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This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by
singular system approach, and sufficient condition for convergence is given.Then, the adaptive sliding mode controller is designed
to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the
effectiveness of the proposed method.

1. Introduction

In the past decades, many studies have been devoted to the
properties of nonlinear systems with applications [1–5]. One
of the most important properties of nonlinear systems is the
chaos system. The research of chaos system has been paid
much attention, because the chaos system has very abroad
application background, such as chemical reactions, power
converters, biological systems, information processing, and
secure communication. After Ott et al. firstly presented the
approach of chaos control in 1990 [6], enormous investiga-
tions of the chaos system have been carried out in the field of
control.

For different chaos systems, different methods have been
employed. In order to realize chaos control or synchroniza-
tion, some well-known methods have been utilized, such
as back-stepping method [7], control Lyapunov function
method [8], proportional-differential control method [9],
neural network method [10], and sliding mode control
method [11–14], among which, sliding mode control method
is proved to be one of the most powerful methods because
the closed-loop system has many attractive features such as
fast response, good transient response, and robustness against
disturbance. Reference [11] designed adaptive sliding mode
controller to achieve synchronization of the chaos system
subject to uncertainty, [12] proposed a new reaching law,

and designed feedback law to stabilize the considered system.
For a class of general form of chaos systems, [13] presented
adaptive terminal slidingmode controller tomake the closed-
loop system stable in finite time and [14] gave chatter free
sliding mode controller design method for the unknown
chaos system.

It should be noted that the recent innovation [15] con-
sidered a class of Markovian jumping system and used the
singular system method to design the sliding mode surface.
The key step is to construct the transformation matrix 𝑇(𝑖) =
[𝑀(𝑖)

𝑇
𝐵(𝑖)]
𝑇

. Under the transformation matrix 𝑇(𝑖), the
sliding mode dynamic can be obtained. Combining with the
sliding mode equation, the new system is a kind of singular
system, which can simplify the analysis of the stability.
Motivated by [15], this paper considers the control problem
for a kind of chaos systems, where the upper bound of the
disturbance is unknown. By the singular system and sliding
mode control approach, an adaptive sliding mode controller
is designed to make the closed-loop system stable asymptot-
ically.

The rest of the paper is organized as follows. Sec-
tion 2 presents the problem formulation and preliminaries.
Section 3 designs slidingmode surface for convergence under
some conditions and presents a novel adaptive sliding mode
controller for the system. Section 4 simulates an example of
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Lorenz system to illustrate the effectiveness of the proposed
method.

2. Problem Formulation and Preliminaries

In this section, we present the formulation of the problem and
preliminaries which are necessary for our further investiga-
tion.

Let us consider the following chaotic system with distur-
bance:

�̇� = 𝐴𝑥 + 𝐵 [𝑓 (𝑥) + 𝜔 (𝑥) + 𝑢] , (1)

where 𝑥 ∈ 𝑅
𝑛 is the state and 𝑢 ∈ 𝑅

𝑚 is the control input.
𝑓(𝑥) : 𝑅

𝑛
→ 𝑅
𝑚 is known smooth matrix function. 𝜔(𝑥) ∈

𝑅
𝑚 is the unknown disturbance of the system. 𝐴 ∈ 𝑅

𝑛×𝑛

and 𝐵 ∈ 𝑅
𝑛×𝑚 are determined matrices. It is supposed that

rank(𝐵) = 𝑚.
When the disturbance 𝜔(𝑥) = 0, many chaotic systems

can be transformed into the form of (1). Consider Lorenz
system:

�̇�
1
= −𝜎
1
𝑥
1
+ 𝜎
2
𝑥
2
,

�̇�
2
= 𝑟𝑥
1
− 𝑥
2
− 𝑥
1
𝑥
3
+ 𝑢
1
,

�̇�
3
= −𝑏𝑥

3
+ 𝑥
1
𝑥
2
+ 𝑢
2
,

(2)

where

𝐴 =
[
[

[

−𝜎
1
𝜎
2

0

𝑟 −1 0

0 0 −𝑏

]
]

]

, 𝐵 =
[
[

[

0 0

1 0

0 1

]
]

]

,

𝑓 (𝑥) = [
−𝑥
1
𝑥
3

𝑥
1
𝑥
2

] , 𝑢 = [
𝑢
1

𝑢
2

] .

(3)

Then, consider Chua’s circuit system:

�̇�
1
= −𝑥
1
+ 𝑥
2
+ 𝑥
3
,

�̇�
2
= −𝛽𝑥

1
+ 𝑢
1
,

�̇�
3
= 𝛼𝑥
1
− 𝛼𝑥
3
− 𝛼𝑙 (𝑥

3
) + 𝑢
2
,

(4)

where 𝑙(𝑥
3
) = 𝑛𝑥

3
+ 1/2(𝑚 − 𝑛)(|𝑥

3
+ 1| − |𝑥

3
− 1|). Thus,

Chua’s circuit system can be written as (1) with

𝐴 =
[
[

[

−1 1 1

−𝛽 0 0

𝛼 0 −𝛼

]
]

]

, 𝐵 =
[
[

[

0 0

1 0

0 1

]
]

]

,

𝑓 (𝑥) = [
0

−𝛼𝑙 (𝑥
3
)
] , 𝑢 = [

𝑢
1

𝑢
2

] .

(5)

In order to establish themain result of this paper, we need the
following assumption.

Assumption 1. The disturbance 𝜔(𝑥) is Lipschitz with Lips-
chitz constant 𝛾; that is,

‖𝜔 (𝑥)‖ ≤ 𝛾 ‖𝑥‖ , (6)

where 𝛾 > 0 is unknown parameter.

Remark 2. In many physical systems, the parameter 𝛾 is
usually unknown.The treatment of the disturbance is similar
to that in the former work such as [16, 17]; thus, it is a more
general assumption.

Since this paper employs the singular system to deal with
the control of chaotic system, in what follows, we introduce
some basics about the singular system.

Let us consider the following singular system:

𝐸�̇� = 𝐴𝑥, (7)

where 𝑥 ∈ 𝑅
𝑛 is the state and 𝐸 ∈ 𝑅

𝑛×𝑛 and 𝐴 ∈ 𝑅
𝑛×𝑛 are

determined matrices. 𝐸 is singular with rank(𝐸) < 𝑛.

Definition 3 (see [18]). The system (7) is said to be

(1) regular if det(𝑠𝐸 − 𝐴) is not identically zero,
(2) impulse-free if deg(det(𝑠𝐸 − 𝐴)) = rank(𝐸),
(3) stable if all the roots of det(𝑠𝐸 − 𝐴) = 0 have negative

real parts,
(4) admissible if it is regular, impulse-free, and stable.

Lemma 4 (see [19]). The system (7) is admissible if and only if
there exists nonsingular matrix 𝑃 such that

(1) 𝐸𝑇𝑃 = 𝑃
𝑇
𝐸 ≥ 0,

(2) 𝐴𝑇𝑃 + 𝑃𝑇𝐴 < 0.

3. The Design of Sliding Mode Surface

In this section, we use the singular system approach to design
the sliding mode surface for the system (1). The sliding mode
surface 𝑆 in this paper is chosen as 𝑆 = 𝐶𝑥, where 𝐶 ∈

𝑅
(𝑛−𝑚)×𝑛 is designed later. Since rank(𝐵) = 𝑚, there exists

𝑁 ∈ 𝑅
(𝑛−𝑚)×𝑛 such that 𝑁𝐵 = 0. Let 𝑀 = [

𝑁

𝐵
𝑇 ]; then, 𝑀 is

nonsingular matrix and𝑁𝑀−1 = [𝐼𝑛−𝑚 0]. Left multiplying
both sides of (1), we have

𝑀�̇� = 𝑀𝐴𝑥 +𝑀𝐵 [𝑓 (𝑥) + 𝜔 (𝑥) + 𝑢] ; (8)

that is,

𝑁�̇� = 𝑁𝐴𝑥 + 𝑁𝐵 [𝑓 (𝑥) + 𝜔 (𝑥) + 𝑢] ,

𝐵
𝑇
�̇� = 𝐵

𝑇
𝐴𝑥 + 𝐵

𝑇
𝐵 [𝑓 (𝑥) + 𝜔 (𝑥) + 𝑢] .

(9)

Since𝑁𝐵 = 0, (9) becomes

𝑁�̇� = 𝑁𝐴𝑥,

𝐵
𝑇
�̇� = 𝐵

𝑇
𝐴𝑥 + 𝐵

𝑇
𝐵 [𝑓 (𝑥) + 𝜔 (𝑥) + 𝑢] .

(10)

By the theory of sliding mode control, the first equation of
(10) means the sliding mode dynamic. Since 𝑆 = 𝐶𝑥 = 0,
then we have

𝑁�̇� = 𝑁𝐴x,

0 = 𝐶𝑥.

(11)
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Theorem 5. Let 𝑃 be a nonsingular matrix, and denote that
𝑃𝑀
−1

= [
𝑃11 𝑃12

𝑃21 𝑃22
], where 𝑃

11
∈ 𝑅
(𝑛−𝑚)×(𝑛−𝑚), 𝑃

22
∈ 𝑅
𝑚×𝑚. If

the following conditions hold

𝑃
11
= 𝑃
𝑇

11
≥ 0, (12)

𝑃
12
= 0, (13)

𝐴
𝑇
𝑁
𝑇
𝑃
11
𝑁 +𝑁

𝑇
𝑃
11
𝑁𝐴 + 𝐶

𝑇
𝑃
21
𝑁 +𝑁

𝑇
𝑃
𝑇

21
𝐶

+ 𝐶
𝑇
𝑃
22
𝐵
𝑇
+ 𝐵𝑃
𝑇

22
𝐶 < 0,

(14)

then the state of the system (11) will converge to 0 asymptoti-
cally.

Proof. The system (11) is admissible if and only if the condi-
tions of Lemma 4 are satisfied; that is,

[𝑁
𝑇
0] 𝑃 = 𝑃

𝑇
[
𝑁

0
] ≥ 0, (15)

[𝐴
𝑇
𝑁
𝑇
𝐶
𝑇
] 𝑃 + 𝑃

𝑇
[
𝑁𝐴

𝐶
] < 0. (16)

Firstly, let us consider (15), which means that

𝑀
−𝑇
[𝑁
𝑇
0] 𝑃𝑀

−1
= 𝑀
−𝑇
𝑃
𝑇
[
𝑁

0
]𝑀
−1
≥ 0. (17)

Since𝑁𝑀−1 = [𝐼𝑛−𝑚 0] and 𝑃𝑀−1 = [
𝑃11 𝑃12

𝑃21 𝑃22
], (17) is equiv-

alent to

[
𝐼
𝑛−𝑚

0

0 0
] [

𝑃
11

𝑃
12

𝑃
21

𝑃
22

] = [

[

𝑃
𝑇

11
𝑃
𝑇

21

𝑃
𝑇

12
𝑃
𝑇

22

]

]

[
𝐼
𝑛−𝑚

0

0 0
] ≥ 0; (18)

then,

[
𝑃
11

𝑃
12

0 0
] = [

[

𝑃
𝑇

11
0

𝑃
𝑇

12
0
]

]

≥ 0. (19)

Thus, (19) is equivalent to (12) and (13). Then, we consider
(16), and it is

[𝐴
𝑇
𝑁
𝑇
𝐶
𝑇
] [
𝑃
11

0

𝑃
21

𝑃
22

]𝑀 +𝑀
𝑇[

[

𝑃
𝑇

11
𝑃
𝑇

21

0 𝑃
𝑇

22

]

]

[
𝑁𝐴

𝐶
] < 0;

(20)

that is,

[𝐴
𝑇
𝑁
𝑇
𝐶
𝑇
] [
𝑃
11

0

𝑃
21

𝑃
22

] [
𝑁

𝐵
𝑇]

+ [𝑁
𝑇
𝐵][

[

𝑃
𝑇

11
𝑃
𝑇

21

0 𝑃
𝑇

22

]

]

[
𝑁𝐴

𝐶
] < 0.

(21)

By direct computation, (21) is equivalent to (14).Thus, we can
conclude that if (12), (13), and (14) hold, then the system (11)
is admissible; that is, the state of the system (11) will converge
to 0 asymptotically.

Remark 6. The main task of this section is to design 𝐶; it is
obvious that (12) and (14) are needed, and (13) is easy to be
satisfied.

It should be noted that (14) is not LMI; an equivalent
condition of (14) is given as the following theorem.

Theorem 7. Let 𝐶𝑇𝑃
21

= 𝐶
1
, 𝐶𝑇𝑃

22
= 𝐶
2
. Inequality (14)

holds if and only if the following conditions hold:

𝐴
𝑇
𝑁
𝑇
𝑃
11
𝑁 +𝑁

𝑇
𝑃
11
𝑁𝐴 + 𝐶

1
𝑁

+𝑁
𝑇
𝐶
𝑇

1
+ 𝐶
2
𝐵
𝑇
+ 𝐵𝐶
𝑇

2
< 0,

(22)

rank (𝐶
2
) = rank ([𝐶1 𝐶

2]) . (23)

Proof. 𝐶𝑇𝑃
21
= 𝐶
1
, 𝐶𝑇𝑃
22
= 𝐶
2
; then,

𝐴
𝑇
𝑁
𝑇
𝑃
11
𝑁 +𝑁

𝑇
𝑃
11
𝑁𝐴 + 𝐶

𝑇

1
𝑁

+𝑁
𝑇
𝐶
𝑇

1
+ 𝐶
2
𝐵
𝑇
+ 𝐵𝐶
𝑇

2
< 0.

(24)

It is known that the matrices 𝐶
1
and 𝐶

2
are not independent;

they should satisfy 𝐶𝑇𝑃
21

= 𝐶
1
, 𝐶𝑇𝑃

22
= 𝐶
2
. Since 𝑃 is

nonsingular, then 𝑃
22
is nonsingular; 𝐶𝑇𝑃

22
= 𝐶
2
means that

rank(𝐶𝑇) = rank(𝐶
2
). To guarantee the solvability of𝐶𝑇𝑃

21
=

𝐶
1
, the sufficient and necessary condition is that rank(𝐶

2
) =

rank([𝐶1 𝐶
2]). Hence, we complete the proof.

Remark 8. In order to make the computation more tractable,
here, we set𝑃

21
= 0; then,𝐶

1
= 0. Equation (23) is rank(𝐶

2
) =

rank([0 𝐶
2]), which holds naturally. Equation (22) becomes

𝐴
𝑇
𝑁
𝑇
𝑃
11
𝑁 +𝑁

𝑇
𝑃
11
𝑁𝐴 + 𝐶

2
𝐵
𝑇
+ 𝐵𝐶
𝑇

2
< 0. (25)

Then,we solve (12) and (25) by LMI toolbox inMatlab; thus,𝐶
can be computed by𝐶 = 𝑃

−𝑇

22
𝐶
𝑇

2
, where𝑃

22
is any nonsingular

matrix.

Remark 9. It is known that (14) is equivalent to

𝐵
𝑇
[𝐴
𝑇
𝑁
𝑇
𝑃
11
𝑁 +𝑁

𝑇
𝑃
11
𝑁𝐴 + 𝐶

𝑇
𝑃
21
𝑁 +𝑁

𝑇
𝑃
𝑇

21
𝐶

+𝐶
𝑇
𝑃
22
𝐵
𝑇
+ 𝐵𝑃
𝑇

22
𝐶]𝐵 < 0.

(26)

In view of the fact that𝑁𝐵 = 0, then

𝐵
𝑇
𝐶
𝑇
𝑃
22
𝐵
𝑇
𝐵 + 𝐵
𝑇
𝐵𝑃
𝑇

22
𝐶𝐵 < 0, (27)

which implies that 𝐶𝐵 is nonsingular.

4. The Design of Adaptive Sliding
Mode Controller

In this section, the adaptive controller is designed to drive the
state of the system (1) into the sliding mode surface 𝑆 = 0 in
finite time. And it is given as the following theorem.
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Theorem 10. Let 𝛾
1
= ‖𝐶𝐵‖𝛾 and let 𝜀, 𝜂 be both positive

constants. If the adaptive controller is designed as

𝑢 =

{{{

{{{

{

−(𝐶𝐵)
−1 𝑆

‖𝑆‖
[‖𝐶𝐴𝑥‖ +

𝐶𝐵𝑓 (𝑥)
 + 𝛾1 ‖𝑥‖ + 𝜀] ,

𝑆 ̸= 0,

0, 𝑆 = 0,

(28)

where

̇̂𝛾
1
= {

𝜂 ‖𝑥‖ , 𝑆 ̸= 0,

0, 𝑆 = 0,
(29)

then the state of the system (1) reaches the sliding mode surface
𝑆 = 0 in finite time.

Proof. Consider the Lyapunov function as

𝑉 = ‖𝑆‖ +
1

2
𝜂
−1
𝛾
2

1
, (30)

where 𝛾
1
= 𝛾
1
− 𝛾
1
. It is obvious that ̇̃𝛾

1
= − ̇̂𝛾
1
. Calculate the

derivative of𝑉 along the trajectory of the closed-loop system
(1); that is,

�̇� =
𝑆
𝑇 ̇𝑆

‖𝑆‖
+ 𝜂
−1
𝛾
1
̇̃𝛾
1

=
𝑆
𝑇

‖𝑆‖
[𝐶𝐴𝑥 + 𝐶𝐵 (𝑓 (𝑥) + 𝜔 (𝑥) + 𝑢)] − 𝛾1 ‖𝑥‖ .

(31)

It can be direct to verify that

𝑆
𝑇

‖𝑆‖
(𝐶𝐴𝑥) ≤ ‖𝐶𝐴𝑥‖ ,

𝑆
𝑇

‖𝑆‖
[𝐶𝐵𝑓 (𝑥)] ≤

𝐶𝐵𝑓 (𝑥)
 ,

𝑆
𝑇

‖𝑆‖
[𝐶𝐵𝜔 (𝑥)] ≤ ‖𝐶𝐵‖ 𝛾 ‖𝑥‖ = 𝛾

1 ‖𝑥‖ ,

𝑆
𝑇

‖𝑆‖
𝐶𝐵𝑢 ≤ [− ‖𝐶𝐴𝑥‖ −

𝐶𝐵𝑓 (𝑥)
 − 𝛾1 ‖𝑥‖ − 𝜀] .

(32)

Substituting (32) into (31), we can get that

�̇� ≤ −𝜀, (33)

which means that �̇� ≤ −𝜀 < 0 if 𝑆 ̸= 0. It is also the fact that
�̇� = 0 if 𝑆 = 0.Thus, we can conclude that 𝑆will approach 0 in
finite time.Thus, we have completed the proof ofTheorem 10.

Remark 11. It is known that the equilibrium 𝛾
1
= 0 is only

Lyapunov stable, which means that the estimation of 𝛾
1
can

only go to a small neighborhood of the real values; hence, 𝛾
1

may not necessarily converge to the real value 𝛾
1
.

−20
−10

0 10 20
30

−30
−20

−10
0

10
20

30
0

10

20

30

40

50

x1

x
2

x
3

Figure 1: The attractors of Lorenz system.

Remark 12. We show that (33) implies that 𝑆 is finite time
stable. Let the initial time and the settling time be 𝑡

1
and 𝑡
2
.

From (33), we can compute that

𝑉 (𝑡
2
) − 𝑉 (𝑡

1
) ≤ −𝜀 (𝑡

2
− 𝑡
1
) . (34)

In view of 𝑉(𝑡
2
) ≥ 0, 𝑡

2
can be estimated as

𝑡
2
≤ 𝑡
1
+
𝑉 (𝑡
1
)

𝜀
, (35)

which means that 𝑆 is finite time stable.

5. Numerical Example

We consider the Lorenz system (1) with disturbance where

𝐴 = [

[

−10 10 0

28 −1 0

0 0 −8/3

]

]

, 𝐵 = [

[

0 0

1 0

0 1

]

]

,

𝑓 (𝑥) = [
−𝑥
1
𝑥
3

𝑥
1
𝑥
2

] , 𝜔 (𝑥) = [
0.5 sin𝑥

1

0
] .

(36)

𝑁 is chosen as 𝑁 = [1 0 0]; then 𝑀 is identity matrix.
Solving the LMIs (12) and (25) yields

𝑃
11
= 0.0562, 𝐶 = [

−0.5619 −0.5365 0

0 0 −0.5365
] .

(37)

Since ‖𝜔(𝑥)‖ ≤ 0.5‖𝑥‖, then 𝛾
1
= 0.3793. The parameter 𝜀 is

chosen as 0.5. The sliding mode surface is 𝑆 = 𝐶𝑥, and the
adaptive controller is designed by (28) and (29), respectively.

We now complete the simulation by Simulink in Matlab.
The initial state of the system (1) is [−0.2 0.2 0.1]

𝑇, and the
initial value of 𝛾

1
is chosen as 0.3. Figure 1 shows the attrac-

tors of the Lorenze system (open-loop system (1)). Figure 2
shows the time response of the states of the closed-loop sys-
tem (1). Figure 3 is about the estimated parameters 𝛾

1
, and

𝛾
1
converges to 0.2807 but does not converge to the nominal

value 𝛾
1
= 0.3793; that is, it is Lyapunov stable. From the

result of simulation, we can conclude that the method pro-
posed is effective in this paper.
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Figure 2: Response of the states of the closed-loop system (1).
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6. Conclusions

We consider the control problem for the chaotic system,
where the upper bound of the disturbance is unknown. We
give slidingmode surface to guarantee the convergence of the
sliding mode dynamic by singular system method and then
design adaptive controller to make the closed-loop system
reach the sliding mode in finite time. We also present a
numerical example to show the validation of the proposed
method. In the future work, we will extend the results of the
paper to the hyper-chaotic system.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by Key Open Lab of Control Engi-
neering ofHenan Province (Grant no. KG 2011-13), Education
Department of Henan Natural Science Research Key Project
of China (Grant no.13A470342), and Science and Technology
Research Project of China National Coal Association (Grant
no. MTKJ2012-369).

References

[1] R. Marino and P. Tomei, Nonlinear Control Design: Geometric,
Adaptive and Roubust, Prentice Hall, London, UK, 1995.

[2] H. Khalil,Nonlinear Systems, Prentice Hall, Upper Saddle River,
NJ, USA, 2002.

[3] W. Sun, H. Gao Sr., and O. Kaynak, “Finite frequency𝐻
∞
con-

trol for vehicle active suspension systems,” IEEETransactions on
Control Systems Technology, vol. 19, no. 2, pp. 416–422, 2011.

[4] W. Sun, Y. Zhao, J. Li, L. Zhang, and H. Gao, “Active suspension
control with frequency band constraints and actuator input
delay,” IEEE Transactions on Industrial Electronics, vol. 59, no.
1, pp. 530–537, 2012.

[5] W. Sun, H. Gao, and O. Kaynak, “Adaptive backstepping
control for active suspension systems with hard constraints,”
IEEE/ASME Transactions on Mechatronics, vol. 18, no. 3, pp.
1072–1079, 2013.

[6] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical
Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990.

[7] C. Wang, N. Pai, and H. Yau, “Chaos control in AFM system
using sliding mode control by backstepping design,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 15,
no. 3, pp. 741–751, 2010.

[8] H. Wang, Z. Han, W. Zhang, and Q. Xie, “Synchronization of
unified chaotic systems with uncertain parameters based on the
CLF,”Nonlinear Analysis: Real World Applications, vol. 10, no. 2,
pp. 715–722, 2009.

[9] C. Wang and H. Yau, “Chaotic analysis and control of micro-
candilevers with PD feedback using differential transforma-
tion method,” International Journal of Nonlinear Sciences and
Numerical Simulation, vol. 10, no. 4, pp. 425–444, 2009.

[10] H. Wang and H. Gu, “Chaotic synchronization in the presence
of disturbances based on an orthogonal function neural net-
work,”Asian Journal of Control, vol. 10, no. 4, pp. 470–477, 2008.

[11] H. Yau, “Design of adaptive sliding mode controller for chaos
synchronization with uncertainties,” Chaos, Solitons & Fractals,
vol. 22, no. 2, pp. 341–347, 2004.

[12] L. Liu, Z. Han, and W. Li, “Global sliding mode control and
application in chaotic systems,”Nonlinear Dynamics, vol. 56, no.
1-2, pp. 193–198, 2009.

[13] J. Huang, L. Sun, Z. Han, and L. Liu, “Adaptive terminal sliding
mode control for nonlinear differential inclusion systems with
disturbance,” Nonlinear Dynamics, vol. 72, no. 1-2, pp. 221–228,
2013.

[14] X. Zhang, X. Liu, and Q. Zhu, “Adaptive chatter free sliding
mode control for a class of uncertain chaotic systems,” Applied
Mathematics and Computation, vol. 232, pp. 431–435, 2014.



6 Journal of Applied Mathematics

[15] S. Ma and E. Boukas, “A singular system approach to robust
sliding mode control for uncertain Markov jump systems,”
Automatica, vol. 45, no. 11, pp. 2707–2713, 2009.

[16] C. Wen and C. Cheng, “Design of sliding surface for mis-
matched uncertain systems to achieve asymptotical stability,”
Journal of the Franklin Institute, vol. 345, no. 8, pp. 926–941,
2008.

[17] W. Xiang and F. Chen, “An adaptive sliding mode control
scheme for a class of chaotic systems with mismatched pertur-
bations and input nonlinearities,”Communications in Nonlinear
Science and Numerical Simulation, vol. 16, no. 1, pp. 1–9, 2011.

[18] L. Dai, Singular Control Systems, vol. 118 of Lecture Notes in
Control and Information Sciences, Springer, Berlin, Germany,
1989.

[19] S. Xu and J. Lam, Control and Filtering of Singular Systems,
Springer, Berlin, Germany, 2006.


