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The grey prediction model with convolution integral GMC (1, n) is a multiple grey model with exact solutions. To further improve
prediction accuracy and describe better the relationship between cause and effect, we introduce nonlinear parameters into GMC
(1, n) model and additionally apply a convolution integral to produce an improved forecasting model here designated as NGMC
(1, n). The model solving process applied the least-squares method to evaluate the structure parameters of the model: convolution
was used to obtain an exact solution with this improved greymodel.The nonlinear optimisation took the parameters as the decision
variables with the objective of minimising forecasting errors.The GMC (1, 2) and NGMC (1, 2) models were used to predict China’s
industrial SO

2
emissions from the basis of the economic output level as the influencing factor. Results indicated that NGMC (1, 2)

can effectively describe the nonlinear relationship between China’s economic output and SO
2
emissions with an improved accuracy

over current GMC (1, 2) models.

1. Introduction

Due to the complexity of both the internal and external
environmental factors in any such system, the behavioural
data are often sparse. Statistical analyses can effectively
address the problemwhere datasets are large; for small sample
sizes (𝑛 < 15), solution becomes difficult. Grey system theory,
pioneered by Deng in 1982 [1], is an uncertainty theory deal-
ing specifically with the analysis, modelling, prediction, and
control of information-poor systems. Grey theory considers
that although the objective system appears complex, with
sparse data, it always has an innate overall governing rela-
tionship: key to accurate forecast is the choice of appropriate
methods of data-mining and utilisation. In grey theory [2, 3],
every stochastic process has grey variables changing at a cer-
tain amplitude and periodicity. An accumulated generating
operation (AGO) is a basic method to render a grey process
white.With accumulation, the changing trend becomesmore
apparent and the innate governing relationship is revealed.
Based on this, a grey differential equation is built to describe

the dynamic law of grey accumulation. Then, an inverse
accumulated generating operation (IAGO) is used to reduce
the whitening of this grey process. Of course, it is not merely
the case that greater accumulation leads to better forecasts.
Tien demonstrated that the 𝑘-AGO (𝑘 > 1) data of the
original series cannot be used as intermediate information in
grey prediction model building [4]. In practical applications,
the system generated by real data is considered grey: on that
basis, grey models can be both effective past simulators and
future predictors.

In general, a grey model can be denoted by GM (𝑚, 𝑛),
where 𝑚 is the order and 𝑛 is the number of variables of the
grey equation. GM (1, 1) is the most widely used grey predic-
tion model with the simplest structure [2]. Its core principle
is to regard real systems as generalised energy systems with
exponentially changing trends under no external agency’s
influence. Therefore, only when 1-AGO original data series
are consistent with this exponential change, can accurate
prediction by GM (1, 1) be achieved. Many scholars have
made useful improvements to basicGM(1, 1)models [5–8]. In
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spite of this, it is not appropriate to use GM (1, 1) predictions
based upon data mining from series which are themselves
subject to external agents. The GM (1, 𝑛) model with 𝑛 − 1
relative factors acting as the associated series is a multiple,
grey, prediction model [2, 3]. This model can fully exploit
information provided the associated series unlike a GM (1, 1)

model which only includes information about the predicted
series in its modelling process. So, from the point of view
of provision of supplementary information, the prediction
accuracy of GM (1, 𝑛), should, under these conditions, be
higher than that of GM (1, 1). However, the solution of the
whitening differential equation of GM (1, 𝑛) is inexact and on
occasion wrong thereby producing significant practical fore-
casting errors [4]. The model therefore has found few real-
world applications [9–11] to date.

A grey prediction model with convolution integral GMC
(1, 𝑛) proposed by Tien [12] is a new model to improve
upon traditional GM (1, 𝑛) versions. The values modelled
by GMC (1, 𝑛) are theoretically the exact solution of the
traditional GM (1, 𝑛) model, and the grey control parameter
like that of GM (1, 1) is introduced into the model. GMC
(1, 𝑛) reduces to GM (1, 1) for 𝑛 = 1. The GMC (1, 𝑛) model
improved the prediction accuracy of multiple grey models
and has successfully been applied to different areas [12–14].
Tien proposed three improved models over the basic GMC
(1, 𝑛) model to meet various application requirements. The
three models are deterministic GMC (1, 𝑛) (DGDMC (1, 𝑛))
[15]; interval GDMC (1, 𝑛) (IGDMC (1, 𝑛)) [16]; and first pair-
of-data GMC (1, 𝑛) (FGMC (1, 𝑛)) [17]. The first derivative of
the 1-AGO data of each associated series is introduced into
the DGDMC (1, 𝑛) model [15] to strengthen the indicative
significance while evaluating its 1-AGO predicted data by a
convolution integral. The IGDMC (1, 𝑛) model [16] draws
lessons from the prediction method of its linear regression
interval, extending the prediction method of DGDMC (1, 𝑛)
from point to interval prediction. Certain components of the
modelmay be removed to better satisfy hypothesis tests based
upon systemparameters.The building of the improvedmodel
FGMC (1, 𝑛) [17] only needs 𝑛 + 2 pairs of historical data:
for the first pair of entries, the message was shown to be
independent from the modelling results. Therefore, FGMC
(1, 𝑛) is usually more satisfactory and stable than GMC
(1, 𝑛) because it extracts the first pair of entries and bases
its predictions on themessage enshrined in the original series.

Nowadays, GMC (1, 𝑛) and variants thereon are linear:
the high-precision predictions are predicated upon the sim-
ilarity in trend between the predicted variables and their
influencing factors. At present, most applications meet this
premise. For improved predictions, Wu and Chen [13] used
grey relational analysis to analyse the similarities between
predicted, and associated, series curves of differing periodic-
ities. They then built GMC (1, 𝑛) using data from the largest
period of grey relational analysis and obtained satisfactory
predictions. However, the nonlinear interaction between the
internal and external system factors is ubiquitous in reality:
the linear structure of these GMC (1, 𝑛) models is not
conducive to high-precision prediction of dynamic systems.
Therefore, nonlinear processing to the forms of the relative
factors on the right-hand side of the GMC (1, 𝑛) equation

was applied here. A power exponent was added to the 1-AGO
series of every associated series to reflect the nonlinear inter-
action of the associated series with that predicted. Although
these newly added parameters were initially unknown, they
were estimated and subjected to refinement by a least-squares
method. After obtaining the time response function of the
predicted series, the optimum values of parameters reflecting
their nonlinear interactions were derived with regard to the
aforementioned minimum error criterion. This improved
GMC (1, 𝑛) model, a nonlinear grey prediction model with
the addition of a convolution integral, is hereafter designated
NGMC (1, 𝑛).

In recent years, industrial SO
2
emissions have become a

major source of harmful air pollution in China as their indus-
trial growth continues. To cater for these increased emissions,
an enhanced understanding of likely future industrial SO

2

emissions is needed. Though China’s industrial output val-
ues can be used as a basis to interpret growing industrial
emissions, there is no a simultaneous increase in industrial
emissions and industrial development [18]. Data also show
that China’s SO

2
emissions and industrial output values are

not governed by a simple linear relationship but an uncertain
nonlinear one. We present GMC (1, 𝑛) and NGMC (1, 𝑛)

modelswhere the influencing, causative, factors are industrial
output; predicted series is China’s SO

2
emissions. Through

comparison of their modelling and prediction accuracy, the
paper demonstrated the effectiveness of the proposedNGMC
(1, 𝑛).

The remainder of this paper is organized as follows.
An introduction to the existing GMC (1, 𝑛) model and the
modelling method of nonlinear grey model with convolution
integral NGMC (1, 𝑛) proposed in this paper are given in
Section 2. Section 3 demonstrates the effectiveness of the pro-
posed NGMC (1, 𝑛) model by forecasting China’s SO

2
emis-

sions. Finally, the paper concludes with some comments in
Section 4.

2. Modelling Method

2.1. The Existing GMC (1, 𝑛) Model. Assume that pairs of
observations 𝑋
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= (𝑋
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1
, 𝑋
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2
, . . . , 𝑋
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𝑛
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2
, 𝑋
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3
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(0)

𝑛
and an

output 𝑋(0)
1

from some dynamic system. The existing GMC
(1, 𝑛) modelling process [12] is carried out as follows.

Consider the following original predicted series:
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then the first order accumulated generation (1-AGO) data for
𝑋
(0)

1
, 𝑋
(0)

2
, . . . , 𝑋

(0)

𝑛
are given by (3) and (4), respectively:
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1
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𝑋
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(𝑗) , 𝑖 = 2, 3, . . . , 𝑛. (4)

The grey prediction model based on the predicted 1-AGO
series:
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and the associated 1-AGO series:
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is given by the differential equation:
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(7)

where 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
, 𝑢 are parameters to be estimated and 𝑟 is

the data number used in model building; 𝑟𝑝 is a delay period,
and 𝑟𝑓 is the number of entries to be forecast. Equation (7)

is called the 𝑛-factor grey prediction model with convolution
integral and is denoted by GMC (1, 𝑛) [12]; the 1 represents
the first-order derivative of the 1-AGO series of 𝑋(1)

1
; the 𝑛

represents the total of 𝑛 relative series introduced into the
grey differential equation.

The grey derivative for the first-order grey differential
equation with 1-AGO is represented as follows:
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and when Δ𝑡 → 1
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The background value of the grey derivative 𝑑X(1)
1
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in the determination of model parameters by GMC (1, 𝑛).
The least-squares solution to the model parameters of

GMC (1, 𝑛) [12] in (7) by 𝑡 from 1 to 𝑟 is
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In summary, the right-hand side of (7), the discrete function
𝑓(𝑡) [12] can be obtained as
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The 1-AGO modelling values of the predicted series [12] can
be derivedwith the initial condition 𝑋̂(1)
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The modelling values, 𝑋(1)
1
(𝑟𝑝 + 𝑡), 𝑡 = 1, 2, . . . , 𝑟𝑓 in (14) of

the 1-AGO data of the predicted series [12] can be evaluated
approximately by
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where 𝑢(𝑡 − 2) is the unit step function.
Applying 1-IAGO to (16) yields the following modelled

values together with the forecasts:
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Assume the system parameters in (7) to be constants in
the postsampling period and then by using the postsampling
data, combined with the given data for the corresponding
associated series, as a new input series, the corresponding
forecasts or values of indirect measurement for the predicted
series can be derived.

2.2. Nonlinear Grey Modelling with Convolution Integral:
NGMC (1, 𝑛). To adapt GMC (1, 𝑛) to reality’s ubiquitous
nonlinearity, the improved model—NGMC (1, 𝑛)—with its
convolution integral was developed and used.

2.2.1. Representation of the New Model: NGMC (1, 𝑛). Sup-
pose that the grey prediction model based on the predicted
1-AGO series:
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and the associated 1-AGO series:
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is given by the differential equation:
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, 𝛽
3
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𝑛
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estimated, 𝑟 is the data number used in model building,
𝑟𝑝 is a delay period, and 𝑟𝑓 the number of entries to be
forecast. Equation (21) denotes the 𝑛-factor nonlinear grey
prediction model with the addition of a convolution integral
(NGMC (1, 𝑛)), where 1 represents the first-order derivative
of the 1-AGO series of 𝑋(1)

1
and 𝑛 represents the total

numberrelative series introduced into the grey differential
equation.

Compared with GMC (1, 𝑛), 𝑛 − 1 unknown parameters
𝛽
2
, 𝛽
3
, . . . , 𝛽

𝑛
are introduced into this NGMC (1, 𝑛) model.

They are taken as the 𝑛 − 1 power exponents of the predicted
variables’ relevant factors to reflect the effect of these upon
nonlinear system behaviours and interactions.
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traditional GMC (1, 𝑛)model [12].
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to a traditional GM (1, 𝑛) model [2, 4].
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2.2.2.TheEvaluation of SystemParameters 𝑏
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be known; by applying amethod similar to that ofGMC(1, 𝑛),
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made. After obtaining the time response function of𝑋(0)
1
, the

corresponding optimisation algorithm is applied to solve for
𝛽
2
, 𝛽
3
, . . . , 𝛽

𝑛
.

The grey derivative for the first-order grey differential
equation with 1-AGO is conventionally represented by

𝑑𝑋
(1)

1
(𝑟𝑝 + 𝑡)

𝑑𝑡

= 𝑋
(1)

1
(𝑟𝑝 + 𝑡) − 𝑋

(1)

1
(𝑟𝑝 + 𝑡 − 1)

= 𝑋
(0)

1
(𝑟𝑝 + 𝑡) .

(22)

The background value of the grey derivative 𝑑𝑋(1)
1
(𝑟𝑝 + 𝑡)/𝑑𝑡

is taken as the means of 𝑋(1)
1
(𝑟𝑝 + 𝑡) and 𝑋(1)

1
(𝑟𝑝 + 𝑡 − 1),

and those of the associated series 𝑋(1)
𝑖
(𝑡) are also taken as

the means of 𝑋(1)
𝑖
(𝑡) and 𝑋(1)

𝑖
(𝑡 − 1) for 𝑖 = 2, 3, . . . , 𝑛,

respectively, when determining the model parameters by
NGMC (1, 𝑛).

The least-squares solution to the model parameters of
NGMC (1, 𝑛) in (20) by 𝑡 from 1 to 𝑟 is

(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
, 𝑢)
𝑇

= (𝐵
𝑇
𝐵)

−1

𝐵
𝑇
𝑌
𝑅
, (23)

where
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𝐵 =

[

[

[

[

[

[

[

[

[

[

[

[

−

𝑋
(1)

1
(𝑟𝑝 + 1) + 𝑋

(1)

1
(𝑟𝑝 + 2)

2

[

𝑋
(1)

2
(1) + 𝑋

(1)

2
(2)

2

]

𝛽2

[

𝑋
(1)

3
(1) + 𝑋

(1)

3
(2)

2

]

𝛽3

⋅ ⋅ ⋅ [

𝑋
(1)

𝑛
(1) + 𝑋

(1)

𝑛
(2)

2

]

𝛽𝑛

1

−

𝑋
(1)

1
(𝑟𝑝 + 2) + 𝑋

(1)

1
(𝑟𝑝 + 3)

2

[

𝑋
(1)

2
(2) + 𝑋

(1)

2
(3)

2

]

𝛽2

[

𝑋
(1)

3
(2) + 𝑋

(1)

3
(3)

2

]

𝛽3

⋅ ⋅ ⋅ [

𝑋
(1)

𝑛
(2) + 𝑋

(1)

𝑛
(3)

2

]

𝛽𝑛

1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−

𝑋
(1)

1
(𝑟𝑝 + 𝑟 − 1) + 𝑋

(1)

1
(𝑟𝑝 + 𝑟)

2

[

𝑋
(1)

2
(𝑟 − 1) + 𝑋

(1)

2
(𝑟)

2

]

𝛽2

[

𝑋
(1)

3
(𝑟 − 1) + 𝑋

(1)

3
(𝑟)

2

]

𝛽3

⋅ ⋅ ⋅ [

𝑋
(1)

𝑛
(𝑟 − 1) + 𝑋

(1)

𝑛
(𝑟)

2

]

𝛽𝑛

1

]

]

]

]

]

]

]

]

]

]

]

]

,

(24)

𝑌
𝑅
= (𝑋
(0)

1
(𝑟𝑝 + 2) , 𝑋

(0)

1
(𝑟𝑝 + 3) , . . . , 𝑋

(0)

1
(𝑟𝑝 + 𝑟))

𝑇

. (25)

In summary, the right-hand side of (21), the discrete function
𝑓(𝑡), can be obtained as

𝑓
𝑁
(𝑡) = 𝑏

2
[𝑋
(1)

2
(𝑡)]

𝛽
2

+ 𝑏
3
[𝑋
(1)

3
(𝑡)]

𝛽
3

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
[𝑋
(1)

𝑛
(𝑡)]

𝛽
𝑛

+ 𝑢,

𝑡 = 1, 2, . . . , 𝑟𝑓.

(26)

As seen in (26), 𝑓
𝑁
(𝑡) is a nonlinear function on𝑋(1)

𝑖
, 𝑖 =

2, 3, . . . , 𝑛, but it, in essence, is still linear. If the new variable
𝑌
(1)

𝑖
(𝑡) = [𝑋

(1)

𝑖
(𝑡)]

𝛽
𝑖 , 𝑖 = 2, 3, . . . , 𝑛, 𝑓

𝑁
(𝑡) can be written as

𝑓
𝑁
(𝑡) = 𝑏

2
𝑌
(1)

2
(𝑡) + 𝑏

3
𝑌
(1)

3
(𝑡) + ⋅ ⋅ ⋅ + 𝑏

𝑛
𝑌
(1)

𝑛
(𝑡) + 𝑢,

𝑡 = 1, 2, . . . , 𝑟𝑓;

(27)

therefore, (27) remains a linear function, essentially the same
as (13).

2.2.3. The Determination of Unit Impulse Response Function
ℎ(𝑡). The unit impulse response function ℎ(𝑡) of the system
characterised by (21) can be derived by Laplace transform.
From (21):

𝑑𝑋
(1)

1
(𝑡)

𝑑𝑡

+ 𝑏
1
𝑋
(1)

1
(𝑡) = 𝛿 (𝑡) ,

(28)

where 𝛿(𝑡) is the unit impulse function to determine the
corresponding unit impulse response function. Applying a
Laplace transform to (28) with the initial condition𝑋(1)

1
(1) =

0 gives

𝑠𝑋

(1)

1
(𝑠) + 𝑏

1
𝑋

(1)

1
(𝑠) = 1 (29)

or

𝑋

(1)

1
(𝑠) =

1

𝑠 + 𝑏
1

. (30)

The inverse transform of𝑋(1)
1
(𝑠) is

𝑋
(1)

1
(𝑡) = 𝑒

−𝑏
1
𝑡
. (31)

That is, the unit impulse response function ℎ(𝑡) of the system
is

ℎ (𝑡) = 𝑒
−𝑏
1
𝑡
. (32)

The process continues by outlining the evaluation of𝑋(0)
1
.

2.2.4. The Evaluation of𝑋(0)
1
. The 1-AGOmodelling values of

the predicted series can be derived with the initial condition
𝑋
(1)

1
(𝑟𝑝 + 1) = 𝑋

(1)

1
(𝑟𝑝 + 1) as

𝑋
(1)

1
(𝑟𝑝 + 𝑡) = 𝑋

(1)

1
(𝑟𝑝 + 1) 𝑒

−𝑏
1
(𝑡−1)

+ ∫

𝑡

1

𝑒
−𝑏
1
(𝑡−𝜏)

𝑓
𝑁
(𝜏) 𝑑𝜏,

𝑡 = 1, 2, . . . , 𝑟𝑓.

(33)

The second term on the right-hand side of (33) can be
evaluated approximately by two-point Gaussian numerical
integration. Thus, the modelling values in (33) of the 1-AGO
data of the predicted series can be evaluated approximately
by

𝑋
(1)

1
(𝑟𝑝 + 1) = 𝑋

(1)

1
(𝑟𝑝 + 1) = 𝑋

(0)

1
(𝑟𝑝 + 1) , (34)

𝑋
(1)

1
(𝑟𝑝 + 𝑡)

≅ 𝑋
(0)

1
(𝑟𝑝 + 1) 𝑒

−𝑏
1
(𝑡−1)

+ 𝑢 (𝑡 − 2)

× {

𝑡

∑

𝑘=2

𝑒
−𝑏
1
(𝑡−𝑘+(1/2))

⋅

1

2

[𝑓
𝑁
(𝑡) + 𝑓

𝑁
(𝑡 − 1)]} ,

(35)

where 𝑢(𝑡 − 2) is the unit step function.
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Applying 1-IAGO to (35) produced the following mod-
elling values and their forecasts:

𝑋
(1)

1
(𝑟𝑝 + 1) = 𝑋

(1)

1
(𝑟𝑝 + 1) = 𝑋

(0)

1
(𝑟𝑝 + 1) , (36)

𝑋
(0)

1
(𝑟𝑝 + 𝑡) = 𝑋

(1)

1
(𝑟𝑝 + 𝑡) − 𝑋

(1)

1
(𝑟𝑝 + 𝑡 − 1) ,

𝑡 = 2, 3, . . . , 𝑟𝑓.

(37)

2.2.5. An Overall Measure of Accuracy for Forecasts. To
evaluate forecast performance, Tien’s standard [12] test using
the root mean squared percentage error (RMSPE) for the
priori-sample period (RMSPEPR) and postsample periods
(RMSPEPO), respectively, is used. Generally, the RMSPEPR
and RMSPEPO are defined as

RMSPEPR = √ 1
𝑟

𝑟𝑝+𝑟

∑

𝑡=𝑟𝑝+1

[𝑋
(0)

1
(𝑡) − 𝑋

(0)

1
(𝑡)]

2

[𝑋
(0)

1
(𝑡)]

2
× 100%, (38)

RMSPEPO = √
1

𝑟𝑓

𝑟𝑝+𝑟+𝑟𝑓

∑

𝑡=𝑟𝑝+𝑟+1

[𝑋
(0)

1
(𝑡) − 𝑋

(0)

1
(𝑡)]

2

[𝑋
(0)

1
(𝑡)]

2
× 100%.

(39)

2.2.6.The Determination of Power Exponents. The discussion
above is proposed under the condition that 𝛽

𝑖
, 𝑖 = 2, 3, . . . , 𝑛

is known, whereas, in reality, we cannot really know the
values of them that are unknown. This work suggests that
the minimisation of the root mean squared percentage error
for the presample period should be the objective, and the
unknown parameters 𝛽

𝑖
= 1, 𝑖 = 2, 3, . . . , 𝑛 are solved by

building the optimisation model below.
Consider the following:

Min
𝛽
𝑖

RMSPEPR = √ 1
𝑟

𝑟𝑝+𝑟

∑

𝑡=𝑟𝑝+1

[𝑋
(0)

1
(𝑡) − 𝑋

(0)

1
(𝑡)]

2

[𝑋
(0)

1
(𝑡)]

2
× 100%, 𝑖 = 2, 3, . . . , 𝑛

s.t.

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑋
(1)

1
(𝑟𝑝 + 1) = 𝑋

(1)

1
(𝑟𝑝 + 1) = 𝑋

(0)

1
(𝑟𝑝 + 1)

𝑋
(1)

1
(𝑟𝑝 + 𝑡) = 𝑋

(0)

1
(𝑟𝑝 + 1) 𝑒

−𝑏
1
(𝑡−1)

+ 𝑢 (𝑡 − 2)

×{

𝑡

∑

𝑘=2

𝑒
−𝑏
1
(𝑡−𝑘+(1/2))

⋅

1

2

[𝑓
𝑁
(𝑡) + 𝑓

𝑁
(𝑡 − 1)]} , 𝑡 = 2, 3, . . . , 𝑟

𝑓
𝑁
(𝑡) = 𝑏

2
[𝑋
(1)

2
(𝑡)]

𝛽
2

+ 𝑏
3
[𝑋
(1)

3
(𝑡)]

𝛽
3

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
[𝑋
(1)

𝑛
(𝑡)]

𝛽
𝑛

+ 𝑢, 𝑡 = 1, 2, . . . , 𝑟

(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
, 𝑢)
𝑇

= (𝐵
𝑇
𝐵)

−1

𝐵
𝑇
𝑌
𝑅

(40)

The optimisation problem above can be solved by propri-
etary software. Once 𝛽

𝑖
= 1, 𝑖 = 2, 3, . . . , 𝑛 is confirmed,

the structure parameters 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
, 𝑢 of the model are

also determined. Then, the discrete function 𝑓
𝑁
(𝑡) can be

derived by back-substituting the derived results into (26):
final predictions can then be obtained by applying 𝑓

𝑁
(𝑡) to

(35) to (37).

3. Forecasting China’s Industrial
SO
2

Emissions

Industry is the dominant factor in promoting China’s eco-
nomic development. However, SO

2
emissions discharged

during increasing industrialisation pose a significant threat to
the eco-system and biosphere. The effective management of
industrial SO

2
emissions demands accurate forecasts thereof.

The paper argues that industrial output activity levels are
considered to be the main factor affecting industrial SO

2

emissions. Local governments and enterprises, to increase
industrial output, continue to expand the scale of production
scale and thereby increase SO

2
emissions. China’s industrial

SO
2
emissions and gross industrial output levels from 2003

to 2010 are given in Table 1: Figure 1 shows the trends in
China’s industrial SO

2
emissions and gross industrial output.

As seen in Figure 1, China’s industrial SO
2
emissions and

industrial output values are not simply linearly related.
With the increasing industrial output, SO

2
emissions initially

increased and then decreased. Generally, the reasons for
this phenomenon are complex; multifarious and interrelated
but basically may be summarised as combinations of the
following: structural economic change, technical progress,
differentmodalities of demand, andmore effective regulatory
regimes, and so forth.

GMC (1, 2) and NGMC (1, 2) models were used to
forecast—from known industrial output values—China’s SO

2

emissions as a time series.Through comparing the modelling
and prediction accuracy of the two models, the effectiveness
of the proposed NGMC (1, 2) was demonstrated.

3.1. Forecasting by GMC (1, 2). Applying to the GMC (1, 2)
model of (7) to (18), the values of parameters 𝑛, 𝑟, 𝑟𝑓, and 𝑟𝑝 in
(7), estimates ofmodel parameters in (10) can be obtained and
are listed in Table 2.The GMC (1, 2) model from (7) becomes

𝑑𝑋
(1)

1
(𝑡)

𝑑𝑡

− 0.557995𝑋
(1)

1
(𝑡)

= −0.015596𝑋
(1)

2
(𝑡) + 1806.203, 𝑡 = 1, 2, . . . , 8.

(41)
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Table 1: China’s industrial SO2 emissions and gross industrial output values of 2003–2010.

Time (year) 1 (2003) 2 (2004) 3 (2005) 4 (2006) 5 (2007) 6 (2008) 7 (2009) 8 (2010)
Industrial SO2 emissions
(104 Tons) 2158.50 2254.90 2549.40 2588.80 2468.09 2321.23 2214.40 2185.15

Industrial output
(RMB¥100 Million) 54945.53 65210.03 77230.78 91310.94 110534.88 130260.24 135239.95 160867.01

N.B. Data sourced from the Chinese National Bureau of Statistics Website (http://www.stats.gov.cn/).
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Figure 1: China’s industrial SO
2
emissions correlated with gross

industrial output values.

Table 2:The values of parameters 𝑛, 𝑟, 𝑟𝑓, and 𝑟𝑝 in (7), the estimates
ofmodel parameters 𝑏

1
, 𝑏
2
, and 𝑢 in (10), and the values of RMSPEPR

and RMSPEPO in (38) and (39).

Parameters Values
𝑛 2
𝑟 5
𝑟𝑓 3
𝑟𝑝 0
𝑏
1

−0.557995
𝑏
2

−0.015596
𝑢 1806.203
RMSPEPR (%) 8.02
RMSPEPO (%) 185.25

In summary, the right-hand side of (7), the discrete
function 𝑓(𝑡) in (13) for the GMC (1, 2) model is obtained
and listed in Table 3; the values of RMSPEPR and RMSPEPO
in (38) and (39), respectively, are also listed in Table 2. The
modelling values and forecasts for China’s industrial SO

2

emissions by GMC (1, 2) are listed in Table 4.
As seen in Table 2, the root mean squared percentage

error for the presample period (RMSPEPR) was 8.02%, but
the root mean squared percentage error for the postsample
period (RMSPEPO) was as high as 185%. This result was
unacceptable. Table 4 shows that the relative errors of mod-
elling andprediction gradually increased over time, especially
the relative errors for the period 2008 to 2010, being up to
−48%, −128%, and −290%, respectively. This indicated that
the traditional GMC (1, 2) model cannot be used to describe
the relationship between China’s industrial SO

2
emissions

and industrial output values nor could it be used to predict
future industrial SO

2
emissions.

Table 3: The discrete function 𝑓(𝑡) in (13).

𝑡 𝑓(𝑡)

1 949.250
2 −67.792
3 −1272.31
4 −2696.44
5 −4420.38
6 −6451.98
7 −8561.23
8 −11070.18

3.2. Forecasting by NGMC (1, 2). Applying the NGMC (1, 2)
model of (19) to (37), the values of parameters 𝑛, 𝑟, 𝑟𝑓, and
𝑟𝑝 in (21), the estimates of model parameters 𝑏

1
, 𝑏
2

and 𝑢

in (23), the optimised parameter 𝛽
2
in (40) can be obtained

and values are listed in Table 5.The NGMC (1, 2) model from
(21) becomes

𝑑𝑋
(1)

1
(𝑡)

𝑑𝑡

− 0.222770𝑋
(1)

1
(𝑡) = −46938.3(𝑋

(1)

2
(𝑡))

−0.06305

+ 25887.98, 𝑡 = 1, 2, . . . , 8.

(42)

In summary, the right-hand side of (21), the discrete
function𝑓

𝑁
(𝑡) in (26) for theNGMC (1, 2)model, is obtained

and values are listed in Table 6; the values of RMSPEPR
and RMSPEPO in (38) and (39), respectively, are also listed
in Table 5. The modelling values and forecasts of China’s
industrial SO

2
emissions byNGMC (1, 2) are listed in Table 7.

Among them, the values for 2003 to 2007 are derived by
modelling and those for 2008 to 2010 are forecasts.

As seen in Table 5, the RMSPEPR and RMSPEPO of
NGMC (1, 2) were 2.44% and 5.48%, respectively, signifi-
cantly less than the corresponding RMSPEPR andRMSPEPO
values for the GMC (1, 2) model as shown in Table 2. Table 7
also shows themodelling and prediction values for the period
2003 to 2010 by NGMC (1, 2) to be close to the actual
values.This indicated that the traditional NGMC (1, 2) model
could effectively describe the relationship between China’s
industrial SO

2
emissions and industrial output values and

accurately forecast industrial SO
2
emissions.

4. Conclusions

Grey prediction modelling with the addition of a convo-
lution integral to GMC (1, 𝑛) system greatly improved the
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Table 4: The modelling values and forecasts of China’s industrial SO2 emissions by GMC (1, 2).

Time Modelling values or forecast Observations Percent errors (%)
1 (2003) 2158.50 2158.50 0.00
2 (2004) 2195.32 2254.90 −2.64
3 (2005) 2367.35 2549.40 −7.14
4 (2006) 2398.87 2588.80 −7.34
5 (2007) 2110.67 2468.09 −14.48
6 (2008) 1205.64 2321.23 −48.06
7 (2009) −630.24 2214.40 −128.46
8 (2010) −4153.31 2185.15 −290.07

Table 5: The values of parameters 𝑛, 𝑟, 𝑟𝑓, and 𝑟𝑝 in (21), the
estimates of model parameters 𝑏

1
, 𝑏
2
, 𝑢 in (23) and the optimized

parameter 𝛽
2
in (40), and the values of RMSPEPR and RMSPEPO

in (38) and (39).

Parameters Values
𝑛 2
𝑟 5
𝑟𝑓 3
𝑟𝑝 0
𝑏
1

−0.222770
𝑏
2

−46938.3
𝑢 25887.98
𝛽
2

−0.06305
RMSPEPR (%) 2.44
RMSPEPO (%) 5.48

Table 6: The discrete function 𝑓
𝑁
(𝑡) in (26).

𝑡 𝑓
𝑁
(𝑡)

1 2301.635
2 3437.039
3 4128.824
4 4644.269
5 5074.072
6 5441.376
7 5732.536
8 6006.089

prediction accuracy of the traditional multiply-grey model
GM (1, 𝑛) and was successfully applied in practice. The
current GMC (1, 𝑛) model is linear; therefore, the premise
of obtaining high-precision modelling results by GMC (1, 𝑛)
is the existence of similar trends between the predicted
variables and their influencing factors. The research intro-
duced a power exponent into a 1-AGO series of relative
factors of GMC (1, 𝑛) to reflect the nonlinear interaction
of the associated series with that predicted. The nonlinear
optimisation model is built to solve location parameters. The
prediction examples related to China’s industrial SO

2
emis-

sions showed that the GMC (1, 2) model cannot effectively
describe the nonlinear relationship between China’s indus-
trial SO

2
emissions and their industrial output: the ensuing

Table 7: The modelling values and forecasts of China’s industrial
SO2 emissions by NGMC (1,2).

Time Modelling values or forecast Observations Percent
errors (%)

1 (2003) 2158.50 2158.50 0.00
2 (2004) 2135.84 2254.90 −5.28
3 (2005) 2526.60 2549.40 −0.89
4 (2006) 2562.03 2588.80 −1.03
5 (2007) 2473.20 2468.09 0.21
6 (2008) 2335.84 2321.23 0.63
7 (2009) 2163.90 2214.40 −2.28
8 (2010) 1984.36 2185.15 −9.19

prediction errors were insurmountable. However, theNGMC
(1, 2) model proposed in this paper effectively described the
relationship and achieved satisfactory prediction accuracy.

Compared with the traditional GMC (1, 𝑛), 𝑛 − 1 power
exponents of the predicted variables’ relevant factors
𝛽
2
, 𝛽
3
, . . . , 𝛽

𝑛
are introduced into the NGMC (1, 𝑛)model to

reflect the effect of these upon nonlinear system behaviours
and interactions. The unknown parameters are determined
by a computer program, which calculates the minimum
average relative percentage error of the forecasting model.
This strengthens the adaptability of the NGMC (1, 𝑛) model
towards the original data and eventually improves the
forecast accuracy.
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