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This paper extends the well-known 𝑝-CLP with one server to 𝑝-CLP with 𝑚 ≥ 2 identical servers, denoted by (𝑝,𝑚)-CLP. We
propose the closest server orienting protocol (CSOP), under which every client connects to the closest server to itself via a shortest
route on given network. We abbreviate (𝑝,𝑚)-CLP under CSOP to (𝑝,𝑚)-CSOP CLP and investigate that (𝑝,𝑚)-CSOP CLP on a
general network is equivalent to that on a forest and further to multiple CLPs on trees. The case of𝑚 = 2 is the focus of this paper.
We first devise an improved𝑂(𝑝ℎ2+𝑛)-time parallel exact algorithm for𝑝-CLP on a tree and then present a parallel exact algorithm
with at most 𝑂((4/9)𝑝2𝑛2) time in the worst case for (𝑝, 2)-CSOP CLP on a general network. Furthermore, we extend the idea of
parallel algorithm to the cases of 𝑚 > 2 to obtain a worst-case 𝑂((4/9)(𝑛 − 𝑚)2((𝑚 + 𝑝)

𝑝
/ (𝑝 − 1)!))-time exact algorithm. At the

end of the paper, we first give an example to illustrate our algorithms and then make a series of numerical experiments to compare
the running times of our algorithms.

1. Introduction

Caching has become an important tool to improve the net-
work performance efficiency, reducing delays to every client
and alleviating the overload on the server [1–4]. Initially, a
large amount of studies considered how to optimize cache
performance [5–7], cache hierarchies [5], and cooperations
among multiple web servers [8, 9]. Subsequently, how to
locate caches or proxies optimally in networks to alleviate
the server load became more popular [2, 10–13]. The most
popular practice in the past is to place caches on the edges
of networks, acting as the network browser and proxy or
part of cache hierarchies [1, 3–5]. Later, Danzig et al. [2]
discovered that the advantage of placing caches on the
nodes of networks instead of on the edges of networks is
to reduce overall network congestion greatly. In this paper,
we only discuss how to place caches on the nodes of
networks.

The focus of placing caches in networks is how to enhance
the effect and efficiency of caching in networks as greatly as
possible.This problem can bemodeled as the𝑝-cache location
problem (abbreviated to 𝑝-CLP or CLP) or 𝑝-proxy problem.
Both of their initial models can be reduced to the𝑝-median

problem [14, 15] essentially. Throughout this paper, we let
𝑛 denote the number of network nodes, let 𝑚 denote the
number of network edges, let 𝑝 denote the number of caches
or proxies, let and ℎ denote the height of tree. Later, Abrams
et al. [7] investigated that almost all current cache products
contain a transparent operation mode, called a transparent
en-route cache (TERC). When using TERCs in networks
with one server, all clients connect to server and caches
are placed on the routes from clients to server. Heddaya
and Mirdad [10] suggested making use of TERCs to balance
load due to the manageability of TERC. Further, Krishnan
et al. [11] proposed the cache location problem involving
TERCs, studied the problem in several special networks, and
presented polynomial time exact algorithms. In the rest of
this paper, all of CLPs involve TERC.

The known algorithms for the 𝑝-proxy problem also apply
to 𝑝-CLP. For a linear network, Li et al. studied the 𝑝-proxy
problem and presented an 𝑂(𝑝𝑛2) time exact algorithm [12].
Later, Woeginger used the Monge property to obtain an
improved algorithm with 𝑂(𝑝𝑛) time complexity [16]. For a
tree network, Li et al. devised an𝑂(𝑝2𝑛3)-time exact dynamic
programming algorithm [13] and Chen et al. presented an
improved 𝑂(𝑛𝑝ℎ)-time algorithm [17]. For a general tree of
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rings network, Chen et al. showed an 𝑂(𝑝𝑛
2
) time exact

algorithm [18]. Moreover, a variety of objectives have been
considered, such as the overall time, cost, and hop count.
Du [19] and Jia et al. [20] studied the proxy problem with
read-write operations. In [21], Liu and Yang considered the
delay-constrained proxy problem. Given a general network,
provided that all clients are intelligent and connect to the
server via a shortest route on the network, we claim that 𝑝-
CLP in this situation is equivalent to 𝑝-CLP on the tree and
thus is solvable in polynomial time [11, 13, 17] since all the
shortest routes between clients and server form a shortest-
paths tree rooted at the server node.

All past works on CLP considered a single server. This
paper is the first one to study CLP with multiple identical
servers. In this model, every client connects to some server
via a route and all caches lie on such routes. We further
suppose that every client is intelligent; that is, it connects to
the closest server to itself via a shortest route. This produces
the closest server orienting protocol (abbreviated to CSOP).
Under CSOP, all the shortest routes connecting clients and
server form a forest, each component of which is rooted at a
server node.Therefore, theCLPwithmultiple identical servers
under CSOP on a general network is equivalent to that on a
forest.

We abbreviate 𝑝-CLP with 𝑚 identical servers to (𝑝,𝑚)-
CLP and further (𝑝,𝑚)-CLP under CSOP to (𝑝,𝑚)-CSOP
CLP. In this paper, we first propose an improved parallel
exact algorithm for 𝑝-CLP on a tree, which reduces 𝑂(𝑛𝑝ℎ)
time of algorithm in [17] to 𝑂(𝑝ℎ

2
+ 𝑛). Based on the

improved algorithm, we design a parallel exact algorithm
for (𝑝, 2)-CSOP CLP on a general network, which takes
𝑂(𝑝
2max{ℎ2

1
, ℎ
2

2
} + (8/3)𝑛𝑝) time and at most 𝑂((4/9)𝑝2𝑛2)

time in the worst case. Furthermore, we extend the algorithm
idea to (𝑝,𝑚)-CSOP CLP on a general network and get a
parallel exact algorithm, which takes 𝑂((𝑝 ⋅ max

1≤𝑖≤𝑚
ℎ
2

𝑖
+

(8/3)𝑛) (
𝑚+𝑝−1

𝑝
)) time and at most 𝑂((4/9)(𝑛 − 𝑚)

2
((𝑚 +

𝑝)
𝑝
/(𝑝 − 1)!)) time in the worst case.
The rest of this paper is organized as follows. In Section 2,

we define notations used frequently and (𝑝, 2)-CSOP CLP
formally. In Section 3, we make some fundamental prelimi-
naries, develop an improved algorithm for 𝑝-CLP on a tree,
and then devise a parallel exact algorithm for (𝑝, 2)-CSOP
CLPbased on the improved algorithm. In Section 4,we define
(𝑝,𝑚)-CSOP CLP formally and devise an efficient parallel
exact algorithm. In Section 5, we first give an example to
illustrate our algorithm and then make a series of numerical
experiments to compare the running time of our algorithm.
In Section 6, we conclude this paper with some future
research topics.

2. Problem Description

Let 𝐺 = (𝑉, 𝐸, 𝑤, 𝑐) represent a communication network or
computer network, where 𝑉 is the node set and 𝐸 is the edge
set. Every node represents a processing or switching element
and every edge represents a communication link [22]. Every
node 𝑧 ∈ 𝑉 has a weight 𝑤(𝑧) > 0 representing the demand
amount of 𝑧, and every edge 𝑒 ∈ 𝐸 has a weight 𝑐(𝑒) > 0

representing the cost per demand. For any pair of nodes 𝑥
and 𝑦, we let [𝑥, 𝑦] denote the edge of𝐺 between 𝑥 and 𝑦 and
let 𝜋(𝑥, 𝑦) denote the shortest path in 𝐺 connecting 𝑥 and 𝑦.
Let 𝑐[𝑥, 𝑦] denote the cost of edge [𝑥, 𝑦], and 𝑐(𝑥, 𝑦) denote
the cost of 𝜋(𝑥, 𝑦) which is equal to the sum of all the costs
on edges of 𝜋(𝑥, 𝑦). So,

𝑐 (𝑥, 𝑦) = ∑

𝑒∈𝜋(𝑥,𝑦)

𝑐 (𝑒) . (1)

Let 𝑠
1
and 𝑠
2
be two identical servers, which are allocated

to a pair of nodes of 𝐺 in advance. Let Γ denote the set of 𝑝
cache locations. Suppose that CSOP works and each cache is
a duplicate of server. Given any set Γ ⊂ 𝑉 \ {𝑠

1
, 𝑠
2
}, the cost of

node 𝑧 paying for its per demand depends on the locations of
Γ ∪ {𝑠

1
, 𝑠
2
} and is denoted by 𝑐(𝑧, Γ∪{𝑠

1
, 𝑠
2
}).Thus, the cost of

𝑧paying for its overall demand is equal to𝑤(𝑧)𝑐(𝑧, Γ∪{𝑠
1
, 𝑠
2
}).

Let 𝑓(Γ) denote the total cost of all the nodes paying for their
overall demand, that is,

𝑓 (Γ) = ∑

𝑧∈𝑉

𝑤 (𝑧) 𝑐 (𝑧, Γ ∪ {𝑠
1
, 𝑠
2
}) . (2)

The 𝑝-cache location problem with two identical servers
under CSOP (i.e., (𝑝, 2)-CSOP CLP) aims to find 𝑝 cache
locations in 𝐺 to minimize the total cost of all the nodes
paying for their overall demand. In other words, the aim of
(𝑝, 2)-CSOP CLP can be reduced to find an optimal set Γ∗
from 𝑉 \ {𝑠

1
, 𝑠
2
} to minimize the value of 𝑓(Γ), that is,

𝑓 (Γ
∗
) = min
Γ⊂𝑉\{𝑠1 ,𝑠2}

𝑓 (Γ) . (3)

3. A Parallel Exact Algorithm
for (𝑝,2)-CSOP CLP

In the scenario of (𝑝, 2)-CSOP CLP, every client knows the
location of the closest server to itself and connects to it via
a shortest route. If its service request encounters the closest
cache on the route, it will get information therein. Otherwise,
it get information from the server. Therefore, (𝑝, 2)-CSOP
CLP can be viewed as the combination of two CLPs when 𝑠

1

and 𝑠
2
are predesignated to two locations of network. One is

CLP with 𝑠
1
as the server and the other is CLP with 𝑠

2
as the

server.

3.1. Preliminaries. Once 𝑠
1
and 𝑠
2
are fixed at two predesig-

nated locations of 𝐺, it is certain that some nodes of 𝐺 are
closer to 𝑠

1
and the other nodes are closer to 𝑠

2
. Let 𝑉(𝑠

1
)

be the set of nodes that are closer to 𝑠
1
and 𝑉(𝑠

2
) be the

set of nodes that are closer to 𝑠
2
. Thus, Lemma 1 follows

immediately. Let 𝑇(𝑠
1
) (resp. 𝑇(𝑠

2
)) denote the single-source

shortest paths tree in𝐺with 𝑠
1
(resp. 𝑠

2
) as the origin spanning

𝑉(𝑠
1
) (resp. 𝑉(𝑠

2
)). We can use Dijkstra’s algorithm [23] to

compute 𝑇(𝑠
1
) and 𝑇(𝑠

2
). We can transform 𝑇(𝑠

1
) (resp.

𝑇(𝑠
2
)) into a rooted tree with 𝑠

1
(resp. 𝑠

2
) as the root without

loss of generality. Furthermore, let 𝑇
𝑥
(𝑠
1
) denote the subtree

of 𝑇(𝑠
1
) rooted at 𝑥 for any 𝑥 ∈ 𝑉(𝑠

1
) and let 𝑇

𝑦
(𝑠
2
) denote

the subtree of 𝑇(𝑠
2
) rooted at 𝑦 for any 𝑦 ∈ 𝑉(𝑠

2
).
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Lemma 1. 𝑉 = 𝑉(𝑠
1
) ⋃ 𝑉(𝑠

2
).

Specifically, we letΠ[𝑠
1
, 𝑠
2
]denote the unique path on tree

between 𝑠
1
and 𝑠
2
when 𝐺 is a tree graph. Let 𝑁(𝑠

1
) (resp.

𝑁(𝑠
2
)) be the set of nodes on Π[𝑠

1
, 𝑠
2
] which are closer to 𝑠

1

(resp. 𝑠
2
) and let𝑉

𝑥
(𝑠
1
, 𝑠
2
) be the subset of nodes which reach

𝑠
1
and 𝑠
2
via 𝑥 for any node 𝑥 on Π[𝑠

1
, 𝑠
2
]. We investigate

that every node in 𝑉
𝑥
(𝑠
1
, 𝑠
2
), 𝑥 ∈ 𝑁(𝑠

1
) belongs to 𝑉(𝑠

1
) and

every node in 𝑉
𝑦
(𝑠
1
, 𝑠
2
), 𝑦 ∈ 𝑁(𝑠

2
) belongs to 𝑉(𝑠

2
), and

vice versa. So, Lemma 2 follows. By Lemmas 1 and 2, we can
compute 𝑇(𝑠

1
) and 𝑇(𝑠

2
) by applying the depth-first search

(DFS) procedure to the tree, which only takes a linear time.

Lemma 2. 𝑉(𝑠
1
) = ⋃

𝑥∈𝑁(𝑠
1
)
𝑉
𝑥
(𝑠
1
, 𝑠
2
), 𝑉(𝑠

2
) =

⋃
𝑦∈𝑁(𝑠

2
)
𝑉
𝑦
(𝑠
1
, 𝑠
2
).

By Lemma 1, we are sure that one cache is placed either in
𝑉(𝑠
1
) or 𝑉(𝑠

2
). The set of cache locations in 𝑉(𝑠

1
) and 𝑉(𝑠

2
)

is denoted by Γ(𝑠
1
) and Γ(𝑠

2
), respectively; thus, Γ = Γ(𝑠

1
) ∪

Γ(𝑠
2
), Γ(𝑠
1
) = Γ ∩ 𝑉(𝑠

1
) and Γ(𝑠

2
) = Γ ∩ 𝑉(𝑠

2
). Under CSOP,

every 𝑧 ∈ 𝑉(𝑠
1
) connects to 𝑠

1
and thus the cost of paying for

its overall demand is equal to𝑤(𝑧)⋅𝑐(𝑧, Γ(𝑠
1
)∪{𝑠
1
}). Similarly,

the cost of 𝑧 ∈ 𝑉(𝑠
2
) is equal to 𝑤(𝑧) ⋅ 𝑐(𝑧, Γ(𝑠

2
) ∪ {𝑠
2
}). We

can further rewrite (2) as

𝑓 (Γ) = 𝑓 (Γ (𝑠
1
) ∪ Γ (𝑠

2
))

= ∑

𝑧∈𝑉(𝑠1)

𝑤 (𝑧) ⋅ 𝑐 (𝑧, Γ (𝑠
1
) ∪ {𝑠
1
})

+ ∑

𝑧∈𝑉(𝑠2)

𝑤 (𝑧) ⋅ 𝑐 (𝑧, Γ (𝑠
2
) ∪ {𝑠
2
}) .

(4)

Let 𝑝
1
be the number of caches in Γ(𝑠

1
) and let 𝑝

2
be

the number of caches in Γ(𝑠
2
). Obviously, 𝑝

1
+ 𝑝
2
= 𝑝.

A combination of Γ(𝑠
1
) having 𝑝

1
caches and Γ(𝑠

2
) having

𝑝
2
caches is called a cache allocation scheme (abbreviated to

CAS), denoted as (𝑝
1
, 𝑝
2
)-CAS where 𝑝

1
and 𝑝

2
cannot be

exchanged. Clearly, (𝑝, 2)-CSOP CLP contains 𝑝 + 1 CASs
in total. For any (𝑝

1
, 𝑝
2
)-CAS, (𝑝, 2)-CSOP CLP is composed

of two subproblems, that is, 𝑝
1
-CLP in 𝑇(𝑠

1
) and 𝑝

2
-CLP in

𝑇(𝑠
2
). Let 𝐶(𝐺, 𝑝) denote the minimum cost of (𝑝, 2)-CSOP

CLP in 𝐺, and let 𝐶(𝑇(𝑠
1
), 𝑝
1
) denote the minimum cost of

𝑝
1
-CLP in 𝑇(𝑠

1
) and let 𝐶(𝑇(𝑠

2
), 𝑝
2
) denote the minimum

cost of 𝑝
2
-CLP in 𝑇(𝑠

2
). The cost of (𝑝, 2)-CSOP CLP in 𝐺

for any given (𝑝
1
, 𝑝
2
)-CAS is equal to the sum of𝐶(𝑇(𝑠

1
), 𝑝
1
)

and𝐶(𝑇(𝑠
2
), 𝑝
2
), and further𝐶(𝐺, 𝑝) results from the optimal

(𝑝
1
, 𝑝
2
)-CASs; that is,

𝐶 (𝐺, 𝑝) = min
𝑝
1
+𝑝
2
=𝑝
{𝐶 (𝑇 (𝑠

1
) , 𝑝
1
) + 𝐶 (𝑇 (𝑠

2
) , 𝑝
2
)} . (5)

3.2. Preprocessing. In this subsection, we give a new method
of transforming an arbitrary rooted tree into a binary tree. Let
𝑇 be a rooted tree. For any nonleaf node 𝑥 of 𝑇, the subgraph
of 𝑇 is composed of the edges between 𝑥 and all its children
are called a star of 𝑇 with center 𝑥, denoted by 𝑠𝑡𝑎𝑟(𝑥). Let
𝑑(𝑥) denote the number of children of 𝑥. We process 𝑥 in the
following way:

(i) if 𝑑(𝑥) = 1, then we add a new child 𝑦 to 𝑥 and set
both 𝑐[𝑥, 𝑦] and 𝑤(𝑦) to zero;

(ii) if 𝑑(𝑥) = 2, then we need no work;

(iii) if 𝑑(𝑥) = 𝑘, 𝑘 ≥ 3 (let all children of 𝑥
be 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
), then we delete the edges

(𝑥, 𝑥
1
), (𝑥, 𝑥

2
), . . . , (𝑥, 𝑥

𝑘
), add two new nodes 𝑦 and

𝑦
 to 𝑥, and set 𝑤(𝑦), 𝑐(𝑥, 𝑦) and 𝑤(𝑦), 𝑐(𝑥, 𝑦)

to zero. For each 𝑡 = 1, 2, . . . , ⌈𝑘/2⌉, we add new
edge (𝑦, 𝑥

𝑡
) and set 𝑐(𝑦, 𝑥

𝑡
) to 𝑐(𝑥, 𝑥

𝑡
). For each

𝑡 = ⌈𝑘/2⌉ + 1, . . . , 𝑘, we add new edge (𝑦, 𝑥
𝑡
) and set

𝑐(𝑦

, 𝑥
𝑡
) to 𝑐(𝑥, 𝑥

𝑡
).

We use the above way recursively to process every
node of 𝑇 = (𝑉, 𝐸, 𝑤, 𝑐) top-down to obtain a binary
tree 𝑏(𝑇) = (𝑉

𝑏
, 𝐸
𝑏
, 𝑤
𝑏
, 𝑐
𝑏
). This idea can be described as

algorithm BINY. Our way improves that one proposed by
Chen et al. [18]. Moreover, we will analyze the performance
of BINY in the following while they provided no analysis of
their algorithm [18].

Theorem 3. For each 𝑥 of 𝑇 with 𝑑(𝑥) = 𝑘 ≥ 3, the subtree of
𝑏(𝑇) derived from transforming 𝑠𝑡𝑎𝑟(𝑥) by BINY has a height
of 𝑂(log 𝑘) and has 5𝑘/3 − 2 dummy nodes added in the worst
case.

Proof. The essence of BINY processing 𝑠𝑡𝑎𝑟(𝑥) is to bisect all
the children of 𝑥 recursively. At the final step, two dummy
nodes are added if four nodes are bisected into two groups of
two nodes and three dummy nodes are added if three nodes
are bisected into one group of two nodes and one group of one
node. So, BINY adds the most dummy nodes in the worst
case of 𝑘 = 3⋅2𝑡. In this case, the subtree of 𝑏(𝑇) derived from
transforming 𝑠𝑡𝑎𝑟(𝑥) by BINY has a height of 𝑡 + 2 and the
number of dummy nodes added is 2(1 − 2𝑡)/(1 − 2) + 3 ⋅ 2𝑡 =
5⋅2
𝑡
−2. In fact, we investigate that the subtree of 𝑏(𝑇) derived

from a star with 𝑘 nodes satisfying that 2𝑡+1+1 < 𝑘 ≤ 2𝑡+2 has
a height of 𝑡 + 2. So, log 𝑘 ≤ 𝑡 + 2 < log 𝑘 + 1. Therefore, the
subtree of 𝑏(𝑇) derived from 𝑠𝑡𝑎𝑟(𝑥) has a height of𝑂(log 𝑘).
The number of all the dummy nodes added by BINY in the
worst case is 5 ⋅ 2𝑡 − 2 = 5 ⋅ 2log(𝑘/3) − 2 = 5𝑘/3 − 2.

Theorem 4. BINY can transform 𝑇 with 𝑛 nodes into 𝑏(𝑇)
with a height of at most 2(𝑛 − 1)/3, which takes 𝑂(𝑛) time and
adds at most (5/3)𝑛 − 11/3 dummy nodes.

Proof. Suppose that 𝑇 has 𝐾 stars and every 𝑠𝑡𝑎𝑟(𝑥
𝑖
), 1 ≤

𝑖 ≤ 𝐾, has 𝑘
𝑖
children. Obviously, ∑𝐾

𝑖=1
𝑘
𝑖
= |𝐸| = 𝑛 − 1.

ByTheorem 3, BINY adds 5𝑘
𝑖
/3 − 2 dummy nodes for every

𝑠𝑡𝑎𝑟(𝑥
𝑖
) in the worst case of 𝑘

𝑖
= 3⋅2

𝑡
𝑖 , 𝑡
𝑖
≥ 0, ∀1 ≤ 𝑖 ≤ 𝐾. So,

the number of dummy nodes added by BINY is∑𝐾
𝑖=1
(5𝑘
𝑖
/3−

2) = (5/3)∑
𝐾

𝑖=1
𝑘
𝑖
− 2𝐾 ≤ (5/3)(𝑛 − 1) − 2 = (5/3)𝑛 − 11/3.

Next, we discuss the height of 𝑏(𝑇). We construct a worst-
case tree 𝑇Δ consisting of𝐾 three-children stars lined one by
one. In other words, for every star of 𝑇 other than the bottom
one, two children of the star are leaves of 𝑇 and the other one
is the center of the next star. Clearly, 𝑇Δ satisfies that 3𝐾 =

𝑛 − 1. Since the subtree of 𝑏(𝑇) derived from transforming
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Input: a binary tree 𝐵 rooted at 𝑠;
Output: an optimal solution of 𝑝-CLP on 𝐵 and 𝐹[𝑠][𝑠][𝑝];
Step 0. Use DFS based algorithm in [24] to traverse 𝐵, and record

the parent node of every node 𝑥 of 𝐵;
Step 1. for 𝑘 from 1 up to ℎ do

Use |𝑉(𝐵(𝑘))| processors to work simultaneously and all
processors do the same work as follows for all 𝑥 ∈ 𝑉(𝐵(𝑘)):
if 𝑥 is a leaf node then
Use DFS based algorithm in [24] to compute 𝑐(𝑥, 𝑦) and initialize
𝐹[𝑥][𝑦][1] ← 0, 𝐹[𝑥][𝑦][0] ← 𝑤(𝑥) ⋅ 𝑐(𝑥, 𝑦) for any 𝑦 ∈ 𝜋(𝑠, 𝑥);

Step 2. for 𝑘 from 1 up to ℎ do
Use |𝑉(𝐵(𝑘))| processors to work simultaneously and all
processors do the same work as follows for all 𝑥 ∈ 𝑉(𝐵(𝑘)):
if 𝑥 is a nonleaf node then

for each 𝑞 from 0 up to 𝑝 do
if 0 ≤ 𝑞 ≤ min{𝑝, |𝑉(𝐵

𝑥
)|} then

Use DFS based algorithm in [24] to compute 𝑐(𝑥, 𝑦) and
then compute 𝐹[𝑥][𝑦][𝑞] by (6) for any 𝑦 ∈ 𝜋(𝑠, 𝑥);

Algorithm 1: SUB.

a three-children star has height of 2, the height of 𝑇Δ is 2𝐾 =

2 ⋅ ((𝑛 − 1)/3) = 2(𝑛 − 1)/3.
Therefore, we obtain |𝑉

𝑏
| = 𝑛+((5/3)𝑛−11/3) = (8/3)𝑛−

(11/3) in theworst case and conclude that BINY spends𝑂(𝑛)
time to transform 𝑇 into 𝑏(𝑇).

Theorem 5. CLP in a general tree 𝑇 is equivalent to CLP in
𝑏(𝑇).

Proof. This theorem is equivalent to the proposition that
no cache is located at one dummy node in any optimal
solution to CLP in 𝑏(𝑇). Suppose that a cache is located at
a dummy node 𝛼 in an optimal solution 𝐿 and 𝛼 is added by
transforming 𝑠𝑡𝑎𝑟(𝑥) by BINY. The cost of a new solution 𝐿
obtained by replacing 𝛼 with 𝑥 into 𝐿 is less than the cost of
𝐿. This causes a contradiction.

The binary tree obtained by applying Tamir’s algorithm
[15] to a general tree 𝑇 with 𝑛 nodes has a height of at most
𝑛−2, while one obtained by applying BINY to 𝑇 has a height
of at most 2(𝑛−1)/3. In terms of height of binary tree, BINY
is superior to Tamir’s algorithm. This will help to reduce
the running time of algorithm SUB (Algorithm 1) shown in
Section 3.3.

3.3. Algorithm for CLP on Trees. ByTheorem 5, we only need
to discuss CLP on binary trees. Let𝐵 be a binary tree and 𝑠 the
server (root) node, and let𝑉(⋅) denote the node set of 𝐵 or its
subtree. For any node 𝑥 of 𝐵, we let 𝐵

𝑥
denote the subtree of

𝐵 rooted at 𝑥. Let 𝑥
𝑙
and 𝑥

𝑟
be the left child and right child of

𝑥, respectively, and then let 𝐵
𝑥
𝑙

(resp. 𝐵
𝑥
𝑟

) denote the subtree
of 𝐵
𝑥
rooted at 𝑥

𝑙
(resp. 𝑥

𝑟
). We use ℎ to denote the height

of 𝐵 and 1, 2, . . . , ℎ to label the levels of 𝐵 bottom-up, and we
use 𝐵(𝑘) to denote the 𝑘th level of 𝐵. Let 𝐹[𝑥][𝑦][𝑞] denote
the minimum cost of the subproblem of 𝑝-CLP on 𝐵

𝑥
when

the closest cache to 𝑥 on 𝜋(𝑥, 𝑠) is located at 𝑦 and 𝑞 caches
are placed in 𝐵

𝑥
. Similar to the idea of solving the 𝑝-proxy

problem in [18], we propose ourway of computing𝐹[𝑥][𝑦][𝑞]
and giving a new proof, shown inTheorem 6.

Theorem 6. For each node 𝑥 of 𝐵 other than leaves, each node
𝑦 on 𝜋(𝑥, 𝑠), and each 0 ≤ 𝑞 ≤ min{𝑝, |𝑉(𝐵

𝑥
)|}, one has

𝐹 [𝑥] [𝑦] [𝑞]

= min

{{{{{{

{{{{{{

{

min
0≤𝑞
𝑙
≤𝑞−1,𝑞

𝑟
=𝑞−𝑞
𝑙
−1

{𝐹 [𝑥
𝑙
] [𝑥] [𝑞𝑙]

+𝐹 [𝑥
𝑟
] [𝑥] [𝑞𝑟]} ,

min
0≤𝑞
𝑙
≤𝑞,𝑞
𝑟
=𝑞−𝑞
𝑙

{𝐹 [𝑥
𝑙
] [𝑦] [𝑞

𝑙
] + 𝐹 [𝑥

𝑟
] [𝑦] [𝑞

𝑟
]

+𝑤 (𝑥) ⋅ 𝑐 (𝑥, 𝑦)} .

(6)

Proof. For any node 𝑥 of 𝐵, we need to consider whether a
cache is located at 𝑥 or not when discussing the subproblem
of 𝑝-CLP on 𝐵

𝑥
.

(1) If a cache is located at 𝑥, then 𝑥 needs no paying for
its overall demand. So, the cost of the subproblem of
𝑝-CLP on 𝐵

𝑥
is equal to the sum of that on 𝐵

𝑥
𝑙

and
that on 𝐵

𝑥
𝑟

. When the closest cache to 𝑥 on 𝜋(𝑠, 𝑥) is
located at 𝑦, we observe that 𝑥 is the closest cache on
𝜋(𝑠, 𝑥) to 𝑥

𝑙
and 𝑥

𝑟
. The possible number 𝑞 of caches

placed in 𝐵
𝑥
is at most 𝑝 while at most |𝑉(𝐵

𝑥
)|. The

number 𝑞
𝑙
of caches in 𝐵

𝑥
𝑙

plus the number 𝑞
𝑟
of

caches in 𝐵
𝑥
𝑟

is equal to 𝑞 − 1. The key work is to
find the optimal (𝑞

𝑙
, 𝑞
𝑟
)-CAS with 𝑞

𝑙
+ 𝑞
𝑟
= 𝑞 − 1,

from which the cost of the subproblem of 𝑝-CLP on
𝐵
𝑥
results is equal to

min
0≤𝑞
𝑙
≤𝑞−1,𝑞

𝑟
=𝑞−𝑞
𝑙
−1

{𝐹 [𝑥
𝑙
] [𝑥] [𝑞𝑙] + 𝐹 [𝑥𝑟] [𝑥] [𝑞𝑟]} . (7)

(2) If no cache is located at 𝑥, then the cost of 𝑥 paying
for its overall demand is 𝑤(𝑥) ⋅ 𝑐(𝑥, 𝑦). So, the cost of
the subproblem of 𝑝-CLP on 𝐵

𝑥
is equal to the sum
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of that on 𝐵
𝑥
𝑙

and that on 𝐵
𝑥
𝑟

and the cost of 𝑥. When
the closest cache to 𝑥 on 𝜋(𝑠, 𝑥) is located at 𝑦, we see
that 𝑦 is also the closest cache on 𝜋(𝑠, 𝑥) to 𝑥

𝑙
and 𝑥

𝑟
.

As discussed above, 𝑞 ≤ min{𝑝, |𝑉(𝐵
𝑥
)|}.The number

𝑞
𝑙
of caches in 𝐵

𝑥
𝑙

plus the number 𝑞
𝑟
of caches in

𝐵
𝑥
𝑟

is equal to 𝑞. The key work is to find the optimal
(𝑞
𝑙
, 𝑞
𝑟
)-CAS with 𝑞

𝑙
+ 𝑞
𝑟
= 𝑞, from which the cost of

the subproblem of 𝑝-CLP on 𝐵
𝑥
results is equal to

min
0≤𝑞
𝑙
≤𝑞, 𝑞
𝑟
=𝑞−𝑞
𝑙

{𝐹 [𝑥
𝑙
] [𝑦] [𝑞

𝑙
] + 𝐹 [𝑥

𝑟
] [𝑦] [𝑞

𝑟
]

+𝑤 (𝑥) ⋅ 𝑐 (𝑥, 𝑦) } .

(8)

Obviously, the case of 𝑞 < 0 is forbidden. Let𝐹[𝑥][𝑦][𝑞] =
∞, ∀𝑞 < 0 for each node 𝑥 of 𝐵 and each node 𝑦 on 𝜋(𝑠, 𝑥).
From the definition of 𝐹[𝑥][𝑦][𝑞], we know that 𝐹[𝑠][𝑠][𝑝] is
just theminimumcost of𝑝-CLP. Initially, we set𝐹[𝑥][𝑦][0] =
𝑤(𝑥)⋅𝑐(𝑥, 𝑦) and𝐹[𝑥][𝑦][1] = 0 for each leaf node 𝑥 of 𝐵 and
each node 𝑦 on 𝜋(𝑠, 𝑥).

We can first use the depth-first search (DFS) based
algorithm in [24] to traverse 𝐵, by which we can record the
parent node of every node 𝑥 (thus record 𝜋(𝑠, 𝑥) step by
step) and compute the cost of path connecting any node and
its ancestor. Based on Theorem 6 and above discussions, we
devise a bottom-up dynamic programming algorithm, which
can be described as a parallel algorithm SUB by using the
techniques in [25].

Theorem7. Given any binary tree𝐵with 𝑛 nodes and a height
of ℎ, SUB runs in𝑂(𝑝ℎ2 +𝑛) time for computing 𝑝-CLP on 𝐵.

Proof. Step 0 uses DFS based algorithm in [24] to traverse 𝐵,
which runs 𝑂(𝑛) time. In Step 1, for each level 𝑘 = 1, 2, . . . , ℎ,
the processor at every leaf node 𝑥 ∈ 𝑉(𝐵(𝑘)) uses the
algorithm in [24] to make initialization for each 𝑦 ∈ 𝜋(𝑠, 𝑥),
which takes 𝑂(ℎ) time. So, Step 1 runs at most 𝑂(ℎ2) time. In
Step 2, for each level 𝑘 = 1, 2, . . . , ℎ, the processor at every
nonleaf node 𝑥 ∈ 𝑉(𝐵(𝑘)) uses the algorithm in [24] to
compute 𝑐(𝑥, 𝑦) and then compute𝐹[𝑥][𝑦][𝑞] by (6) for every
0 ≤ 𝑞 ≤ min{𝑝, |𝑉(𝐵

𝑥
)|} and every 𝑦 ∈ 𝜋(𝑠, 𝑥), which takes at

most 𝑂(𝑝2ℎ) time. So, Step 2 runs at most 𝑂(𝑝2ℎ2) time. We
can use the method in [15] to infer that the practical running
time of Step 2 is 𝑂(𝑝ℎ2). Therefore, SUB runs in 𝑂(𝑝ℎ2 + 𝑛)
time.

3.4. Algorithm for (𝑝, 2)-CSOP CLP on General Graphs.
Based on (5) and discussions therein, we can solve (𝑝, 2)-
CSOP CLP on a general graph 𝐺 by first computing
𝐶(𝑇(𝑠

1
), 𝑝
1
) in 𝑇(𝑠

1
) and 𝐶(𝑇(𝑠

2
), 𝑝
2
) in 𝑇(𝑠

2
) for any

(𝑝
1
, 𝑝
2
)-CAS with 𝑝

1
+ 𝑝
2

= 𝑝 and then determining
an optimal (𝑝

1
, 𝑝
2
)-CAS such that the sum of 𝐶(𝑇(𝑠

1
), 𝑝
1
)

and 𝐶(𝑇(𝑠
2
), 𝑝
2
) is minimized. We discover that the output

𝐹[𝑠
𝑖
][𝑠
𝑖
][𝑝
𝑖
], 𝑖 = 1, 2, of SUB is just the value of 𝐶(𝑇(𝑠

𝑖
), 𝑝
𝑖
)

when we apply SUB to 𝑇(𝑠
𝑖
). This forms our algorithm

for (𝑝, 2)-CSOP CLP on a general graph, described as
algorithm GLOB (Algorithm 2).

Suppose that 𝑇(𝑠
1
) has 𝑛

1
nodes and 𝑇(𝑠

2
) has 𝑛

2
nodes.

Clearly, 𝑛
1
+ 𝑛
2
= 𝑛. GLOB uses BINY to transform 𝑇(𝑠

1
)

into 𝑏(𝑇(𝑠
1
)) and 𝑇(𝑠

2
) into 𝑏(𝑇(𝑠

2
)). From Theorem 4, we

know that 𝑏(𝑇(𝑠
𝑖
)), 𝑖 = 1, 2, has at most (8/3)𝑛

𝑖
− 11/3 nodes

including at most (5/3)𝑛
𝑖
− 11/3 dummy nodes and has a

height of at most 2(𝑛
𝑖
− 1)/3. Let ℎ

𝑖
denote the height of

𝑏(𝑇(𝑠
𝑖
)). For any (𝑝

1
, 𝑝
2
)-CAS with 𝑝

1
+ 𝑝
2
= 𝑝, GLOB

applies SUB to 𝑝
1
-CLP on 𝑏(𝑇(𝑠

1
)) and 𝑝

2
-CLP on 𝑏(𝑇(𝑠

2
)),

respectively. It follows fromTheorem 7 that the former takes
at most 𝑂(𝑝

1
ℎ
2

1
+ (8/3)𝑛

1
) time and the latter takes at most

𝑂(𝑝
2
ℎ
2

2
+(8/3)𝑛

2
) time.Therefore, the running time of GLOB

is at most
𝑝

∑

𝑝
1
=0

𝑂((𝑝
1
ℎ
2

1
+
8

3
𝑛
1
) + (𝑝

2
ℎ
2

2
+
8

3
𝑛
2
))

=

𝑝

∑

𝑝
1
=0

𝑂(𝑝
1
ℎ
2

1
+
8

3
𝑛
1
+ (𝑝 − 𝑝

1
) ℎ
2

2
+
8

3
(𝑛 − 𝑛

1
))

≤ 𝑂(𝑝
2
⋅max {ℎ2

1
, ℎ
2

2
} +

8

3
𝑛𝑝) .

(9)

Further, we take ℎ
1
≤ 2(𝑛
1
−1)/3 and ℎ

2
≤ 2(𝑛
2
−1)/3 into the

above inequality to obtain that the running time of GLOB in
the worst case is at most

𝑂(𝑝
2max{

4(𝑛
1
− 1)
2

9
,
4(𝑛
2
− 1)
2

9
} +

8

3
𝑛𝑝)

≤ 𝑂(
4

9
𝑝
2
𝑛
2
) .

(10)

Theorem 8. Given an undirected graph 𝐺 = (𝑉, 𝐸, 𝑤, 𝑐)

with 𝑛 nodes and two server nodes, GLOB runs in
𝑂(𝑝
2max{ℎ2

1
, ℎ
2

2
} + (8/3)𝑛𝑝) time for (𝑝, 2)-CSOP CLP

on 𝐺 and runs in at most 𝑂((4/9)𝑝2𝑛2) time in the worst case.

4. Generalization

In this section, we discuss the 𝑝-cache location problem with
𝑚 identical servers under CSOP (abbreviated to (𝑝,𝑚)-CSOP
CLP) on an undirected graph 𝐺 = (𝑉, 𝐸, 𝑤, 𝑐). Let 𝑆 =

{𝑠
1
, . . . , 𝑠

𝑚
} be a collection of 𝑚 identical servers. Given any

set Ω ⊂ 𝑉 \ 𝑆, we let 𝑐(𝑧, Ω ∪ 𝑆) denote the cost of node
𝑧 paying for its per demand and let 𝑓(Ω) denote the total
cost of all the nodes paying for their overall demand; that is,
𝑓(Ω) = ∑

𝑧∈𝑉
𝑤(𝑧)𝑐(𝑧, Ω ∪ 𝑆). The aim of (𝑝,𝑚)-CSOP CLP

is to find 𝑝 cache locations in 𝐺 to minimize the total cost
of all the nodes paying for their overall demand. In essence,
(𝑝,𝑚)-CSOPCLP aims to find an optimal setΩ∗ tominimize
the value of 𝑓(Ω); that is, 𝑓(Ω∗) = min

Ω⊂𝑉\𝑆
𝑓(Ω).

In (𝑝,𝑚)-CSOP CLP, every client connects to the closest
server to itself via a shortest route and gets information from
the closest cache on the route or server. Let 𝑉(𝑠

𝑖
), 1 ≤ 𝑖 ≤ 𝑚

be the subset of nodes of𝐺 to which 𝑠
𝑖
is the closest server. Let

𝑇(𝑠
𝑖
), 1 ≤ 𝑖 ≤ 𝑚 denote the single-source shortest paths tree

in 𝐺 with 𝑠
𝑖
as origin spanning 𝑉(𝑠

𝑖
) and letΩ(𝑠

𝑖
) denote the
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Input: 𝑇(𝑠
1
) and 𝑇(𝑠

2
) derived from 𝐺 = (𝑉, 𝐸, 𝑤, 𝑐) with 𝑠

1
and 𝑠
2
;

Output: Γ∗;
Step 0. Use BINY to transform 𝑇(𝑠

1
) into 𝑏(𝑇(𝑠

1
)) and 𝑇(𝑠

2
) into 𝑏(𝑇(𝑠

2
));

Step 1. Δ ← ∞;
for 𝑝

1
from 0 up to 𝑝 do (then 𝑝

2
= 𝑝 − 𝑝

1
)

Apply SUB to 𝑏(𝑇(𝑠
𝑖
)), 𝑖 = 1, 2 to obtain 𝐹[𝑠

𝑖
][𝑠
𝑖
][𝑝
𝑖
];

𝐶(𝑏(𝑇(𝑠
𝑖
)), 𝑝
𝑖
) ← 𝐹[𝑠

𝑖
][𝑠
𝑖
][𝑝
𝑖
];

if 𝐶(𝑏(𝑇(𝑠
1
)), 𝑝
1
) + 𝐶(𝑏(𝑇(𝑠

2
)), 𝑝
2
) < Δ then

Δ ← 𝐶(𝑏(𝑇(𝑠
1
)), 𝑝
1
) + 𝐶(𝑏(𝑇(𝑠

2
)), 𝑝
2
);

Γ
∗
(𝑠
1
) ← Γ(𝑠

1
), Γ∗(𝑠

2
) ← Γ(𝑠

2
);

Step 2. Γ∗ ← Γ
∗
(𝑠
1
) ∪ Γ
∗
(𝑠
2
);

Algorithm 2: GLOB.

u1 w1 = 0.85

2.15

w5 = 0.76 u5

u9

u2 u3

u7 u8

u4

u61.35

0.85

w9 = 0.7

1.55

1.65
u10

u13u12

u17 u18 u19

u16

u11

u15

u21 u22 u23 u24

u20

u25

u14

1.7
2.20

w12 = 0.4

2.05

2.75

w13 = 0.9

w17 = 0.82

w21 = 0.78

1.9

w2 = 0.5

1.95

w6 = 0.75

w10 = 0.8

w14 = 0.85

1.2

1.4

1.301.45

w18 = 0.9

w3 = 0.7 w4 = 0.65

3.0

1.5

2.3

2.8

w7 = 0.5 w8 = 0.85 w11 = 0.7

1.8

1.6 2.0

w15 = 0.8
w16 = 0.75

0.91.35

w19 = 0.9
w20 = 0.6

0.8 2.5

w24 = 0.8 w25 = 0.55
w22 = 0.8 w23 = 0.85

s1 s2

Figure 1: An example tree network.
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Figure 4: Compare the running times of GLOB for 𝑛 = 100, 102, 104, . . . , 200 and 2 ≤ 𝑝 ≤ 20.

subset of caches placed in 𝑇(𝑠
𝑖
). Hence, we can rewrite 𝑓(Ω)

to be

𝑓 (Ω) = 𝑓(

𝑚

⋃

𝑖=1

Ω(𝑠
𝑖
))

=

𝑚

∑

𝑖=1

∑

𝑧∈𝑇(𝑠𝑖)

𝑤 (𝑧) ⋅ 𝑐 (𝑧, Ω (𝑠
𝑖
) ∪ {𝑠
𝑖
}) .

(11)
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Figure 5: Compare the running times of EXTD for𝑚 = 2, 3, 4, 5 and 2 ≤ 𝑝 ≤ 20 and fixed 𝑛 = 200 or 201.

Let 𝑝
𝑖
be the number of caches in Ω(𝑠

𝑖
). Let �⃗� =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) with ∑

𝑚

𝑖=1
𝑝
𝑖
= 𝑝. Such a combination of

Ω(𝑠
𝑖
), 1 ≤ 𝑖 ≤ 𝑚 having 𝑝

𝑖
caches is denoted as �⃗�-CAS.

Thus, (𝑝,𝑚)-CSOP CLP consists of 𝑚 CLPs when 𝑚 servers
are placed at𝑚 predesignated locations of 𝐺. For any �⃗�-CAS,
(𝑝,𝑚)-CSOP CLP consists of𝑚 subproblems; that is, 𝑝

𝑖
-CLP

in 𝑇(𝑠
𝑖
), 1 ≤ 𝑖 ≤ 𝑚. Let 𝐶(𝐺, 𝑝) denote the minimum cost of

(𝑝,𝑚)-CSOPCLP on𝐺 and let𝐶(𝑇(𝑠
𝑖
), 𝑝
𝑖
), 1 ≤ 𝑖 ≤ 𝑚 denote

the minimum cost of 𝑝
𝑖
-CLP in 𝑇(𝑠

𝑖
). Therefore,

𝐶 (𝐺, 𝑝) = min
∀(𝑝1,...,𝑝𝑚)

𝑚

∑

𝑖=1

𝐶 (𝑇 (𝑠
𝑖
) , 𝑝
𝑖
) . (12)

Based on (12), for any �⃗�-CAS with ∑𝑚
𝑖=1
𝑝
𝑖
= 𝑝, we can

solve (𝑝,𝑚)-CSOP CLP on 𝐺 by first computing 𝐶(𝑇(𝑠
𝑖
), 𝑝
𝑖
)

in 𝑇(𝑠
𝑖
) for every 1 ≤ 𝑖 ≤ 𝑚 and then determining an optimal

�⃗�-CAS such that the sum of 𝐶(𝑇(𝑠
𝑖
), 𝑝
𝑖
), 1 ≤ 𝑖 ≤ 𝑚, is

minimized. This idea can be described as algorithm EXTD.

Lemma 9. The number of �⃗�-CASs in (𝑝,𝑚)-CSOP CLP is
(
𝑚+𝑝−1

𝑝
).

Proof. The problem of allocating 𝑝 caches to 𝑚 distinct
subtrees can be reduced to the model of putting 𝑝 same balls
into 𝑚 distinct boxes. We first draw 𝑝 + 𝑚 − 1 dots one by
one in a line and then select 𝑝 dots to place balls and the
other 𝑚 − 1 dots to place baffles. The line is partitioned into
𝑚 sections (boxes) by these 𝑚 − 1 baffles together with two

immaterial baffles at two ends of the line. There are (𝑚+𝑝−1
𝑚−1

)

ways in all to partition the line into 𝑚 boxes. Every way of
partitioning the line produces a �⃗�-CAS. Therefore, (𝑝,𝑚)-
CSOP CLP contains (𝑚+𝑝−1

𝑝
) �⃗�-CASs.

For any �⃗�-CAS with ∑𝑚
𝑖=1
𝑝
𝑖
= 𝑝, the combination of

Theorems 7 and 4 yields that the running time of EXTD

solving all 𝑝
𝑖
-CLP in 𝑇(𝑠

𝑖
), 1 ≤ 𝑖 ≤ 𝑚, is

𝑚

∑

𝑖=1

𝑂(𝑝
𝑖
ℎ
2

𝑖
+
8

3
𝑛
𝑖
) = 𝑂(

𝑚

∑

𝑖=1

𝑝
𝑖
ℎ
2

𝑖
+
8

3

𝑚

∑

𝑖=1

𝑛
𝑖
)

≤ 𝑂(𝑝 ⋅ max
1≤𝑖≤𝑚

ℎ
2

𝑖
⋅ +
8

3
𝑛) .

(13)

By Lemma 9, we conclude that the running time of EXTD is

∑

∀(𝑝1,...,𝑝𝑚)

𝑚

∑

𝑖=1

𝑂(𝑝
𝑖
ℎ
2

𝑖
+
8

3
𝑛
𝑖
)

≤ 𝑂((𝑝 ⋅ max
1≤𝑖≤𝑚

ℎ
2

𝑖
+
8

3
𝑛)(

𝑚 + 𝑝 − 1

𝑝
)) .

(14)

From ℎ
𝑖
≤ 2(𝑛
𝑖
− 1)/3, 𝑛

𝑖
≤ 𝑛 + 1 −𝑚 for every 1 ≤ 𝑖 ≤ 𝑚, we

get

max
1≤𝑖≤𝑚

ℎ
2

𝑖
≤ max
1≤𝑖≤𝑚

(
2 (𝑛
𝑖
− 1)

3
)

2

≤
4

9
(𝑛 − 𝑚)

2
. (15)
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Table 1: Major data output by GLOB for (4, 2)-CSOP CLP on 𝑇.

𝑝
1

Γ
∗

1
(𝑠
1
) 𝐶(𝑇(𝑠

1
), 𝑝
1
) 𝑝

2
Γ
∗

2
(𝑠
2
) 𝐶(𝑇(𝑠

2
), 𝑝
2
) Total cost

0 37.2100 4 𝑢
3
, 𝑢
8
, 𝑢
15
, 𝑢
20

8.5600 45.7700
1 𝑢

17
27.3100 3 𝑢

8
, 𝑢
15
, 𝑢
20

10.6600 37.9700
2 𝑢

17
, 𝑢
18

19.9150 2 𝑢
8
, 𝑢
20

13.3800 33.2950
3 𝑢

5
, 𝑢
17
, 𝑢
18

14.3970 1 𝑢
8

19.0350 33.4320
4 𝑢

5
, 𝑢
13
, 𝑢
17
, 𝑢
18

12.4170 0 30.1050 42.5220

Table 2: Major data output by GLOB for (5, 2)-CSOP CLP on 𝑇.

𝑝
1

Γ
∗

1
(𝑠
1
) 𝐶(𝑇(𝑠

1
), 𝑝
1
) 𝑝

2
Γ
∗

2
(𝑠
2
) 𝐶(𝑇(𝑠

2
), 𝑝
2
) total cost

0 37.2100 5 𝑢
3
, 𝑢
4
, 𝑢
8
, 𝑢
15
, 𝑢
20

6.7400 43.9500
1 𝑢

17
27.3100 4 𝑢

3
, 𝑢
8
, 𝑢
15
, 𝑢
20

8.5600 35.8700
2 𝑢

17
, 𝑢
18

19.9150 3 𝑢
8
, 𝑢
15
, 𝑢
20

10.6600 30.5750
3 𝑢

5
, 𝑢
17
, 𝑢
18

14.3970 2 𝑢
8
, 𝑢
20

13.3800 27.7770
4 𝑢

5
, 𝑢
13
, 𝑢
17
, 𝑢
18

12.4170 1 𝑢
8

19.0350 31.4520
5 𝑢

1
, 𝑢
5
, 𝑢
13
, 𝑢
17
, 𝑢
18

10.5895 0 30.1050 40.6945

Obviously, we have

(
𝑚 + 𝑝 − 1

𝑝
) =

(𝑚 + 𝑝 − 1)!

𝑝! (𝑚 − 1)!
≤
(𝑚 + 𝑝)

𝑝

𝑝!
. (16)

We take (15) and (16) into (14) to obtain that the
running time of EXTD in the worst case is at most
𝑂((4/9)(𝑛 − 𝑚)

2
((𝑚 + 𝑝)

𝑝
/(𝑝 − 1)!)).

Theorem 10. Given an undirected graph 𝐺 = (𝑉, 𝐸, 𝑤, 𝑐) with
𝑛 nodes and𝑚 servers, EXTD runs in𝑂(𝑚𝑝(𝑝 ⋅max

1≤𝑖≤𝑚
ℎ
2

𝑖
+

(8/3)𝑛)) time for (𝑝,𝑚)-CSOP CLP on 𝐺 and runs in at most
𝑂((4/9)(𝑛 − 𝑚)

2
((𝑚 + 𝑝)

𝑝
/(𝑝 − 1)!)) time in the worst case.

5. Numerical Experiments

5.1. An Illustrative Example. In this subsection, we first give
an example to illustrate our algorithm GLOB for computing
(𝑝, 2)-CSOP CLP. Considering that (𝑝, 2)-CSOP CLP on a
general network can be reduced to that on a corresponding
tree network, we select a tree network as our example for
ease of illustration, shown in Figure 1. The example tree 𝑇
has 25 client nodes labelled by 𝑢

1
, 𝑢
2
, . . . , 𝑢

25
and two server

nodes labelled by 𝑠
1
and 𝑠
2
. The number 𝑤

𝑘
, 1 ≤ 𝑘 ≤ 25, on

client node 𝑢
𝑘
represents the demand account of 𝑢

𝑘
, and the

number on every edge represents the cost of one node paying
for its per demand. For instance, the demand account of 𝑢

5
is

0.76, and the total cost of 𝑢
5
paying for its overall demand is

1.55 × 0.76 = 1.1780.
First, we make preparation works. The unique path

Π[𝑠
1
, 𝑠
2
] of 𝑇 connecting 𝑠

1
and 𝑠
2
is 𝑠
1
𝑢
14
𝑢
18
𝑢
19
𝑢
15
𝑠
2
. It is

easy to see that 𝑢
14
and 𝑢

18
are closer to 𝑠

1
than 𝑠

2
while 𝑢

19

and 𝑢
15

are closer to 𝑠
2
than 𝑠

1
. Thus, 𝑁(𝑠

1
) = {𝑠

1
, 𝑢
14
, 𝑢
18
}

and 𝑁(𝑠
1
) = {𝑢

19
, 𝑢
15
, 𝑠
2
}. Based on Lemma 2, we use

the DFS based approach to obtain 𝑇(𝑠
1
) and 𝑇(𝑠

2
), shown in

the left subfigure of Figure 2 and the left subfigure of Figure 3,
respectively. Both the heights of𝑇(𝑠

1
) and𝑇(𝑠

2
) are three.We

apply BINY to transform 𝑇(𝑠
1
) into a binary tree 𝑏(𝑇(𝑠

1
))

shown in the right subfigure of Figure 2, where eight dummy
nodes added by BINY are labelled by𝑑

1
, 𝑑
2
, . . . , 𝑑

8
. Similarly,

we obtain 𝑏(𝑇(𝑠
2
)) shown in the right subfigure of Figure 3,

where nine dummy nodes are labelled by 𝑑
1
, 𝑑
2
, . . . , 𝑑

9
. All

the dummy nodes have a weight of zero and all the edges
between a dummy node and its parent node have a weight
of zero. Both the height of 𝑇(𝑠

1
) and 𝑇(𝑠

2
) are five.

Next, we use GLOB to solve (𝑝, 2)-CSOP CLP on 𝑇. Set
𝑝 = 4 and 𝑝 = 5 as examples. For any (𝑝

1
, 𝑝
2
)-CAS with

𝑝
1
+𝑝
2
= 4, GLOB computes theminimum cost𝐶(𝑇(𝑠

1
), 𝑝
1
)

of 𝑝
1
-CLP in 𝑇(𝑠

1
) and the set Γ∗

1
(𝑠
1
) of cache locations and

theminimumcost𝐶(𝑇(𝑠
2
), 𝑝
2
) of𝑝
2
-CLP in𝑇(𝑠

2
) and Γ∗

1
(𝑠
2
).

Thedata are listed inTable 1. Clearly, the optimal value𝐶(𝑇, 4)
of (4, 2)-CSOP CLP on 𝑇 is 33.2950, and thus the optimal set
Γ
∗

1
of cache locations is {𝑢

8
, 𝑢
17
, 𝑢
18
, 𝑢
20
}. Similarly, the data

output by GLOB for any (𝑝
1
, 𝑝
2
)-CAS with 𝑝

1
+ 𝑝
2
= 5 are

listed in Table 2. Clearly, the optimal value 𝐶(𝑇, 5) of (5, 2)-
CSOP CLP on 𝑇 is 27.7770, and thus the optimal set Γ∗

2
is

{𝑢
5
, 𝑢
8
, 𝑢
17
, 𝑢
18
, 𝑢
20
}.

5.2. Comparison of Running Times. In this subsection, we
make a large number of numerical experiments to compare
the running times of our algorithm GLOB and EXTD,
respectively. In view of the fact that (𝑝,𝑚)-CSOP CLP with
𝑚 ≥ 2 on a general graph can be reduced to multiple
CLPs on binary trees, we select a series of complete binary
trees as examples for ease of comparison. All the binary
trees are generated randomly and have almost same number
of nodes. We build a centralized parallel computer system
(i.e., a star network with one central computer and five
parallel computers) by connecting six identical PCs equipped
with 2GB RAM and Intel core i5 CPU using a Windows 7
operating system. Our numerical experiments were carried
out on this computer system.

For (𝑝, 2)-CSOP CLP, we consider different inputs of 𝑛
and 𝑝: 𝑛 = 100, 102, 104, . . . , 200 and 2 ≤ 𝑝 ≤ 20. All
the binary trees we select have odd nodes. Given 𝑛 = 200

and 𝑝 = 20, there are 100 different combinations of 𝑛
1
and
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Figure 6: Compare the running times of EXTD for 𝑛 = 205 + 30 × (𝑖 − 1), 1 ≤ 𝑖 ≤ 5 and𝑚 = 2, 3, 4, 5 and 𝑝 = 20, 22, 24, 26, 28, 30.

𝑛
2
; that is, 𝑛

1
= 1, 3, 5, . . . , 199 and 𝑛

2
= 200 − 𝑛

1
. All the

running times of GLOB for 100 combinations are depicted
in Figure 4(a). Given any combination of 𝑛 and 𝑝, we record
the average running time of 100 combinations. In Figure 4(b),
all the average times for the combinations of 𝑛 and fixed 𝑝
are depicted, for any given 𝑝 = 5, 10, 15, 20. In Figure 4(c),
all the average times for the combinations of 𝑝 and fixed 𝑛
are depicted, for any given 𝑛 = 100, 120, 140, 160, 180, 200. In
Figure 4(d), all the average times for the combinations of 𝑛
and 𝑝 are depicted.

For (𝑝,𝑚)-CSOP CLP, we are given 𝑛 = 200 or 201 and
consider different inputs of𝑚 and 𝑝: 2 ≤ 𝑚 ≤ 5 and 2 ≤ 𝑝 ≤
20. All the binary trees we select have odd nodes. Given𝑚 = 5

and 𝑝 = 20, there are 10626 different CAS’s. All the running
times of EXTD for 10626CAS’s are depicted in Figure 5(a).
Given any combination of 𝑚 and 𝑝, we record the average
running time of 10626CAS’s. In Figure 5(b), all the average
times for the combinations of 𝑚 and fixed 𝑝 are depicted,
for any given 𝑝 = 5, 10, 15, 20. In Figure 4(c), all the average
times for the combinations of 𝑝 and fixed𝑚 are depicted, for
any𝑚 = 2, 3, 4, 5. In Figure 5(d), all the average times for the
combinations of𝑚 and 𝑝 are depicted.

Next, we present the running times of EXTD for different
inputs of 𝑛. Given 𝑚 = 5, we consider six different
combinations of 𝑝 = 20, 22, 24, 26, 28, 30 and fixed𝑚 = 5. In
Figure 6(a), all the average times for 𝑛 = 205+30×(𝑖−1), 1 ≤

𝑖 ≤ 5, are depicted. Also, we depict all the average times for
the combinations of 𝑛 and 𝑝 in Figure 6(b). Note that every
complete binary tree has 41 + 6× (𝑖 − 1) nodes. Given 𝑝 = 30,
we consider four different combinations of 𝑚 = 2, 3, 4, 5 and
fixed 𝑝 = 30. In Figure 6(c), all the average times for exactly
or approximately 𝑛 = 205+30×(𝑖−1), 1 ≤ 𝑖 ≤ 5 are depicted.
In Figure 6(d), all the average times for the combinations of
𝑛 and𝑚 are depicted.

6. Conclusions

In this paper, we presented an efficient algorithm GLOB for
(𝑝, 2)-CSOPCLP and EXTD for (𝑝,𝑚)-CSOPCLP based on
a fast parallel algorithm for CLP, respectively. GLOB runs
in a polynomial time while EXTD applies to the cases of
not too large 𝑝 and 𝑚 in general. Fortunately, both 𝑚 and 𝑝
are not so large in practice that the running time of EXTD

becomes intolerable with 𝑛 increasing fast. Therefore, we
think that EXTD will have extensive applications.

Every cache involved in this paper is identical to server;
that is, every cache has the same contents as server. However,
a cache sometimes only contains one part of contents.
Suppose that every cache contains 𝜌% contents of server.
Under CSOP, each node connects to the closest server to itself
via a shortest route. On average, each node has 𝜌% demand
provided by the closest cache on the route and (1 − 𝜌)%
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demand provided by the server. Hence, the cost of node 𝑧
paying for its overall demand is equal to𝜌%⋅𝑐(𝑧,Ω(𝑠

𝑖
) ∪ {𝑠
𝑖
})+

(1−𝜌%)⋅𝑐(𝑧, 𝑠
𝑖
). Let𝑔(Ω) denote the total cost of all the nodes

paying for their overall demand. We have

𝑔 (Ω) = 𝑔(

𝑚

⋃

𝑖=1

Ω(𝑠
𝑖
))

=

𝑚

∑

𝑖=1

∑

𝑧∈𝑇(𝑠𝑖)

𝑤 (𝑧) (𝜌% ⋅ 𝑐 (𝑧, Ω (𝑠
𝑖
) ∪ {𝑠
𝑖
})

+ (1 − 𝜌%) ⋅ 𝑐 (𝑧, 𝑠
𝑖
)) .

(17)

This version of (𝑝,𝑚)-CSOP CLP aims to find an optimal set
Ω
∗ such that 𝑔(Ω) is minimized.The problem remains as one

future research topic.
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