑡) + 𝜆𝑏 (𝑡) ℎ (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, 𝑢 (1) = 𝛼𝑢 (𝜂) ,

V (0) = V (0) = ⋅ ⋅ ⋅ = V(𝑛−2) (0) = 0, V (1) = 𝛼V (𝜂) .
(3)

In [15], by using fixed point index theory, Xie and Zhu
improved the results of [14]. At the same time, boundary value
problems with integral boundary conditions have received
attention [16, 17].

Motivated by thework of the abovementioned papers, our
aim in this paper is to study the existence of positive solutions
associatedwith systems (1) by applying fixed point theorem in
cone. Further, we present some general type conditions (H4)–
(H7) instead of the sublinear or superlinear conditions which
are used in [4, 5, 8, 10, 12–14]. Our conditions are applicable
for more general functions.

2. Several Lemmas

For convenience, we make the following notations. Let

𝛽𝑖 = ∫

1

0

𝑛𝑖 (𝑡) 𝑡
𝑛
𝑖
−1
𝑑𝑡,

𝜇𝑖 = ∫

1

0

𝐾𝑖 (𝑠) 𝑎𝑖 (𝑠) 𝑑𝑠,

𝛿𝑖 = ∫

𝑏

𝑎

𝐾𝑖 (𝑠) 𝑎𝑖 (𝑠) 𝑑𝑠,

𝑖 = 1, 2,

(4)

where 𝐾𝑖(𝑠) is defined by Lemma 6 and [𝑎, 𝑏] is some subset
of (0, 1).

List the following assumptions:

(H1) 𝑎𝑖 ∈ 𝐶([0, 1], [0, +∞)), 𝑎𝑖(𝑡) do not vanish identically
for 𝑡 ∈ [𝑎, 𝑏], 𝑖 = 1, 2;

(H2) 𝑓1 ∈ 𝐶([0, 1] × [0, +∞) × [0, +∞), [0, +∞)), 𝑓2 ∈

𝐶([0, 1] × [0, +∞), [0, +∞));
(H3) 𝛽1, 𝛽2 ∈ [0, 1);
(H4) there exist 𝛼 ∈ (0, 1], 𝜆1 > 0 and a sufficiently large

𝑀1 > 1 such that

(1) 𝑓1(𝑡, 𝑢, V) ≥ 𝜆1V
𝛼, for all (𝑡, 𝑢, V) ∈ [0, 1] ×

[0, +∞) × [𝑀1, +∞),
(2) 𝑓2(𝑡, 𝑢) ≥ 𝐶1𝑢

1/𝛼, for all (𝑡, 𝑢) ∈ [0, 1] ×

[𝑀1, +∞),

where 𝐶1 = max{(𝛾𝛿2)
−1
, (𝛾𝛿2)

−1
(𝛾
2
𝜆1𝛿1)
−1/𝛼

}; 𝛾 is
defined by (21).

(H5) There exist 𝛽 ∈ (0, +∞), 𝜆2 > 0 and a sufficiently
small 𝜌2 ∈ (0, 1) such that

(1) 𝑓1(𝑡, 𝑢, V) ≤ 𝜆2V
𝛽, for all (𝑡, 𝑢, V) ∈ [0, 1] ×

[0, +∞) × [0, 𝜌2],
(2) 𝑓2(𝑡, 𝑢) ≤ 𝐶2𝑢

1/𝛽, for all (𝑡, 𝑢) ∈ [0, 1] × [0, 𝜌2],

where 𝐶2 = min{𝜌2𝜇
−1
2 , 𝜇
−1/𝛽

2 (𝜇1𝜆2)
−1
}.

(H6) There exist 𝑝 ∈ (0, +∞), 𝜆3 > 0, and 𝑀2 > 0 such
that

(1) 𝑓1(𝑡, 𝑢, V) ≤ 𝜆3V
𝑝
+𝑀2, for all (𝑡, 𝑢, V) ∈ [0, 1] ×

[0, +∞) × [0, +∞),
(2) 𝑓2(𝑡, 𝑢) ≤ 𝐶3𝑢

1/𝑝
+ 𝑀2, for all (𝑡, 𝑢) ∈ [0, 1] ×

[0, +∞),

where 𝐶3 = (2𝜇1𝜆3)
−1/𝑝

𝜇
−1
2 .

(H7) There exist 𝑞 ∈ (0, 1], 𝜆4 > 0 and a sufficiently small
𝜀 > 0 such that

(1) 𝑓1(𝑡, 𝑢, V) ≥ 𝜆4V
𝑞, for all (𝑡, 𝑢, V) ∈ [0, 1] ×

[0, +∞) × [0, 𝜀],
(2) 𝑓2(𝑡, 𝑢) ≥ 𝐶4𝑢

1/𝑞, for all (𝑡, 𝑢) ∈ [0, 1] × [0, 𝜀],

where 𝐶4 = 𝛾
−(1/𝑞)(2+𝑞)

(𝜆4𝛿1)
−1/𝑞

𝛿
−1
2 .

(H8) 𝑓1(𝑡, 𝑢, V) and 𝑓2(𝑡, 𝑢) are increasing on 𝑢, V and there
exists 𝑅 > 0 such that

𝑓1(𝑠, 𝑅, ∫
1

0
𝐾2(𝑟)𝑎2(𝑟)𝑓2(𝑟, 𝑅)𝑑𝑟) < 𝜇

−1
1 𝑅, for all

𝑠, 𝑟 ∈ [0, 1].

Lemma 1. If 𝛽𝑖 ∈ [0, 1), for any 𝑦(𝑡) ∈ 𝐶[0, 1], higher order
differential equations

𝑤
(𝑛
𝑖
)
(𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑤 (0) = 𝑤

(0) = ⋅ ⋅ ⋅ = 𝑤

(𝑛
𝑖
−2)

(0) = 0,

𝑤 (1) = ∫

1

0

𝑛𝑖 (𝑡) 𝑤 (𝑡) 𝑑𝑡

(5)

have a unique solution

𝑤 (𝑡) = ∫

1

0

𝐾𝑖 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,
(6)

where

𝐾𝑖 (𝑡, 𝑠) = 𝐾𝑖1 (𝑡, 𝑠) + 𝐾𝑖2 (𝑡, 𝑠) , (7)

𝐾𝑖1 (𝑡, 𝑠)

=

1

(𝑛𝑖 − 1)!

{

𝑡
𝑛
𝑖
−1
(1 − 𝑠)

𝑛
𝑖
−1

− (𝑡 − 𝑠)
𝑛
𝑖
−1
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝑛
𝑖
−1
(1 − 𝑠)

𝑛
𝑖
−1
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

(8)

𝐾𝑖2 (𝑡, 𝑠) =
𝑡
𝑛
𝑖
−1

1 − 𝛽𝑖

∫

1

0

𝑛𝑖 (𝑡) 𝐾𝑖1 (𝑡, 𝑠) 𝑑𝑡. (9)
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Proof. By Taylor’s formula, we get

𝑤 (𝑡) = −

1

(𝑛𝑖 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛
𝑖
−1
𝑦 (𝑠) 𝑑𝑠

+

𝐴

(𝑛𝑖 − 1)!

𝑡
𝑛
𝑖
−1
.

(10)

Letting 𝑡 = 1 in (10), we have

𝐴 = (𝑛𝑖 − 1)!𝑤 (1) + ∫

1

0

(1 − 𝑠)
𝑛
𝑖
−1
𝑦 (𝑠) 𝑑𝑠. (11)

Substituting 𝑤(1) = ∫

1

0
𝑛𝑖(𝑡)𝑤(𝑡)𝑑𝑡 and (11) into (10), we

obtain

𝑤 (𝑡) = −

1

(𝑛𝑖 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛
𝑖
−1
𝑦 (𝑠) 𝑑𝑠

+

1

(𝑛𝑖 − 1)!

∫

1

0

𝑡
𝑛
𝑖
−1
(1 − 𝑠)

𝑛
𝑖
−1
𝑦 (𝑠) 𝑑𝑠

+ 𝑡
𝑛
𝑖
−1
∫

1

0

𝑛𝑖 (𝑠) 𝑤 (𝑠) 𝑑s

=

1

(𝑛𝑖 − 1)!

∫

𝑡

0

[𝑡
𝑛
𝑖
−1
(1 − 𝑠)

𝑛
𝑖
−1

− (𝑡 − 𝑠)
𝑛
𝑖
−1
] 𝑦 (𝑠) 𝑑𝑠

+ 𝑡
𝑛
𝑖
−1
∫

1

0

𝑛𝑖 (𝑠) 𝑤 (𝑠) 𝑑𝑠

+

1

(𝑛𝑖 − 1)!

∫

1

𝑡

𝑡
𝑛
𝑖
−1
(1 − 𝑠)

𝑛
𝑖
−1
𝑦 (𝑠) 𝑑𝑠

= ∫

1

0

𝐾𝑖1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑡
𝑛
𝑖
−1
∫

1

0

𝑛𝑖 (𝑠) 𝑤 (𝑠) 𝑑𝑠.

(12)

Multiplying (12) with 𝑛𝑖(𝑡) and integrating it, we have

∫

1

0

𝑛𝑖 (𝑡) 𝑤 (𝑡) 𝑑𝑡 = ∫

1

0

𝑛𝑖 (𝑡) ∫

1

0

𝐾𝑖1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝑡

+ ∫

1

0

𝑛𝑖 (𝑡) 𝑡
𝑛
𝑖
−1
𝑑𝑡∫

1

0

𝑛𝑖 (𝑠) 𝑤 (𝑠) 𝑑𝑠,

(13)

so

∫

1

0

𝑛𝑖 (𝑡) 𝑤 (𝑡) 𝑑𝑡

=

1

1 − 𝛽𝑖

∫

1

0

𝑛𝑖 (𝑡) ∫

1

0

𝐾𝑖1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝑡.

(14)

Substituting (14) into (12), we have

𝑤 (𝑡) = ∫

1

0

𝐾𝑖1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠

+

𝑡
𝑛
𝑖
−1

1 − 𝛽𝑖

∫

1

0

𝑛𝑖 (𝑡) ∫

1

0

𝐾𝑖1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝑡

= ∫

1

0

𝐾𝑖1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠

+ ∫

1

0

(

𝑡
𝑛
𝑖
−1

1 − 𝛽𝑖

∫

1

0

𝑛𝑖 (𝑡) 𝐾𝑖1 (𝑡, 𝑠) 𝑑𝑡) 𝑦 (𝑠) 𝑑𝑠

= ∫

1

0

[𝐾𝑖1 (𝑡, 𝑠) + 𝐾𝑖2 (𝑡, 𝑠)] 𝑦 (𝑠) 𝑑𝑠

= ∫

1

0

𝐾𝑖 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

(15)

where𝐾𝑖(𝑡, 𝑠) is defined by (7).

Definition 2. (𝑢, V) ∈ 𝐶
𝑛
1
(0, 1)∩𝐶[0, 1]×𝐶

𝑛
2
(0, 1)∩𝐶[0, 1] is

said to be a positive solution of systems (1) if and only if (𝑢, V)
satisfies systems (1) and 𝑢(𝑡) > 0, V(𝑡) > 0, for any 𝑡 ∈ [0, 1].

Lemma 3 (see [6]). If 𝛽𝑖 ∈ [0, 1), the continuous function
𝐾𝑖1(𝑡, 𝑠), 𝑖 = 1, 2, has the following properties:

(i) 0 ≤ 𝐾𝑖1(𝑡, 𝑠) ≤ 𝐾𝑖1(𝑠), for all 𝑡, 𝑠 ∈ [0, 1], where
𝐾𝑖1(𝑠) := 𝑠(1 − 𝑠)

𝑛
𝑖
−1
/(𝑛𝑖 − 2)!;

(ii) 𝐾𝑖1(𝑡, 𝑠) ≥ 𝛾𝑖(𝑡)𝐾𝑖1(𝑠), for all 𝑡, 𝑠 ∈ [0, 1], where 𝛾𝑖(𝑡) :=
(1/(𝑛𝑖 − 1))min{𝑡𝑛𝑖−1, (1 − 𝑡)𝑡

𝑛
𝑖
−2
}.

Remark 4. Combining (i) and (ii), we can easily see

min
𝑡∈[𝑎,𝑏]

𝐾𝑖1 (𝑡, 𝑠) ≥ 𝛾𝑖𝐾𝑖1 (𝑠) ≥ 𝛾𝑖𝐾𝑖1 (𝑡, 𝑠) ,

∀𝑡, 𝑠 ∈ [0, 1] ,

(16)

where 𝛾𝑖 = min{𝛾𝑖(𝑡) : 𝑡 ∈ [𝑎, 𝑏]}.

Lemma 5. If 𝛽𝑖 ∈ [0, 1), the continuous function 𝐾𝑖2(𝑡, 𝑠) has
the following property:

0 ≤ 𝐾𝑖2 (𝑡, 𝑠) ≤ 𝐾𝑖2 (1, 𝑠) :=
1

1 − 𝛽𝑖

∫

1

0

𝑛𝑖 (𝑡) 𝐾𝑖1 (𝑡, 𝑠) 𝑑𝑡,

∀𝑡, 𝑠 ∈ [0, 1] .

(17)

Proof. From the properties of 𝐾𝑖1(𝑡, 𝑠) and the definition of
𝐾𝑖2(𝑡, 𝑠), we can prove easily the results of Lemma 5.

Lemma 6. If 𝛽𝑖 ∈ [0, 1), the continuous function 𝐾𝑖(𝑡, 𝑠)

defined by (7) satisfies

(i) 𝐾𝑖(𝑡, 𝑠) ≥ 0, for all 𝑡, 𝑠 ∈ [0, 1],
(ii) 𝐾𝑖(𝑡, 𝑠) ≤ 𝐾𝑖(𝑠) for each 𝑡, 𝑠 ∈ [0, 1], and

min𝑡∈[𝑎,𝑏]𝐾𝑖(𝑡, 𝑠) ≥ 𝛾
∗
𝑖 𝐾𝑖(𝑠), for all 𝑠 ∈ [0, 1],

where 𝛾
∗
𝑖 = min{𝛾𝑖, 𝑎

𝑛
𝑖
−1
}, 𝛾𝑖 is defined in Remark 4 and

𝐾𝑖(𝑠) = 𝐾𝑖1(𝑠) + 𝐾𝑖2(1, 𝑠).
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Proof. (1) From Lemma 5 and (i) of Lemma 3, we get the
proof of (i) immediately.

(2) From Lemma 5 and (i) of Lemma 3, it is obvious that
𝐾𝑖(𝑡, 𝑠) ≤ 𝐾𝑖(𝑠) for each 𝑡, 𝑠 ∈ [0, 1].

Now, we show that the form (ii) holds. In fact, from (16)
and (9), we have

min
𝑡∈[𝑎,𝑏]

𝐾𝑖 (𝑡, 𝑠) ≥ 𝛾𝑖𝐾𝑖1 (𝑠)

+

𝑎
𝑛
𝑖
−1

1 − 𝛽𝑖

∫

1

0

𝑛𝑖 (𝑡) 𝐾𝑖1 (𝑡, 𝑠) 𝑑𝑡

≥ 𝛾
∗

𝑖 [𝐾𝑖1 (𝑠) + 𝐾𝑖2 (1, 𝑠)]

= 𝛾
∗

𝑖 𝐾𝑖 (𝑠) , ∀𝑠 ∈ [0, 1] .

(18)

Then, the proof of Lemma 6 is completed.

Remark 7. From the definition of 𝛾∗𝑖 , it is obvious that 0 <

𝛾
∗
𝑖 < 1.

It is easy to prove that (𝑢, V) ∈ 𝐶
𝑛
1
(0, 1) ∩ 𝐶[0, 1] ×

𝐶
𝑛
2
(0, 1) ∩ 𝐶[0, 1] is a positive solution of systems (1) if and

only if (𝑢, V) ∈ 𝐶[0, 1]×𝐶[0, 1] is a positive solution of systems
of integral equations

𝑢 (𝑡) = ∫

1

0

𝐾1 (𝑡, 𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠,

V (𝑡) = ∫

1

0

𝐾2 (𝑡, 𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(19)

where𝐾𝑖(𝑡, 𝑠), 𝑖 = 1, 2, are Green’s functions defined by (7).
It follows from (19) that we can obtain the integral

equation:

𝑢 (𝑡) = ∫

1

0

𝐾1 (𝑡, 𝑠) 𝑎1 (𝑠)

× 𝑓1 (𝑠, 𝑢 (𝑠) , ∫

1

0

𝐾2 (𝑠, 𝑟) 𝑎2 (𝑟) 𝑓2 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠.

(20)

In a real Banach space 𝐶[0, 1], the norm is defined by
‖𝑢‖ = max𝑡∈[0,1]|𝑢(𝑡)|. Set

𝑃 = {𝑢 (𝑡) ∈ 𝐶 [0, 1] | 𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 1] ,

min
𝑡∈[𝑎,𝑏]

𝑢 (𝑡) ≥ 𝛾 ‖𝑢‖} ,

(21)

where 𝛾 = min{𝛾∗1 , 𝛾
∗
2 }. Obviously, 𝑃 is a positive cone in

𝐶[0, 1].
Define the operator 𝑇 : 𝑃 → 𝐸 by

𝑇𝑢 (𝑡) = ∫

1

0

𝐾1 (𝑡, 𝑠) 𝑎1 (𝑠)

× 𝑓1(𝑠, 𝑢 (𝑠) , ∫

1

0

𝐾2 (𝑠, 𝑟) 𝑎2 (𝑟) 𝑓2 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠,

∀𝑡 ∈ [0, 1] .

(22)

Lemma 8. Suppose that (H1)–(H3) are satisfied; then the
operator 𝑇 : 𝑃 → 𝑃 is completely continuous.

Proof. Let 𝑢 ∈ 𝑃; consider (22); from Lemma 3 and (21), we
have

0 ≤ 𝑇𝑢 (𝑡) ≤ ‖𝑇𝑢‖

≤ ∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠)

× 𝑓1 (𝑠, 𝑢 (𝑠) , ∫

1

0

𝐾2 (𝑠, 𝑟) 𝑎2 (𝑟) 𝑓2 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

min
𝑡∈[𝑎,𝑏]

𝑇𝑢 (𝑡)

≥ 𝛾∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠)

× 𝑓1 (𝑠, 𝑢 (𝑠) , ∫

1

0

𝐾2 (𝑠, 𝑟) 𝑎2 (𝑟) 𝑓2 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠.

(23)

It follows from (23) that we have min𝑡∈[𝑎,𝑏]𝑇𝑢(𝑡) ≥ 𝛾‖𝑇𝑢‖;
therefore, operator 𝑇 : 𝑃 → 𝑃. It is easy to prove
that operator 𝑇 : 𝑃 → 𝑃 is completely continuous
since 𝐾1(𝑡, 𝑠), 𝐾2(𝑡, 𝑠), 𝑓1(𝑡, 𝑢, V), 𝑓2(𝑡, 𝑢), 𝑎1(𝑡), and 𝑎2(𝑡) are
continuous.

Lemma 9 (see [18]). Suppose 𝐸 is a real Banach space and 𝑃

is cone in 𝐸, and let Ω1, Ω2 be bounded open sets in 𝐸 such
that 𝜃 ∈ Ω1, Ω1 ⊂ Ω2. Let operator 𝑇 : 𝑃 ∩ (Ω2 \ Ω1) → 𝑃

be completely continuous. Suppose that one of two conditions
holds

(i) ‖𝑇𝑢‖ ≤ ‖𝑢‖, for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω1; ‖𝑇𝑢‖ ≥ ‖𝑢‖, for all
𝑢 ∈ 𝑃 ∩ 𝜕Ω2;

(ii) ‖𝑇𝑢‖ ≥ ‖𝑢‖, for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω1; ‖𝑇𝑢‖ ≤ ‖𝑢‖, for all
𝑢 ∈ 𝑃 ∩ 𝜕Ω2.

Then, operator 𝑇 has at least one fixed point in 𝑃 ∩ (Ω2 \ Ω1).

Lemma 10 (see [18]). Suppose 𝐸 is a real Banach space and
𝑃 is cone in 𝐸, and let Ω1, Ω2, and Ω3 be bounded open sets
in 𝐸 such that 𝜃 ∈ Ω1, Ω1 ⊂ Ω2, and Ω2 ⊂ Ω3. Let operator
𝑇 : 𝑃 ∩ (Ω3 \ Ω1) → 𝑃 be completely continuous, such that

(1) ‖𝑇𝑢‖ ≥ ‖𝑢‖, for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω1;
(2) ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑇𝑢 ̸= 𝑢, for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω2;
(3) ‖𝑇𝑢‖ ≥ ‖𝑢‖, for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω3.

Then, operator 𝑇 has at least two fixed points 𝑢1 and 𝑢2 in 𝑃 ∩

(Ω3 \ Ω1) with 𝑢1 ∈ (Ω2 \ Ω1) and 𝑢2 ∈ (Ω3 \ Ω2).

3. Main Results

Theorem 11. Suppose that assumptions (H1)–(H5) are satis-
fied; then systems (1) have at least one positive solution (𝑢, V)
satisfying 𝑢(𝑡) > 0, V(𝑡) > 0.
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Proof. At first, let 𝜌1 = 𝑀1𝛾
−1, and set Ω1 = {𝑢 ∈ 𝐶[0, 1] :

‖𝑢‖ < 𝜌1} and 𝑢 ∈ 𝑃 ∩ 𝜕Ω1; then min𝑡∈[𝑎,𝑏]𝑢(𝑡) ≥ 𝛾‖𝑢‖ = 𝑀1.
By Lemma 6 and the assumption (H4), we have

V (𝑡) = ∫

1

0

𝐾2 (𝑡, 𝑠) 𝑎2 (𝑠) 𝑓2 (𝑡, 𝑢 (𝑠)) 𝑑𝑠

≥ 𝐶1 ∫

1

0

𝐾2 (𝑡, 𝑠) 𝑎2 (𝑠) 𝑢
1/𝛼

(𝑠) 𝑑𝑠

≥ 𝛾𝐶1 ∫

𝑏

𝑎

𝐾2 (𝑠) 𝑎2 (𝑠) 𝑢
1/𝛼

(𝑠) 𝑑𝑠

≥ 𝛾𝐶1 ∫

𝑏

𝑎

𝐾2 (𝑠) 𝑎2 (𝑠) 𝑑𝑠(𝛾 ‖𝑢‖)
1/𝛼

= 𝛾𝐶1𝛿2𝑀
1/𝛼

1 ≥ 𝑀1, 𝑡 ∈ [𝑎, 𝑏] ,

min
𝑡∈[𝑎,𝑏]

(𝑇𝑢) (𝑡) ≥ 𝛾∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

≥ 𝛾𝜆1 ∫

𝑏

𝑎

𝐾1 (𝑠) 𝑎1 (𝑠) V
𝛼
(𝑠) 𝑑𝑠

≥ 𝛾𝜆1𝛿1(𝛾𝐶1𝛿2)
𝛼
(𝛾 ‖𝑢‖) ≥ ‖𝑢‖ .

(24)

Therefore, we have

‖𝑇𝑢‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝑃 ∩ 𝜕Ω1. (25)

Further, set Ω2 = {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖ < 𝜌2}, for 𝑢 ∈ 𝑃 ∩ 𝜕Ω2;
by the assumption (H5), we have

V (𝑡) ≤ 𝐶2 ∫

1

0

𝐾2 (𝑠) 𝑎2 (𝑠) 𝑢
1/𝛽

(𝑠) 𝑑𝑠

≤ 𝐶2𝜇2‖𝑢‖
1/𝛽

≤ 𝜌
1+(1/𝛽)

2 ≤ 𝜌2, 𝑡 ∈ [0, 1] ,

(𝑇𝑢) (𝑡) ≤ ∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

≤ 𝜇1𝜆2‖V‖
𝛽
≤ 𝜇1𝜆2(𝐶2𝜇2)

𝛽
‖𝑢‖ ≤ ‖𝑢‖ .

(26)

Therefore, we have

‖𝑇𝑢‖ ≤ ‖𝑢‖ , 𝑢 ∈ 𝑃 ∩ 𝜕Ω2. (27)

Thus, from (25), (27), Lemma 8, andLemma 9, operator𝑇has
a fixed point 𝑢 in 𝑃 ∩ (Ω1 \ Ω2). This means that systems (1)
have at least one positive solution (𝑢, V) satisfying 𝑢(𝑡) > 0,
V(𝑡) > 0.

Theorem 12. Suppose that assumptions (H1)–(H3) and (H6)-
(H7) are satisfied; then systems (1) have at least one positive
solution (𝑢, V) satisfying 𝑢(𝑡) > 0, V(𝑡) > 0.

Proof. At first, it follows from the assumption (H6) that we
have

(𝑇𝑢) (𝑡)

= ∫

1

0

𝐾1 (𝑡, 𝑠) 𝑎1 (𝑠) 𝑓1 (𝑡, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

≤ ∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠) (𝜆3V
𝑝
(𝑠) + 𝑀2) 𝑑𝑠

≤ ∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠) [𝜆3(∫

1

0

𝐾2 (𝑠) 𝑎2 (𝑠) 𝑓2 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

𝑝

+𝑀2]𝑑𝑠

≤ 𝜇1𝜆3𝜇
𝑝

2 (𝐶3𝑢
1/𝑝

+𝑀2)
𝑝
+ 𝜇1𝑀2

≤ 𝜇1𝜆3𝜇
𝑝

2 (𝐶3‖𝑢‖
1/𝑝

+𝑀2)
𝑝
+ 𝜇1𝑀2.

(28)

By means of simple calculation, we have

lim
𝑢→+∞

(𝜇1𝜆3𝜇
𝑝

2 (𝐶3‖𝑢‖
1/𝑝

+𝑀2)
𝑝
+ 𝜇1𝑀2)

‖𝑢‖

=

1

2

.
(29)

Then, there exists a sufficiently large𝑀 > 0 such that

𝜇1𝜆3𝜇
𝑝

2 (𝐶3‖𝑢‖
1/𝑝

+𝑀2)
𝑝
+ 𝜇1𝑀2 ≤ ‖𝑢‖ . (30)

Set Ω3 = {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖ < 𝑀}. For 𝑢 ∈ 𝑃 ∩ 𝜕Ω3, by
(28),(30), we obtain that

‖𝑇𝑢‖ ≤ ‖𝑢‖ , 𝑢 ∈ 𝑃 ∩ 𝜕Ω3. (31)

Further, since𝑓2(𝑡, 0) ≡ 0 and𝑓2(𝑡, 𝑢) is continuous in [0, 1]×
[0, +∞), there exists 𝜌 ∈ (0, 𝜀) such that

𝑓2 (𝑡, 𝑢) < 𝜇
−1

2 𝜌, (𝑡, 𝑢) ∈ [0, 1] × (0, 𝜌) . (32)

Set Ω4 = {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖ < 𝜌}. For 𝑢 ∈ 𝑃 ∩ 𝜕Ω4, we have

V (𝑡) = ∫

1

0

𝐾2 (𝑡, 𝑠) 𝑎2 (𝑠) 𝑓2 (𝑡, 𝑢 (𝑠)) 𝑑𝑠

< 𝜇
−1

2 𝜌∫

1

0

𝐾2 (𝑠) 𝑎2 (𝑠) 𝑑𝑠 = 𝜌.

(33)

It follows from the assumption (H7) and Lemma 6 that we
have

min
𝑡∈[𝑎,𝑏]

(𝑇𝑢) (𝑡)

≥ 𝛾∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠
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≥ 𝛾𝜆4 ∫

𝑏

𝑎

𝐾1 (𝑠) 𝑎1 (𝑠) 𝑑𝑠

× (∫

𝑏

𝑎

𝐾2 (𝑠, 𝑟) 𝑎2 (𝑟) 𝑓2 (𝑟, 𝑢 (𝑟)) 𝑑𝑟)

𝑞

≥ 𝛾𝜆4𝛿1(𝛾∫

𝑏

𝑎

𝐾2 (𝑟) 𝑎2 (𝑟) 𝐶4𝑢
1/𝑞

(𝑟) 𝑑𝑟)

𝑞

≥ 𝛾
2+𝑞

𝜆4𝛿1(𝐶4𝛿2)
𝑞
‖𝑢‖ ≥ ‖𝑢‖ .

(34)

Hence, we have

‖𝑇𝑢‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝑃 ∩ 𝜕Ω4. (35)

Thus, from (31),(35), Lemmas 8 and 9, operator 𝑇 has a fixed
point 𝑢 in 𝑃 ∩ (Ω3 \ Ω4). This means that systems (1) have
at least one positive solution (𝑢, V) satisfying 𝑢(𝑡) > 0, V(𝑡) >
0.

Theorem 13. Suppose that assumptions (H1)–(H4) and (H7)-
(H8) hold.Then, systems (1) have at least two positive solutions
(𝑢1, V1) and (𝑢2, V2).

Proof. Set Ω5 = {𝑢 ∈ 𝐸 : ‖𝑢‖ < 𝑅}. For 𝑢 ∈ 𝑃 ∩ 𝜕Ω5, from
(H8), we obtain that

(𝑇𝑢) (𝑡)

≤ ∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠) 𝑓1 (𝑠, 𝑅, ∫

1

0

𝐾2 (𝑟) 𝑎2 (𝑟) 𝑓2 (𝑟, 𝑅) 𝑑𝑟) 𝑑𝑠

< 𝜇
−1

1 𝑅∫

1

0

𝐾1 (𝑠) 𝑎1 (𝑠) 𝑑𝑠 = 𝑅.

(36)

Thus, we have

‖𝑇𝑢‖ < ‖𝑢‖ , 𝑢 ∈ 𝑃 ∩ 𝜕Ω5. (37)

By (H4) and (H7), we can get

‖𝑇𝑢‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝑃 ∩ 𝜕Ω1,

‖𝑇𝑢‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝑃 ∩ 𝜕Ω4.

(38)

So, we can choose 𝜌, 𝑅, and 𝜌1 such that 𝜌 < 𝑅 < 𝜌1

and satisfying the above three inequalities. By Lemma 8 and
Lemma 10, we guarantee that operator 𝑇 has two fixed points
𝑢1 ∈ 𝑃 ∩ (Ω1 \ Ω5) and 𝑢2 ∈ 𝑃 ∩ (Ω5 \ Ω4). This means that
systems (1) have at least two positive solutions (𝑢1, V1) and
(𝑢2, V2).

In order to illustrate that our assumptions (H4)–(H7) are
suitable for more general functions, we give some examples.

Example 14. In systems (1), let 𝑛1 = 3, 𝑛2 = 4, 𝑎1(𝑡) = 𝑎2(𝑡) =

1, 𝑛1(𝑡) = 𝑛2(𝑡) = 𝑡, 𝑓1(𝑡, 𝑢, V) = (1 + 𝑡 + 𝑒
−𝑢
)V3/2, and

𝑓2(𝑡, 𝑢) = 𝑢
5/2, so the assumptions (H1)–(H3) are satisfied.

Choose 𝛼 = 1/2, 𝛽 = 3/2; then

lim inf
𝑢→+∞

𝑓2 (𝑡, 𝑢)

𝑢
1/𝛼

= +∞,

lim inf
V→+∞

𝑓1 (𝑡, 𝑢, V)
V𝛼

> 0;

lim sup
𝑢→0+

𝑓2 (𝑡, 𝑢)

𝑢
1/𝛽

= 0,

lim sup
V→0+

𝑓1 (𝑡, 𝑢, V)
V𝛽

< +∞

(39)

uniformly with respect to 𝑡 ∈ [0, 1] and (𝑡, 𝑢) ∈ [0, 1] ×

[0, +∞). It is easy to verify that the assumptions (H4)-(H5)
hold. By Theorem 11, systems (1) have at least one position
solution.

Example 15. In systems (1), let 𝑛1 = 3, 𝑛2 = 4, 𝑎1(𝑡) = 𝑎2(𝑡) =

1, 𝑛1(𝑡) = 𝑛2(𝑡) = 𝑡,𝑓1(𝑡, 𝑢, V) = (1+𝑡+𝑒
−𝑢
)V1/2, and𝑓2(𝑡, 𝑢) =

𝑢
1/2, so the assumptions (H1)–(H3) are satisfied. Choose 𝑝 =

𝑞 = 1/2; then

lim sup
𝑢→+∞

𝑓2 (𝑡, 𝑢)

𝑢
1/𝑝

= 0,

lim sup
V→+∞

𝑓1 (𝑡, 𝑢, V)
V𝑝

< +∞,

lim inf
𝑢→0+

𝑓2 (𝑡, 𝑢)

𝑢
1/𝑞

= +∞,

lim sup
V→0+

𝑓1 (𝑡, 𝑢, V)
V𝑞

> 0

(40)

uniformly with respect to 𝑡 ∈ [0, 1] and (𝑡, 𝑢) ∈ [0, 1] ×

[0, +∞). It is easy to verify that the assumptions (H6)-(H7)
hold. By Theorem 12, systems (1) have at least one position
solution.
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