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We apply the extensions of the Abian-Brown fixed point theorem for set-valuedmappings on chain-complete posets to examine the
existence of generalized and extended saddle points of bifunctions defined on posets. We also study the generalized and extended
equilibrium problems and the solvability of ordered variational inequalities on posets, which are equipped with a partial order
relation and have neither an algebraic structure nor a topological structure.

1. Introduction

Let 𝑋 be a topological vector space and let 𝐶 be a subset of
𝑋. Let 𝐹 be a real valued function defined on 𝐶 × 𝐶. A point
(𝑥
∗

, 𝑦
∗

) ∈ 𝐶 × 𝐶 is called a saddle point of the function 𝐹 if
it satisfies

𝐹 (𝑥, 𝑦
∗

) ≤ 𝐹 (𝑥
∗

, 𝑦
∗

) ≤ 𝐹 (𝑥
∗

, 𝑦) , ∀𝑥 ∈ 𝑦 ∈ 𝐶. (SP)

A point (𝑥󸀠, 𝑦󸀠) ∈ 𝐶 × 𝐶 is called an equilibrium of the
function 𝐹 if it satisfies

𝐹 (𝑥, 𝑦
󸀠

) ≥ 𝐹 (𝑥
󸀠

, 𝑦
󸀠

) , ∀𝑥 ∈ 𝐶. (EP)

In optimization theory, the standard tools for dealingwith
the existence of saddle points and equilibria of a bifunction 𝐹
are fixed point theoremswith respect to set-valuedmappings,
Fan-KKM theorem, variational inequalities, or others, where
the considered bifunction 𝐹 must hold a certain type of
continuity properties and the underlying subset 𝐶 must
satisfy some geometrical conditions, such as convexity. The
problems (SP) and (EP) have been extensively studied by
many authors in many fields, such as variational inequality
theory, complementarity problem theory, fixed point theory,
convex analysis with applications to economic theory, and
game theory (see [1–6]).

The concepts defined in (SP) and (EP) have been general-
ized by Giannessi [7], in 1980, to the cases that the income

spaces of mappings are finite-dimensional vector spaces
and the outcome spaces are ordered vector spaces that are
posets equippedwith both topological structure and algebraic
structure.The extended problems are called vector optimiza-
tion problems and vector variational inequalities. Since the
underlying spaces in these problems are still equipped with
both topological structure and algebraic structure, then they
may also be solved by the standard techniques as in solving
problems (SP) and (EP).

In economic theory and social sciences, there are some
examples that both of the income and outcome spaces
of mappings are posets, which are equipped with neither
topological structure nor algebraic structure. Then, in these
circumstances, the optimization problems will be order-
optimization problems, which are not normal optimization
problems (with respect to real valued functions) and they
cannot be solved by using the standard methods. The saddle
points and equilibria of bifunction must be generalized from
real valued functions to functions with values in ordered sets.
In this case, more fixed point theorems on ordered sets must
be acquired and some new analysis techniques dealing with
mappings on ordered sets must be developed.

In [8], several extensions of the Abian-Brown fixed point
theorem provided in [9] on posets are obtained, which are
extensions from single valued mappings to set-valued map-
pings. Moreover, the author examined some nonmonetized

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 580621, 7 pages
http://dx.doi.org/10.1155/2014/580621

http://dx.doi.org/10.1155/2014/580621


2 Abstract and Applied Analysis

noncooperative games where both the collections of the
strategies and the ranges of the utilities for the players are
posets and proved some existence theorems of extended
and generalized Nash equilibria for nonmonetized, nonco-
operative games on chain-complete posets by applying the
extensions.

On the other hand, in [10], Xie et al. generalized the
extensions of the Abian-Brown fixed point theorem pro-
vided in [8] from chain-complete posets to chain-complete
preordered sets for set-valued mappings. By using these
generalizations and by applying the order-increasing upward
property of set-valued mappings, they also prove several
existence theorems of the extended and generalized Nash
equilibria of nonmonetized noncooperative games on chain-
complete preordered sets.

References [8, 10] mainly considered the existence of
the fixed point of set-valued mappings in chain-complete
posets and chain-complete preordered sets, respectively. The
applications of these fixed point theorems were considered
less, although [8, 10] gave some examples of nonmonetized
noncooperative games on posets and preordered sets. To
remedy the defect, we apply the extensions of the Abian-
Brown fixed point theorem provided in [9] on posets to
examine the existence of generalized and extended saddle
points of bifunctions on posets. We also study the solv-
ability of generalized and extended equilibrium problems of
bifunctions and ordered variational inequalities on posets,
which have neither an algebraic structure nor a topological
structure.

2. Several Extensions of the Abian-Brown
Fixed Point Theorem on Posets

The order-increasing property of mappings is important for
the consideredmappings to have a fixed point. In this section,
we recall the notations of the order-increasing property of
mappings, which are used in [2, 9, 11, 12].

Let (𝑋, ≽𝑋), (𝑈, ≽𝑈) be posets and let𝐹: 𝑋 → 2
𝑈

\{⌀} be
a set-valued mapping. 𝐹 is said to be isotone or to be order-
increasing upward, if𝑥≼𝑋𝑦 in𝑋; then, for any 𝑧 ∈ 𝐹(𝑥), there
is a𝑤 ∈ 𝐹(𝑦) such that 𝑧 ≼𝑈𝑤.𝐹 is said to be order-increasing
downward, if 𝑥≼𝑋𝑦 in 𝑋; then, for any 𝑤 ∈ 𝐹(𝑦), there
is a 𝑧 ∈ 𝐹(𝑥) such that 𝑧 ≼𝑈𝑤. If 𝐹 is both order-increasing
upward and order-increasing downward, then 𝐹 is said to be
order-increasing. As a special case, a single valued mapping
𝐹 from a poset (𝑋, ≽𝑋) to a poset (𝑈, ≽𝑈) is said to be order-
increasing whenever 𝑥≼𝑋𝑦 implies 𝐹(𝑥) ≼𝑈𝐹(𝑦).

2.1. The Abian-Brown Fixed Point Theorem. Let (𝑃, ≽) be a
chain-complete poset and let 𝐹: 𝑃 → 𝑃 be an order-
increasing single valued mapping. If there is an 𝑥∗ in 𝑃 with
𝐹(𝑥
∗

) ≽ 𝑥
∗, then 𝐹 has a fixed point.

Similar to the well-known Kakutani contribution that
extended the Brouwer fixed point theorem from single valued
mappings to set-valued mappings in topological spaces, the
main results of [8] extended the Abian-Brown fixed point

theorem from single valuedmappings to set-valuedmappings
in ordered sets, which are also the generalization of the
Fujimoto-Tarski fixed point theorem from complete lattices
to chain-complete posets. We recall the extensions obtained
in [8] below.

Theorem 1. Let (𝑃, ≽) be a chain-complete poset and let
𝐹: 𝑃 → 2

𝑃

\ {⌀} be a set-valued mapping. If 𝐹 satisfies the
following three conditions,

(A1) F is order-increasing upward;
(A2) the set {𝑧 ∈ 𝑃: 𝑧 ≼ 𝑢, for some 𝑢 ∈ 𝐹(𝑥)} is an

inductively ordered set, for each 𝑥 ∈ 𝑃;
(A3) there is a y in P with 𝑦 ≼ 𝑢, for some 𝑢 ∈ 𝐹(𝑦),

then 𝐹 has a fixed point; that is, there exists 𝑥∗ ∈ 𝑃 such that
𝑥
∗

∈ 𝐹(𝑥
∗

).

Theorem 2. Let (𝑃, ≽) be a chain-complete poset and let
𝐹: 𝑃 → 2

𝑃

\ {⌀} be a set-valued mapping, which satisfies
conditions (A1) and (A3) given in Theorem 1. If any one of the
following properties holds,

(A2󸀠) (𝐹(𝑥), ≽) is inductive with finite number of maximal
elements, for every 𝑥 ∈ 𝑃;

(A2󸀠󸀠) (𝐹(𝑥), ≽) has a maximum element, for every 𝑥 ∈ 𝑃;
(A2󸀠󸀠󸀠) (𝐹(𝑥), ≽) is a chain-complete lattice, for each 𝑥 ∈ 𝑃,

then 𝐹 has a fixed point.

3. Generalized and Extended Saddle Points of
Bifunctions on Posets

The generalized saddle points of bifunctions on Banach
lattices were studied in [13]. In this section, we extend this
concept to posets.

Definition 3. Let (𝑋, ≽𝑋) and (𝑌, ≽𝑌) be posets. Let ≽𝑋×𝑌 be
the coordinate ordering relation on the Cartesian product
𝑋 × 𝑌 induced by the partial orders ≽𝑋 and ≽𝑌. That is, for
any (𝑥

1
, 𝑦
1
) and (𝑥

2
, 𝑦
2
) ∈ 𝑋 × 𝑌,

(𝑥
1
, 𝑦
1
) ≽
𝑋×𝑌

(𝑥
2
, 𝑦
2
) iff 𝑥

1
≽
𝑋

𝑥
2
, 𝑦
1
≽
𝑌

𝑦
2
. (1)

The proof of the following lemma is straight forward and
is omitted.

Lemma 4. Let (𝑋, ≽𝑋) and (𝑌, ≽𝑌) be posets. The coordinate
ordering ≽𝑋×𝑌 on𝑋 × 𝑌 induced by the partial orders ≽𝑋 and
≽
𝑌defines a partial ordering relation on𝑋×𝑌; and hence (𝑋×

𝑌, ≽
𝑋×𝑌

) is a poset. Furthermore, if (𝑋, ≽𝑋) and (𝑌, ≽𝑌)are both
(conditionally) chain-complete (inductive, Dedekind complete)
posets, then (𝑋 × 𝑌, ≽

𝑋×𝑌

) is also a (conditionally) chain-
complete (inductive, Dedekind complete) poset.

Definition 5. Let (𝑋, ≽𝑋), (𝑌, ≽𝑌), and (𝑈; ≽𝑈) be posets. Let
𝐶 and 𝐷 be nonempty subsets of 𝑋 and 𝑌, respectively. Let
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𝐹: 𝐶 × 𝐷 → 𝑈 be a mapping. A point (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐷 is
called a generalized saddle point of themapping𝐹 if it satisfies

𝐹 (𝑥, 𝑦
∗

) ≼
𝑈

𝐹 (𝑥
∗

, 𝑦
∗

) ≼
𝑈

𝐹 (𝑥
∗

, 𝑦) , ∀𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

(GSP)

Definition 6. Let (𝑋, ≽𝑋), (𝑌, ≽𝑌), and (𝑈; ≽𝑈) be posets. Let
𝐶 and 𝐷 be nonempty subsets of 𝑋 and 𝑌, respectively. Let
𝐹: 𝐶 × 𝐷 → 𝑈 be a mapping. 𝐹(𝑥, 𝑦) is said to be

(1) order-negative with respect to 𝑥, whenever for any
𝑥
2
≽
𝑋

𝑥
1
in 𝐶, 𝐹(𝑥

1
, 𝑦) ≼
𝑈

𝐹(𝑥
1
, 𝑡) implies 𝐹(𝑥

2
, 𝑦)

≼
𝑈

𝐹(𝑥
2
, 𝑡), for any 𝑦, 𝑡 ∈ 𝐷;

(2) order-positive with respect to 𝑦, whenever for
any 𝑦

2
≽
𝑌

𝑦
1

in 𝐶, 𝐹(𝑥, 𝑦
1
) ≽
𝑈

𝐹(𝑠, 𝑦
1
) implies

𝐹(𝑥, 𝑦
2
) ≽
𝑈

𝐹(𝑠, 𝑦
2
), for any 𝑥, 𝑠 ∈ 𝐶.

For a given mapping 𝐹: 𝐶 × 𝐷 → 𝑈, one defines mappings
Υ: 𝐶 → 2

𝐷 and Ψ: 𝐷 → 2
𝐶 by

Υ (𝑥) = {𝑡 ∈ 𝐷: 𝐹 (𝑥, 𝑡) = ∧
𝑦∈𝐷

𝐹 (𝑥, 𝑦)} , for any 𝑥 ∈ 𝐶,

Ψ (𝑦) = {𝑠 ∈ 𝐶: 𝐹 (𝑠, 𝑦) = ∨
𝑥∈𝐶

𝐹 (𝑥, 𝑦)} , for any𝑦 ∈ 𝐷.
(2)

We prove the following theorem for the existence of general-
ized saddle point.

Theorem 7. Let (𝑋, ≽𝑋), (𝑌, ≽𝑌), and (𝑈; ≽𝑈) be posets. Let
𝐶 and 𝐷 be nonempty chain-complete subsets of 𝑋 and 𝑌,
respectively. Let 𝐹: 𝐶 × 𝐷 → 𝑈 be a mapping. If 𝐹 satisfies
the following conditions,

(1) 𝐹(𝑥, 𝑦) is order-negative with respect to 𝑥 ∈ 𝐶;
(2) 𝐹(𝑥, 𝑦) is order-positive with respect to 𝑦 ∈ 𝐷;

(3) for every fixed 𝑥 ∈ 𝐶, (Υ(𝑥), ≽
𝑌

) is a nonempty
inductive subset of 𝐷 with finite number of maximal
elements;

(4) For every fixed 𝑦 ∈ 𝐷, (Ψ(𝑦), ≽
𝑋

) is a nonempty
inductive subset of 𝐶 with finite number of maximal
elements;

(5) There is an element (𝑥󸀠, 𝑦󸀠) ∈ 𝐶 × 𝐷 with 𝑥󸀠≼𝑋𝑠, for
some 𝑠 ∈ Ψ(𝑦󸀠), and 𝑦󸀠≼𝑌𝑡, for some 𝑡 ∈ Υ(𝑥󸀠),

then 𝐹 has a generalized saddle point.

Proof. From Lemma 4, (𝐶 × 𝐷, ≽
𝑋×𝑌

) is a chain-complete
poset. Define 𝑇: 𝐶 × 𝐷 → 2

𝐶×𝐷

\ {⌀} by

𝑇 (𝑥, 𝑦) = Ψ (𝑦) × Υ (𝑥) , ∀ (𝑥, 𝑦) ∈ 𝐶 × 𝐷. (3)

From conditions (3) and (4), 𝑇 is well defined.
Next we show that 𝑇 is order-increasing upward. To this

end, we show that, for any (𝑥
1
, 𝑦
1
) and (𝑥

2
, 𝑦
2
) ∈ 𝐶 × 𝐷,

(𝑥
2
, 𝑦
2
) ≽
𝑋×𝑌

(𝑥
1
, 𝑦
1
) implies 𝑇(𝑥

1
, 𝑦
1
) ⊆ 𝑇(𝑥

2
, 𝑦
2
). For any

given (𝑠
1
, 𝑡
1
) ∈ 𝑇(𝑥

1
, 𝑦
1
), we have 𝑠

1
∈ Ψ(𝑦

1
) and 𝑡

1
∈

Υ(𝑥
1
); that is,

𝐹 (𝑠
1
, 𝑦
1
) = ∨
𝑥∈𝐶

𝐹 (𝑥, 𝑦
1
) , (4)

𝐹 (𝑥
1
, 𝑡
1
) = ∧
𝑦∈𝐷

𝐹 (𝑥
1
, 𝑦) . (5)

From (4), we have 𝐹(𝑠
1
, 𝑦
1
) ≽
𝑈

𝐹(𝑥, 𝑦
1
), for all 𝑥 ∈ 𝐶.

Since 𝑦
2
≽
𝑌

𝑦
1
, then, from condition (2) in this theorem that

𝐹(𝑥, 𝑦) is order-positive with respect to 𝑦 ∈ 𝐷, it implies
𝐹(𝑠
1
, 𝑦
2
) ≽
𝑈

𝐹(𝑥, 𝑦
2
), for all 𝑥 ∈ 𝐶.

That is, 𝐹(𝑠
1
, 𝑦
2
) = ∨

𝑥∈𝐶
𝐹(𝑥, 𝑦

2
). We obtain 𝑠

1
∈ Ψ(𝑦

2
).

So

Ψ (𝑦
1
) ⊆ Ψ (𝑦

2
) . (6)

From (5), similar to the proof of (6), for𝑥
2
≽
𝑋

𝑥
1
, we can show

that

Υ (𝑥
1
) ⊆ Υ (𝑥

2
) . (7)

Combining (6) and (7), we get

Ψ (𝑦
1
) × Υ (𝑥

1
) ⊆ Ψ (𝑦

2
) × Υ (𝑥

2
) . (8)

That is, 𝑇(𝑥
1
, 𝑦
1
) ⊆ 𝑇(𝑥

2
, 𝑦
2
). It implies that 𝑇 is order-

increasing upward.
We claim that an element (𝑝, 𝑞) is a maximal element of

Ψ(𝑦) × Υ(𝑥), if and only if 𝑝 is a maximal element of Ψ(𝑦)
and 𝑞 is a maximal element of Υ(𝑥). In fact, if 𝑝 is a maximal
element ofΨ(𝑦) and 𝑞 is a maximal element of Υ(𝑥), then for
any (𝑠, 𝑡) ∈ Ψ(𝑦) × Υ(𝑥), we have 𝑝≽𝑋𝑠 or 𝑝⋈𝑋𝑠 and 𝑞 ≽𝑌𝑡
or 𝑞 ⋈𝑋𝑡, which imply (𝑝, 𝑞) ≽

𝑋×𝑌

(𝑠, 𝑡) or (𝑝, 𝑞) ⋈𝑋×𝑌(𝑠, 𝑡).
So (𝑝, 𝑞) is a maximal element of Ψ(𝑦) × Υ(𝑥). On the
other hand, if 𝑝 is not a maximal element of Ψ(𝑦) or 𝑞 is
not a maximal element of Υ(𝑥), say, 𝑝 is not a maximal
element of Ψ(𝑦), then there is 𝑠 ∈ Ψ(𝑦) with 𝑠 ≻𝑋𝑝; that is,
(𝑠, 𝑞) ≻

𝑋×𝑌

(𝑝, 𝑞). It implies that (𝑝, 𝑞) cannot be a maximal
element ofΨ(𝑦)×Υ(𝑥). Hence, fromLemma 4 and conditions
(3) and (4) in this theorem, (𝑇(𝑥, 𝑦), ≽𝑋×𝑌) is an inductive
poset with finite number of maximal elements.

From condition (5) of this theorem, it is clearly seen that
the element (𝑥󸀠, 𝑦󸀠) ∈ 𝐶 × 𝐷 with 𝑥󸀠≼𝑋𝑠, for some 𝑠 ∈ Ψ(𝑦󸀠)
and 𝑦󸀠≼𝑌𝑡 and for some 𝑡 ∈ Υ(𝑥󸀠), satisfies

(𝑠, 𝑡) ∈ Ψ (𝑦
󸀠

) × Υ (𝑥
󸀠

) = 𝑇 (𝑥
󸀠

, 𝑦
󸀠

) , (𝑥
󸀠

, 𝑦
󸀠

) ≼
𝑋×𝑌

(𝑠, 𝑡) .

(9)

Hence the mapping 𝑇 from 𝐶 × 𝐷 to 2𝐶×𝐷 \ {⌀} satisfies all
conditions in Theorem 2 with respect to condition (A2󸀠).So
𝑇 has a fixed point; say (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐷; that is, (𝑥∗, 𝑦∗) ∈
𝑇(𝑥
∗

, 𝑦
∗

). Then we have 𝑥∗ ∈ Ψ(𝑦∗) and𝑦∗ ∈ Υ(𝑥∗). So

𝐹 (𝑥
∗

, 𝑦
∗

) = ∨
𝑥∈𝐶

𝐹 (𝑥, 𝑦
∗

) , 𝐹 (𝑥
∗

, 𝑦
∗

) = ∧
𝑦∈𝐷

𝐹 (𝑥
∗

, 𝑦) .

(10)

It is equivalent to

𝐹 (𝑥, 𝑦
∗

) ≼
𝑈

𝐹 (𝑥
∗

, 𝑦
∗

) ≼
𝑈

𝐹 (𝑥
∗

, 𝑦) , ∀𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

(11)
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Definition 8. Let (𝑋, ≽𝑋), (𝑌, ≽𝑌) and (𝑈; ≽𝑈) be posets. Let
𝐶 and 𝐷 be nonempty subsets of 𝑋 and 𝑌, respectively. Let
𝐹: 𝐶 × 𝐷 → 𝑈 be a mapping. A point (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐷 is
called an extended saddle point of the mapping 𝐹 if it satisfies

𝐹 (𝑥, 𝑦
∗

) ̸≻
𝑈

𝐹 (𝑥
∗

, 𝑦
∗

) ̸≻
𝑈

𝐹 (𝑥
∗

, 𝑦) , ∀𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

(ESP)

Definition 9. Let (𝑋, ≽𝑋), (𝑌, ≽𝑌) and (𝑈; ≽𝑈) be posets. Let
𝐶 and 𝐷 be nonempty subsets of 𝑋 and 𝑌, respectively. Let
𝐹: 𝐶 × 𝐷 → 𝑈 be a mapping. 𝐹(𝑥, 𝑦) is said to be

(1) order-nonnegative with respect to 𝑥, whenever
for any 𝑥

2
≽
𝑋

𝑥
1
in 𝐶, 𝐹(𝑥

1
, 𝑦) ̸≻
𝑈

𝐹(𝑥
1
, 𝑡) implies

𝐹(𝑥
2
, 𝑦) ̸≻
𝑈

𝐹(𝑥
2
, 𝑡), for any 𝑦, 𝑡 ∈ 𝐷;

(2) order-nonpositive with respect to 𝑦, whenever
for any 𝑦

2
≽
𝑌

𝑦
1

in 𝐶, 𝐹(𝑥, 𝑦
1
) ⊀
𝑈

𝐹(𝑠, 𝑦
1
) implies

𝐹(𝑥, 𝑦
2
) ⊀
𝑈

𝐹(𝑠, 𝑦
2
), for any 𝑥, 𝑠 ∈ 𝐶.

For a given mapping 𝐹: 𝐶 × 𝐷 → 𝑈, define 𝛾: 𝐶 → 2
𝐷 and

𝜁: 𝐷 → 2
𝐶 by

𝛾 (𝑥)

= {𝑡 ∈ 𝐷: 𝐹 (𝑥, 𝑡) ̸≻
𝑈

𝐹 (𝑥, 𝑦) , ∀𝑦 ∈ 𝐷} , for any 𝑥 ∈ 𝐶,

𝜁 (𝑦)

= {𝑠 ∈ 𝐶: 𝐹 (𝑠, 𝑦) ⊀𝑈𝐹 (𝑥, 𝑦) , ∀𝑥 ∈ 𝐶} , for any 𝑦 ∈ 𝐷.
(12)

Theorem 10. Let (𝑋, ≽𝑋), (𝑌, ≽𝑌), and (𝑈; ≽𝑈) be posets. Let
𝐶 and 𝐷 be nonempty chain-complete subsets of 𝑋 and 𝑌,
respectively. Let 𝐹: 𝐶 × 𝐷 → 𝑈 be a mapping. If 𝐹 satisfies
the following conditions,

(1) 𝐹(𝑥, 𝑦) is order-nonnegative with respect to 𝑥 ∈ 𝐶;
(2) 𝐹(𝑥, 𝑦) is order-nonpositive with respect to 𝑦 ∈ 𝐷;

(3) for every fixed 𝑥 ∈ 𝐶, (𝛾(𝑥), ≽
𝑌

) is a nonempty
inductive subset of 𝐷 with finite number of maximal
elements;

(4) for every fixed 𝑦 ∈ 𝐷, (𝜁(𝑦), ≽
𝑋

) is a nonempty
inductive subset of 𝐶 with finite number of maximal
elements;

(5) there is an element (𝑥󸀠, 𝑦󸀠) ∈ 𝐶 × 𝐷 with 𝑥󸀠≼𝑋𝑠, for
some 𝑠 ∈ 𝜁(𝑦󸀠) and 𝑦󸀠≼𝑌𝑡 and for some 𝑡 ∈ 𝛾(𝑥󸀠),

then 𝐹 has an extended addle point.

Proof. Define 𝑇: 𝐶 × 𝐷 → 2
𝐶×𝐷

\ {⌀} by

𝑇 (𝑥, 𝑦) = 𝜁 (𝑦) × 𝛾 (𝑥) , ∀ (𝑥, 𝑦) ∈ 𝐶 × 𝐷. (13)

From conditions (3) and (4) in this theorem, 𝑇 is well
defined. Next we show that 𝑇 is order-increasing upward.
To this end, we show that, for any (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) ∈ 𝐶 ×

𝐷, (𝑥
2
, 𝑦
2
) ≽
𝑋×𝑌

(𝑥
1
, 𝑦
1
) implies 𝑇(𝑥

1
, 𝑦
1
) ⊆ 𝑇(𝑥

2
, 𝑦
2
). For

any given (𝑠
1
, 𝑡
1
) ∈ 𝑇(𝑥

1
, 𝑦
1
), we have 𝑠

1
∈ 𝜁(𝑦

1
) and 𝑡

1
∈

𝛾(𝑥
1
); that is,

𝐹 (𝑠
1
, 𝑦
1
) ⊀
𝑈

𝐹 (𝑥, 𝑦
1
) , ∀𝑥 ∈ 𝐶, (14)

𝐹 (𝑥
1
, 𝑡
1
) ̸≻
𝑈

𝐹 (𝑥
1
, 𝑦) , ∀𝑦 ∈ 𝐷. (15)

Since 𝑦
2
≽
𝑌

𝑦
1
, then, from condition (2) in this theorem that

𝐹(𝑥, 𝑦) is order-nonpositive with respect to 𝑦 ∈ 𝐷. (14)
implies 𝐹(𝑠

1
, 𝑦
2
) ⊀
𝑈

𝐹(𝑥, 𝑦
2
), for all 𝑥 ∈ 𝐶. We obtain 𝑠

1
∈

𝜁(𝑦
2
). So

𝜁 (𝑦
1
) ⊆ 𝜁 (𝑦

2
) . (16)

Similar to (16), for 𝑥
2
≽
𝑋

𝑥
1
, from condition (1) in this

theorem, we can show that

𝛾 (𝑥
1
) ⊆ 𝛾 (𝑥

2
) . (17)

Combining (16) and (17), we get 𝜁(𝑦
1
)×𝛾(𝑥

1
) ⊆ 𝜁(𝑦

2
)×𝛾(𝑥

2
).

That is, 𝑇(𝑥
1
, 𝑦
1
) ⊆ 𝑇(𝑥

2
, 𝑦
2
). It implies that 𝑇 is order-

increasing upward.
From the proof of Theorem 7 and conditions (3) and

(4) in this theorem, we have that, for any (𝑥, 𝑦) ∈ 𝐶 ×

𝐷, (𝑇(𝑥, 𝑦), ≽
𝐶

) is an inductive poset with finite number of
maximal elements. From condition (5) in this theorem, it is
clearly seen that the element(𝑥󸀠, 𝑦󸀠) ∈ 𝐶 × 𝐷 with 𝑥󸀠 ≼ 𝑠, for
some 𝑠 ∈ 𝜁(𝑦

󸀠

) and 𝑦󸀠 ≼ 𝑡 and for some 𝑡 ∈ 𝛾(𝑥
󸀠

), satisfies
(𝑠, 𝑡) ∈ 𝜁(𝑦

󸀠

) × 𝛾(𝑥
󸀠

) = 𝑇(𝑥
󸀠

, 𝑦
󸀠

) and (𝑥
󸀠

, 𝑦
󸀠

)≼
𝑋×𝑌

(𝑠, 𝑡).
Hence the mapping 𝑇 satisfies all conditions in Theorem 2
with respect to condition (A2󸀠). So 𝑇 has a fixed point; say
(𝑥
∗

, 𝑦
∗

) ∈ 𝐶 × 𝐷; that is, (𝑥∗, 𝑦∗) ∈ 𝑇(𝑥∗, 𝑦∗). Then we have
𝑥
∗

∈ 𝜁(𝑦
∗

) and 𝑦∗ ∈ 𝛾(𝑥∗). So

𝐹 (𝑥
∗

, 𝑦
∗

) ⊀
𝑈

𝐹 (𝑥, 𝑦
∗

) , ∀𝑥 ∈ 𝐶,

𝐹 (𝑥
∗

, 𝑦
∗

) ̸≻
𝑈

𝐹 (𝑥
∗

, 𝑦) , ∀𝑦 ∈ 𝐷.

(18)

That is

𝐹 (𝑥, 𝑦
∗

) ̸≻
𝑈

𝐹 (𝑥
∗

, 𝑦
∗

) ̸≻
𝑈

𝐹 (𝑥
∗

, 𝑦) , ∀𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

(19)

4. Generalized and Extended Equilibrium
Problems of Bifunctions on Posets

Definition 11. Let (𝑋, ≽𝑋) and (𝑈; ≽𝑈) be posets. Let 𝐶 be a
nonempty subset of 𝑋. Let 𝐹: 𝐶 × 𝐶 → 𝑈 be a mapping.
A point 𝑥∗ ∈ 𝐶 is called a generalized equilibrium of the
mapping 𝐹 if it satisfies

𝐹 (𝑥
∗

, 𝑥) ≽
𝑈

𝐹 (𝑥
∗

, 𝑥
∗

) , ∀𝑥 ∈ 𝐶. (GEP)

For a given mapping 𝐹: 𝐶 × 𝐶 → 𝑈, define Γ: 𝐶 → 2
𝐶 by

Γ (𝑥) = {𝑡 ∈ 𝐶: 𝐹 (𝑥, 𝑡) = ∧
𝑦∈𝐶

𝐹 (𝑥, 𝑦)} , for any 𝑥 ∈ 𝐶.

(20)

We prove the following theorem for the existence of
generalized equilibrium.The proof is similar to the proofs of
Theorems 7 and 10.
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Theorem 12. Let (𝑋, ≽𝑋) and (𝑈; ≽𝑈) be posets. Let 𝐶 be a
nonempty chain-complete subset of 𝑋. Let 𝐹: 𝐶 × 𝐶 → 𝑈 be
a mapping. If 𝐹 satisfies the following conditions,

(1) 𝐹(𝑥, 𝑦) is order-negative with respect to 𝑥 ∈ 𝐶;
(2) for every fixed 𝑥 ∈ 𝐶, (Γ(𝑥), ≽

𝑋

) is a nonempty
inductive subset of 𝐶 with finite number of maximal
elements;

(3) there is an element 𝑥󸀠 ∈ 𝐶 with 𝑥󸀠≼𝑋𝑠, for some 𝑠 ∈
Γ(𝑥
󸀠

),

then 𝐹 has a generalized equilibrium.

Proof. Taking the mapping Γ defined by (20),

Γ (𝑥) = {𝑡 ∈ 𝐶: 𝐹 (𝑥, 𝑡) = ∧
𝑦∈𝐶

𝐹 (𝑥, 𝑦)} , for any 𝑥 ∈ 𝐶.

(21)

From condition (2) in this theorem, Γ: 𝐶 → 2
𝐶

\ {⌀} is well
defined.

Next we show that Γ is order-increasing upward. To this
end, we show that, for any 𝑥

1
, 𝑥
2
∈ 𝐶, 𝑥

2
≽
𝑋

𝑥
1
implies Γ(𝑥

1
) ⊆

Γ(𝑥
2
). For any given 𝑡

1
∈ Γ(𝑥
1
), we have

𝐹 (𝑥
1
, 𝑡
1
) = ∧
𝑦∈𝐷

𝐹 (𝑥
1
, 𝑦) . (22)

That is, 𝐹(𝑥
1
, 𝑡
1
) ≼
𝑈

𝐹(𝑥
1
, 𝑦), for all 𝑦 ∈ 𝐷. Since 𝑥

2
≽
𝑋

𝑥
1
,

then, from condition (1) in this theorem that𝐹(𝑥, 𝑦) is order-
negative with respect to 𝑥 ∈ 𝐶, it implies𝐹(𝑥

2
, 𝑡
1
) ≼
𝑈

𝐹(𝑥
2
, 𝑦),

for all 𝑦 ∈ 𝐷. That is, 𝐹(𝑥
2
, 𝑡
1
) = ∧

𝑦∈𝐷
𝐹(𝑥
2
, 𝑦). We obtain

𝑡
1
∈ Γ(𝑥

2
). Hence we have Γ(𝑥

1
) ⊆ Γ(𝑥

2
). It implies that Γ is

order-increasing upward. From condition (3) in this theorem,
it is clearly seen that the element 𝑥󸀠 ∈ 𝐶with 𝑥󸀠 ≼ 𝑠, for some
𝑠 ∈ Γ(𝑥

󸀠

), satisfies 𝑠 ∈ Γ(𝑥󸀠) and 𝑥󸀠≼𝑋𝑠. Hence the mapping Γ
from 𝐶 to 2𝐶 \ {⌀} satisfies all conditions in Theorem 2 with
respect to condition (A2󸀠). So Γ has a fixed point; say 𝑥∗ ∈ 𝐶;
that is, 𝑥∗ ∈ Γ(𝑥∗). Then we have 𝐹(𝑥∗, 𝑥∗) = ∧

𝑦∈𝐶
𝐹(𝑥
∗

, 𝑦),
which is equivalent to

𝐹 (𝑥
∗

, 𝑥) ≽
𝑈

𝐹 (𝑥
∗

, 𝑥
∗

) , ∀𝑥 ∈ 𝐶. (23)

Definition 13. Let (𝑋, ≽𝑋) and (𝑈; ≽𝑈) be posets. Let 𝐶 be a
nonempty subset of 𝑋. Let 𝐹: 𝐶 × 𝐶 → 𝑈 be a mapping. A
point 𝑥∗ ∈ 𝐶 is called an extended equilibrium of themapping
𝐹 if it satisfies

𝐹 (𝑥
∗

, 𝑥) ⊀
𝑈

𝐹 (𝑥
∗

, 𝑥
∗

) , ∀𝑥 ∈ 𝐶. (EEP)

It is clear to see that any generalized equilibrium of a
mapping is an extended equilibrium of this mapping. For a
given mapping 𝐹: 𝐶 × 𝐶 → 𝑈,define 𝜑: 𝐶 → 2

𝐶 by

𝜑 (𝑥)

= {𝑡 ∈ 𝐶: 𝐹 (𝑥, 𝑦) ⊀𝑈𝐹 (𝑥, 𝑡) , ∀𝑦 ∈ 𝐶} , for any 𝑥 ∈ 𝐶.
(24)

Theorem 14. Let (𝑋, ≽𝑋) and (𝑈; ≽𝑈) be posets. Let 𝐶 be a
nonempty chain-complete subset of 𝑋. Let 𝐹: 𝐶 × 𝐶 → 𝑈 be
a mapping. If 𝐹 satisfies the following conditions,

(1) 𝐹(𝑥, 𝑦) is order-nonnegative with respect to 𝑥 ∈ 𝐶;
(2) for every fixed 𝑥 ∈ 𝐶, (𝜑(𝑥), ≽

𝑋

) is a nonempty
inductive subset of 𝐶 with finite number of maximal
elements;

(3) there is an element 𝑥󸀠 ∈ 𝐶 with 𝑥󸀠≼𝑋𝑠, for some 𝑠 ∈
𝜑(𝑥
󸀠

),

then 𝐹 has an extended equilibrium.

Proof. Taking the mapping 𝜑 defined by (24),

𝜑 (𝑥)

= {𝑡 ∈ 𝐶: 𝐹 (𝑥, 𝑦) ⊀𝑈𝐹 (𝑥, 𝑡) , ∀𝑦 ∈ 𝐶} , for any 𝑥 ∈ 𝐶.
(25)

From condition (2) in this theorem, the mapping 𝜑: 𝐶 →

2
𝐶

\ {⌀} is well defined.
Next we show that 𝜑 is order-increasing upward. To this

end, we show that, for any 𝑥
1
, 𝑥
2

∈ 𝐶, 𝑥
2
≽
𝑋

𝑥
1
implies

𝜑(𝑥
1
) ⊆ 𝜑(𝑥

2
). For any given 𝑡

1
∈ 𝜑(𝑥

1
), we have

𝐹(𝑥
1
, 𝑦) ⊀
𝑈

𝐹(𝑥
1
, 𝑡
1
), for all 𝑦 ∈ 𝐶. That is,

𝐹 (𝑥
1
, 𝑡
1
) ̸≻
𝑈

𝐹 (𝑥
1
, 𝑦) , ∀𝑦 ∈ 𝐶. (26)

Since 𝑥
2
≽
𝑋

𝑥
1
, then, from condition (1) in this theorem,

𝐹(𝑥, 𝑦) is order-nonnegative with respect to 𝑥 ∈ 𝐶, and
(26) implies 𝐹(𝑥

2
, 𝑡
1
) ̸≻
𝑈

𝐹(𝑥
2
, 𝑦), for all 𝑦 ∈ 𝐶. That is,

𝐹(𝑥
2
, 𝑦) ⊀
𝑈

𝐹(𝑥
2
, 𝑡
1
), for all 𝑦 ∈ 𝐶. We obtain 𝑡

1
∈ 𝜑(𝑥

2
). So,

we have 𝜑(𝑥
1
) ⊆ (𝑥

2
). Then the rest of the proof is similar to

the proof of Theorem 12.

5. Generalized and Extended Ordered
Variational Inequalities on Posets

Let (𝑋, ≽𝑋) and (𝑈; ≽𝑈) be posets.We denote𝑀(𝑋,𝑈) for the
collection of all mappings from𝑋 to 𝑈.

Definition 15. Let (𝑋, ≽𝑋) and (𝑈; ≽
𝑈

) be posets and 𝐶 a
nonempty subset of𝑋. Let𝐹: 𝐶 → 𝑀(𝑋,𝑈) be amapping.A
generalized ordered variational inequality problem associated
with 𝐶, 𝐹, and 𝑈, denoted by GOVI(𝐶, 𝐹, 𝑈), is to find a
point 𝑥∗ ∈ 𝐶, such that

𝐹 (𝑥
∗

) (𝑥) ≽
𝑈

𝐹 (𝑥
∗

) (𝑥
∗

) , ∀𝑥 ∈ 𝐶. (27)

Such a point 𝑥∗ ∈ 𝐶 is called a generalized solution to the
problem GOVI (C, F, U).

Definition 16. Let (𝑋, ≽𝑋) and (𝑈; ≽
𝑈

) be posets and 𝐶 a
nonempty subset of𝑋. Let 𝐹: 𝐶 → 𝑀(𝑋,𝑈)be a mapping.
𝐹 is said to be order-negative on𝐶, whenever, for any 𝑥

2
≽
𝑋

𝑥
1

in 𝐶, 𝐹(𝑥
1
)(𝑦) ≼

𝑈

𝐹(𝑥
1
)(𝑡) implies 𝐹(𝑥

2
)(𝑦) ≼

𝑈

𝐹(𝑥
2
)(𝑡), for

any𝑦, 𝑡 ∈ 𝑋.
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Theorem 17. Let (𝑋, ≽𝑋) and (𝑈; ≽𝑈) be posets. Let 𝐶 be a
nonempty chain-complete subset of 𝑋. Let 𝐹: 𝐶 → 𝑀(𝑋,𝑈)

be a mapping. If F satisfies the following conditions,

(1) 𝐹 is order-negative on 𝐶;
(2) for every fixed 𝑥 ∈ 𝐶, the poset ({𝑡 ∈ 𝐶: 𝐹(𝑥)(𝑡) =

∧
𝑦∈𝐶

𝐹(𝑥)(𝑦)}, ≽
𝑋

) is a nonempty inductive subsetof 𝐶
with finite number of maximal elements;

(3) there is an element 𝑥󸀠 ∈ 𝐶 with 𝑥󸀠≼𝑋𝑠, for some 𝑠 ∈ 𝐶
satisfying 𝐹(𝑥󸀠)(𝑠) = ∧

𝑦∈𝐶
𝐹(𝑥
󸀠

)(𝑦),

then the problem GOVI (𝐶, 𝐹, 𝑈) has a generalized solution.

Proof . Define a mapping Γ by

Γ (𝑥) = {𝑡 ∈ 𝐶: 𝐹 (𝑥) (𝑡) = ∧
𝑦∈𝐶

𝐹 (𝑥) (𝑦)} , for any 𝑥 ∈ 𝐶.

(28)

From condition (2) in this theorem, Γ: 𝐶 → 2
𝐶

\ {⌀} is well
defined. Next we show that Γ is order-increasing upward. To
this end, we show that, for any 𝑥

1
, 𝑥
2
∈ 𝐶, 𝑥

2
≽
𝑋

𝑥
1
implies

Γ(𝑥
1
) ⊆ Γ(𝑥

2
). For any given 𝑡

1
∈ Γ(𝑥

1
), we have 𝐹(𝑥

1
)(𝑡
1
) =

∧
𝑦∈𝐶

𝐹(𝑥
1
)(𝑦). That is,

𝐹 (𝑥
1
) (𝑡
1
) ≼
𝑈

𝐹 (𝑥
1
) (𝑦) , ∀𝑦 ∈ 𝐶. (29)

Since 𝑥
2
≽
𝑋

𝑥
1
, then, from condition (1) in this theorem that

𝐹 is order-negative on 𝐶, (29) implies 𝐹(𝑥
2
)(𝑡
1
)≼
𝑈

𝐹(𝑥
2
)(𝑦),

for all 𝑦 ∈ 𝐶. That is, 𝐹(𝑥
2
)(𝑡
1
) = ∧

𝑦∈𝐶
𝐹(𝑥
2
)(𝑦). We obtain

𝑡
1
∈ Γ(𝑥

2
). Hence we have Γ(𝑥

1
) ⊆ Γ(𝑥

2
). It implies that Γis

order-increasing upward. From condition (3) in this theorem,
it is clearly seen that the element 𝑥󸀠 ∈ 𝐶 with 𝑥󸀠 ≼ 𝑠, for some
𝑠 ∈ Γ(𝑥

󸀠

), satisfies 𝑠 ∈ Γ(𝑥󸀠) and 𝑥󸀠≼𝑋𝑠. Hence the mapping Γ
from 𝐶 to 2𝐶 \ {⌀} satisfies all conditions in Theorem 2 with
respect to condition (A2󸀠). So Γ has a fixed point; say 𝑥∗ ∈ 𝐶;
that is, 𝑥∗ ∈ Γ(𝑥∗). We have 𝐹(𝑥∗)(𝑥∗) = ∧

𝑦∈𝐶
𝐹(𝑥
∗

)(𝑦). It is
equivalent to

𝐹 (𝑥
∗

) (𝑥) ≽
𝑈

𝐹 (𝑥
∗

) (𝑥
∗

) , ∀𝑥 ∈ 𝐶. (30)

Definition 18. Let (𝑋, ≽𝑋) and (𝑈; ≽
𝑈

) be posets and 𝐶 a
nonempty subset of 𝑋. Let 𝐹: 𝐶 → 𝑀(𝑋,𝑈) be a mapping.
An extended ordered variational inequality problem associated
with 𝐶, 𝐹, and 𝑈, denoted by (EOVI (𝐶, 𝐹, 𝑈)), is to find a
point 𝑥∗ ∈ 𝐶, such that

𝐹 (𝑥
∗

) (𝑥) ⊀
𝑈

𝐹 (𝑥
∗

) (𝑥
∗

) , ∀𝑥 ∈ 𝐶. (EOVI (𝐶, 𝐹, 𝑈))

Such a point 𝑥∗ ∈ 𝐶 is called an extended solution to the
problem (EOVI (𝐶, 𝐹, 𝑈)).

Definition 19. Let (𝑋, ≽𝑋) and (𝑈; ≽
𝑈

) be posets and 𝐶

a nonempty subset of 𝑋. Let 𝐹: 𝐶 → 𝑀(𝑋,𝑈) be a
mapping. 𝐹 is said to be order-nonnegative on 𝐶, when-
ever, for any 𝑥

2
≽
𝑋

𝑥
1
in 𝐶, 𝐹(𝑥

1
)(𝑦) ̸≻

𝑈

𝐹(𝑥
1
)(𝑡) implies

𝐹(𝑥
2
)(𝑦) ̸≻

𝑈

𝐹(𝑥
2
)(𝑡), for any 𝑦, 𝑡 ∈ 𝑋.

Theorem 20. Let (𝑋, ≽𝑋) and (𝑈; ≽𝑈) be posets. Let 𝐶 be a
nonempty chain-complete subset of 𝑋. Let 𝐹: 𝐶 → 𝑀(𝑋,𝑈)

be a mapping. If 𝐹 satisfies the following conditions,
(1) 𝐹is order-nonnegative on 𝐶;
(2) for every fixed 𝑥 ∈ 𝐶, ({𝑡 ∈ 𝐶: 𝐹(𝑥, 𝑦) ⊀𝑈𝐹(𝑥, 𝑡), for all

𝑦 ∈ 𝐶}, ≽
𝑋

), is a nonempty inductive subset of 𝐶 with
finite number of maximal elements;

(3) there is an element 𝑥󸀠 ∈ 𝐶 with 𝑥󸀠≼𝑋𝑠, for some 𝑠 ∈ 𝐶
satisfying 𝐹(𝑥󸀠, 𝑦) ⊀𝑈𝐹(𝑥󸀠, 𝑠), for all 𝑦 ∈ 𝐶,

then the problem (EOVI (𝐶, 𝐹, 𝑈)) has an extended solution.

Proof. Define a mapping 𝜑 by

𝜑 (𝑥) = {𝑡 ∈ 𝐶: 𝐹 (𝑥) (𝑦) ⊀𝑈𝐹 (𝑥) (𝑡) , ∀𝑦 ∈ 𝐶} ,

for any 𝑥 ∈ 𝐶.
(31)

From condition (2) in this theorem, 𝜑: 𝐶 → 2
𝐶

\ {⌀} is
well defined. Next we show that𝜑 is order-increasing upward.
To this end, we show that, for any 𝑥

1
, 𝑥
2

∈ 𝐶, 𝑥
2
≽
𝑋

𝑥
1

implies 𝜑(𝑥
1
) ⊆ 𝜑(𝑥

2
).For any given 𝑡

1
∈ 𝜑(𝑥

1
), we have

𝐹(𝑥
1
)(𝑦) ⊀

𝑈

𝐹(𝑥
1
)(𝑡
1
), for all 𝑦 ∈ 𝐶. That is,

𝐹 (𝑥
1
) (𝑡
1
) ̸≻
𝑈

𝐹 (𝑥
1
) (𝑦) , ∀𝑦 ∈ 𝐶. (32)

Since 𝑥
2
≽
𝑋

𝑥
1
, then, from condition (1) in this the-

orem that 𝐹 is order-nonnegative on 𝐶, (32) implies
𝐹(𝑥
2
)(𝑡
1
) ̸≻
𝑈

𝐹(𝑥
2
)(𝑦), for all 𝑦 ∈ 𝐶. That is, 𝐹(𝑥

2
)(𝑦)

⊀
𝑈

𝐹(𝑥
2
)(𝑡
1
), for all 𝑦 ∈ 𝐶. We obtain 𝑡

1
∈ 𝜑(𝑥

2
). Hence we

obtain 𝜑(𝑥
1
) ⊆ 𝜑(𝑥

2
). Then the rest of the proof is similar to

the proof of Theorem 17.

6. Concluding Remarks

In Sections 3 to 5 the existence of generalized and extended
saddle points and equilibriums and the solvability of ordered
variational inequalities are proved by applying fixed point
Theorems 2 listed in Section 2 with respect to condition
(A2󸀠). As some special cases, the results in Sections 3 to 5 can
be obtained by applyingTheorem 2 with respect to condition
(A2󸀠󸀠) or (A2󸀠󸀠󸀠).

It is clearly seen that, from different fixed point theorems,
one can obtain various results for solving some optimization
problems. Note that all extensions of the Abian-Brown fixed
point theorem listed in Section 2 are considered with chain-
complete posets. There are many examples in applications
that the underlying spaces are not chain-complete. This
aspect can be more precisely demonstrated by the following
useful example.

For any positive integer 𝑛, let (R𝑛; ≽𝑛) denote the 𝑛-
dimensional poset where R𝑛 is the 𝑛-dimensional Euclidean
space equipped with the coordinate partial order ≽𝑛, which
is defined as follows: for any 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ R𝑛, 𝑥 ≽𝑛𝑦 whenever 𝑥

𝑗
≥ 𝑦
𝑗
, for 𝑗 =

1, 2, . . . , 𝑛. Then (R𝑛; ≽𝑛) is not chain-complete, and it is
conditionally chain-complete.

So if we are able to get some fixed point theorem
on conditionally chain-complete posets, then we can study
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some optimization problems under more general underlying
spaces: conditionally chain-complete posets, which include
all problems studied in Sections 3 to 5 in this paper as special
cases.
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