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For the multiclass classification problem of microarray data, a new optimization model named multinomial regression with the
elastic net penalty was proposed in this paper. By combining the multinomial likeliyhood loss and the multiclass elastic net
penalty, the optimization model was constructed, which was proved to encourage a grouping effect in gene selection for multiclass
classification.

1. Introduction

Support vector machine [1], lasso [2], and their expansions,
such as the hybrid huberized support vector machine [3], the
doubly regularized support vector machine [4], the 1-norm
support vector machine [5], the sparse logistic regression [6],
the elastic net [7], and the improved elastic net [8], have been
successfully applied to the binary classification problems
of microarray data. However, the aforementioned binary
classification methods cannot be applied to the multiclass
classification easily. Hence, the multiclass classification prob-
lems are the difficult issues inmicroarray classification [9–11].

Besides improving the accuracy, another challenge for the
multiclass classification problem of microarray data is how
to select the key genes [9–15]. By solving an optimization
formula, a new multicategory support vector machine was
proposed in [9]. It can be successfully used to microarray
classification [9]. However, this optimization model needs to
select genes using the additional methods. To automatically
select genes during performing the multiclass classification,
new optimization models [12–14], such as the 𝐿

1
norm

multiclass support vector machine in [12], the multicategory
support vector machine with sup norm regularization in [13],
and the huberized multiclass support vector machine in [14],
were developed.

Note that the logistic loss function not only has good
statistical significance but also is second order differentiable.
Hence, the regularized logistic regression optimization mod-
els have been successfully applied to binary classification
problem [15–19]. Multinomial regression can be obtained
when applying the logistic regression to the multiclass clas-
sification problem.The emergence of the sparse multinomial
regression provides a reasonable application to the mul-
ticlass classification of microarray data that featured with
identifying important genes [20–22]. By using Bayesian 𝐿

1

regularization, the sparse multinomial regression model was
proposed in [20]. By adopting a data augmentation strategy
withGaussian latent variables, the variational Bayesianmulti-
nomial probit model which can reduce the prediction error
was presented in [21]. By using the elastic net penalty, the
regularized multinomial regression model was developed in
[22]. It can be applied to the multiple sequence alignment of
protein related tomutation. Although the above sparsemulti-
nomial models achieved good prediction results on the real
data, all of them failed to select genes (or variables) in groups.

For the multiclass classification of the microarray data,
this paper combined themultinomial likelihood loss function
having explicit probability meanings [23] with multiclass
elastic net penalty selecting genes in groups [14], proposed a
multinomial regression with elastic net penalty, and proved
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that this model can encourage a grouping effect in gene
selection at the same time of classification.

2. Problem Formulation and Preliminary

Given a training data set of 𝐾-class classification problem
(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑛
, 𝑦
𝑛
), where 𝑥

𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑝
)

represents the input vector of the 𝑖th sample and 𝑦
𝑖
∈

{1, 2, . . . , 𝐾} represents the class label corresponding to 𝑥
𝑖
.

For the microarray data, 𝑛 and 𝑝 represent the number of
experiments and the number of genes, respectively. Restricted
by the high experiment cost, only a few (less than one hun-
dred) samples can be obtainedwith thousands of genes in one
sample. Let 𝑌 = (𝑦

1
, . . . , 𝑦

𝑛
)
𝑇 and 𝑋 = (𝑥

(1)
, 𝑥
(2)
, . . . , 𝑥

(𝑝)
),

where 𝑥
(𝑗)
= (𝑥
1𝑗
, . . . , 𝑥

𝑛𝑗
)
𝑇, 𝑗 = 1, . . . , 𝑝. Without loss of

generality, it is assumed that
𝑛

∑

𝑖=1

𝑦
𝑖
= 0,

1

𝑛

𝑛

∑

𝑖=1

𝑥
𝑖𝑗
= 0,

𝑛

∑

𝑖=1

𝑥
2

𝑖𝑗
= 1. (1)

For the binary classification problem, the class labels are
assumed to belong to 𝐿 = {1, −1}. The logistic regression
model represents the following class-conditional probabili-
ties; that is,

log
Pr (𝑦
𝑖
= +1 | 𝑥)

Pr (𝑦
𝑖
= −1 | 𝑥)

= 𝑏 + 𝑤
𝑇
𝑥, (2)

and then

Pr (𝑦
𝑖
= +1 | 𝑥) =

1

1 + 𝑒−(𝑏+𝑤
𝑇
𝑥)
,

Pr (𝑦
𝑖
= −1 | 𝑥) =

1

1 + 𝑒+(𝑏+𝑤
𝑇
𝑥)
= 1 − Pr (𝑦

𝑖
= +1 | 𝑥) .

(3)

According to the common linear regression model, 𝑌 can be
predicted as

𝑌̂ = 𝑤𝑋 =

𝑝

∑

𝑗=1

𝑤
(𝑗)
𝑥
(𝑗)
+ 𝑏̂, (4)

where 𝑏̂ represents bias and 𝑤 = (𝑤
(1)
, . . . , 𝑤

(𝑝)
)
𝑇 represents

the parameter vector.
In this paper, we pay attention to the multiclass clas-

sification problems, which imply that 𝐾 ≥ 3. Let 𝑓 =

(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝐾
) be the decision function, where 𝑓

𝑘
(𝑥) =

𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥, (𝑘 = 1, 2, . . . , 𝐾). The multiclass classifier can be

represented as

𝜙 (𝑥) = arg max
𝑘=1,2,...,𝐾

𝑓
𝑘
(𝑥) . (5)

Let 𝑏 = (𝑏
1
, ⋅ ⋅ ⋅ , 𝑏

𝐾
)
𝑇 and

𝑤 =

{{{{

{{{{

{

𝑤
11
𝑤
12
⋅ ⋅ ⋅ 𝑤

1𝑝

𝑤
21
𝑤
22
⋅ ⋅ ⋅ 𝑤

2𝑝

...
...

...
...

𝑤
𝐾1
𝑤
𝐾2
⋅ ⋅ ⋅ 𝑤

𝐾𝑝

}}}}

}}}}

}

. (6)

For convenience, we further let 𝑤
𝑘
= (𝑤
𝑘1
, . . . , 𝑤

𝑘𝑝
)
𝑇 and

𝑤
(𝑗)
= (𝑤
1𝑗
, . . . , 𝑤

𝐾𝑗
)
𝑇 represent the 𝑘th row vector and 𝑗th

column vector of the parameter matrix 𝑤. Then extending
the class-conditional probabilities of the logistic regression
model to (𝐾 − 1)-logits, we have the following formula:

log
Pr (𝑦
𝑖
= 𝑘 | 𝑥)

Pr (𝑦
𝑖
= 𝐾 | 𝑥)

= 𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥 (𝑘 = 1, 2, . . . , 𝐾 − 1) ,

(7)

where (𝑏
𝑘
, 𝑤
𝑘
) represent a pair of parameters which corre-

sponds to the sample (𝑌 = 𝑘 | 𝑥), and 𝑏
𝑘
∈ 𝑅
1, 𝑤
𝑘
∈ 𝑅
𝑝.

Similarly, we can construct the𝐾th as

log
Pr (𝑦
𝑖
= 𝐾 | 𝑥)

Pr (𝑦
𝑖
= 𝐾 | 𝑥)

= log 1 = 0

= 𝑏
𝐾
+ 𝑤
𝑇

𝐾
𝑥

(8)

holds if and only if (𝑏
𝐾
, 𝑤
𝐾
) = (0, 0⃗). It can be easily obtained

that

1 = Pr (𝑦
𝑖
= 1 | 𝑥) + Pr (𝑦

𝑖
= 2 | 𝑥) + ⋅ ⋅ ⋅ + Pr (𝑦

𝑖
= 𝐾 | 𝑥)

= [𝑒
𝑏1+𝑤
𝑇

1
𝑥
+ 𝑒
𝑏2+𝑤
𝑇

2
𝑥
+ ⋅ ⋅ ⋅ + 𝑒

𝑏𝐾+𝑤
𝑇

𝐾
𝑥
] ⋅ Pr (𝑦

𝑖
= 𝐾 | 𝑥) .

(9)

that is,

Pr (𝑦
𝑖
= 𝐾 | 𝑥) =

1

∑
𝐾

𝑘=1
𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥)
. (10)

It should be noted that (𝑏
𝐾
, 𝑤
𝐾
) = (0, 0⃗) if 𝑘 = 𝐾. Therefore,

the class-conditional probabilities of multiclass classification
problem can be represented as

Pr (𝑦
𝑖
= 𝑘 | 𝑥) =

𝑒
𝑏𝑘+𝑤
𝑇

𝑘
𝑥

∑
𝐾

𝑘=1
𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥)
. (11)

3. Main Results

3.1. Multinomial Regression with the Multiclass Elastic Net
Penalty. Following the idea of sparse multinomial regression
[20–22], we fit the above class-conditional probability model
by the regularized multinomial likelihood. Let 𝑝

𝑘
(𝑥
𝑖
) =

Pr(𝑦
𝑖
= 𝑘 | 𝑥

𝑖
). It is easily obtained that

𝑝
𝑦𝑖
(𝑥
𝑖
) =

𝑒
(𝑏𝑦𝑖
+𝑤
𝑇

𝑦𝑖
𝑥𝑖)

∑
𝐾

𝑘=1
𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖)
. (12)
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Hence,

1

𝑛

𝑛

∑

𝑖=1

log𝑝
𝑦𝑖
(𝑥
𝑖
)

=
1

𝑛
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𝑦1
(𝑥
1
) + log𝑝

𝑦2
(𝑥
2
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𝑦𝑛
(𝑥
𝑛
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=
1

𝑛
[log 𝑒

(𝑏𝑦1
+𝑤
𝑇

𝑦1
𝑥1)

∑
𝐾
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𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥1)
+ log 𝑒

(𝑏𝑦2
+𝑤
𝑇

𝑦2
𝑥2)

∑
𝐾

𝑘=1
𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥2)

+ ⋅ ⋅ ⋅ + log 𝑒
(𝑏𝑦𝑛
+𝑤
𝑇

𝑦𝑛
𝑥𝑛)

∑
𝐾

𝑘=1
𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑛)
]

=
1

𝑛
[ (𝑏
𝑦1
+ 𝑤
𝑇

𝑦1
𝑥
1
) + ⋅ ⋅ ⋅ + (𝑏

𝑦𝑛
+ 𝑤
𝑇

𝑦𝑛
𝑥
𝑛
)

− log
𝐾

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥1) − ⋅ ⋅ ⋅ − log

𝐾

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑛)]

=
1

𝑛
[(𝑏
𝑦1
+ 𝑤
𝑇

𝑦1
𝑥
1
) + ⋅ ⋅ ⋅ + (𝑏

𝑦𝑛
+ 𝑤
𝑇

𝑦𝑛
𝑥
𝑛
)]

−
1

𝑛

𝑛

∑

𝑖=1

log
𝐾

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖).

(13)

Let

𝑦
𝑖𝑘
= 𝐼 (𝑦

𝑖
= 𝑘) = {

1, 𝑦
𝑖
= 𝑘,

0, 𝑦
𝑖
̸= 𝑘.

(14)

Then (13) can be rewritten as

1

𝑛

𝑛

∑

𝑖=1

𝐾

∑

𝑘=1

𝑦
𝑖𝑘
(𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
) −
1

𝑛

𝑛

∑

𝑖=1

log
𝐾

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖)

=
1

𝑛

𝑛

∑

𝑖=1

[

𝐾

∑

𝑘=1

𝑦
𝑖𝑘
(𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
) − log

𝐾

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖)] .

(15)

Note that

log𝑝
𝑦𝑖
(𝑥
𝑖
) = log 𝑒

(𝑏𝑦𝑖
+𝑤
𝑇

𝑦𝑖
𝑥𝑖)

∑
𝐾

𝑘=1
𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖)
< log 1 = 0,

−
1

𝑛

𝑛

∑

𝑖=1

log𝑝
𝑦𝑖
(𝑥
𝑖
) > 0.

(16)

Hence, the multinomial likelihood loss function can be
defined as

𝑙 ({𝑏
𝑘
, 𝑤
𝑘
}
𝐾

1
) = −

1

𝑛

𝑛

∑

𝑖=1

[

𝐾

∑

𝑘=1

𝑦
𝑖𝑘
(𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)

− log
𝐾

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖)] .

(17)

In order to improve the performance of gene selection,
the following elastic net penalty for the multiclass classifica-
tion problem was proposed in [14]

𝐽 (𝑏, 𝑤) = 𝜆
2

𝐾

∑

𝑘=1

𝑝

∑

𝑗=1

𝑤
2

𝑘𝑗
+ 𝜆
1

𝐾

∑

𝑘=1

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
. (18)

By combing the multiclass elastic net penalty (18) with the
multinomial likelihood loss function (17), we propose the
following multinomial regression model with the elastic net
penalty:

argmin
(𝑏,𝑤)

{

{

{

−
1

𝑛

𝑛

∑

𝑖=1

[

𝐾

∑

𝑘=1

𝑦
𝑖𝑘
(𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
) − log

𝐾

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖)]

+𝜆
2

𝐾

∑

𝑘=1

𝑝

∑

𝑗=1

𝑤
2

𝑘𝑗
+ 𝜆
1

𝐾

∑

𝑘=1

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

,

(19)

where 𝜆
1
, 𝜆
2
represent the regularization parameter. Note

that (𝑏
𝐾
, 𝑤
𝐾
) = (0, 0⃗). Hence, the optimization problem (19)

can be simplified as

argmin
(𝑏,𝑤)

{

{

{

−
1

𝑛

𝑛

∑

𝑖=1

[

𝐾−1

∑

𝑘=1

𝑦
𝑘𝑖
(𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)

− log(1 +
𝐾−1

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖))]

+ 𝜆
2
(

𝐾−1

∑

𝑘=1

𝑝

∑

𝑗=1

𝑤
2

𝑘𝑗
) + 𝜆

1
(

𝐾−1

∑

𝑘=1

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
)

}

}

}

.

(20)

3.2. Grouping Effect. For the microarray classification, it is
very important to identify the related gene in groups. In the
section, we will prove that the multinomial regression with
elastic net penalty can encourage a grouping effect in gene
selection. To this end, we must first prove the inequality
shown inTheorem 1.

Theorem 1. Let (𝑏̂, 𝑤) be the solution of the optimization
problem (19) or (20). For any new parameter pairs which are
selected as (𝑏∗, 𝑤∗) = ([𝑏∗

−
; 0⃗], [𝑤

𝑘
; 0⃗]), the following inequality

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log(1 +
𝐾−1

∑

𝑘=1

𝑒
(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)) − log(1 +

𝐾−1

∑

𝑘=1

𝑒
(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
(𝑏
∗

𝑘
+ 𝑤
∗𝑇

𝑘
𝑥
𝑖
) − (𝑏̂

𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)
󵄨󵄨󵄨󵄨󵄨

(21)

holds, where 𝑏∗
−
and 𝑏̂
−
represent the first𝐾−1 rows of vectors 𝑏∗

and 𝑏̂ and𝑤∗
−
and𝑤

−
represent the first𝐾−1 rows of matrices

𝑤
∗ and 𝑤.
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Proof. Note that the inequality 𝑛 + |𝑚 − 𝑛| ≥ 𝑚 holds for
the arbitrary real numbers 𝑚 and 𝑛. Hence, the following
inequality

(𝑏̂
𝑡
+ 𝑤
𝑇

𝑡
𝑥
𝑖
) +
󵄨󵄨󵄨󵄨󵄨
(𝑏
∗

𝑡
+ 𝑤
∗𝑇

𝑡
𝑥
𝑖
) − (𝑏̂

𝑡
+ 𝑤
𝑇

𝑡
𝑥
𝑖
)
󵄨󵄨󵄨󵄨󵄨
≥ (𝑏
∗

𝑡
+ 𝑤
∗𝑇

𝑡
𝑥
𝑖
)

(22)

holds for any pairs (𝑏∗
𝑡
, 𝑤
∗

𝑡
), (𝑏̂
𝑡
, 𝑤
𝑡
). From (22), it can be easily

obtained that

(𝑏̂
𝑡
+ 𝑤
𝑇

𝑡
𝑥
𝑖
) +

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
(𝑏
∗

𝑘
+ 𝑤
∗𝑇

𝑘
𝑥
𝑖
) − (𝑏̂

𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)
󵄨󵄨󵄨󵄨󵄨

≥ (𝑏
∗

𝑡
+ 𝑤
∗𝑇

𝑡
𝑥
𝑖
) .

(23)

that is,

𝑒
(𝑏̂𝑡+𝑤

𝑇

𝑡
𝑥𝑖)+∑

𝐾−1

𝑘=1
|(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)−(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖)| ≥ 𝑒

(𝑏
∗

𝑡
+𝑤
∗𝑇

𝑡
𝑥𝑖). (24)

Note that

𝑒
∑
𝐾−1

𝑘=1
|(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)−(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖)| ≥ 𝑒

0
= 1. (25)

Hence, from (24) and (25), we can get

Δ
1

Δ
2

≤ 1, (26)

where

Δ
1
= 1 + 𝑒

(𝑏
∗

1
+𝑤
∗𝑇

1
𝑥𝑖) + ⋅ ⋅ ⋅ + 𝑒

(𝑏
∗

𝑡
+𝑤
∗𝑇

𝑡
𝑥𝑖)

+ ⋅ ⋅ ⋅ + 𝑒
(𝑏
∗

𝐾−1
+𝑤
∗𝑇

𝐾−1
𝑥𝑖),

Δ
2
= 𝑒
∑
𝐾−1

𝑘=1
|(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)−(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖)|

+ 𝑒
(𝑏̂1+𝑤

𝑇

1
𝑥𝑖)+∑

𝐾−1

𝑘=1
|(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)−(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖)|

+ ⋅ ⋅ ⋅ + 𝑒
(𝑏̂𝑡+𝑤

𝑇

𝑡
𝑥𝑖)+∑

𝐾−1

𝑘=1
|(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)−(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖)|

+ ⋅ ⋅ ⋅ + 𝑒
(𝑏̂𝐾−1+𝑤

∗𝑇

𝐾−1
𝑥𝑖)+∑

𝐾−1

𝑘=1
|(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)−(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖)|.

(27)

Equation (26) is equivalent to the following inequality:

(1 + 𝑒
(𝑏
∗

1
+𝑤
∗𝑇

1
𝑥𝑖) + ⋅ ⋅ ⋅ + 𝑒

(𝑏
∗

𝐾−1
+𝑤
∗𝑇

𝐾−1
𝑥𝑖))

× ([1 + 𝑒
(𝑏̂1+𝑤

𝑇

1
𝑥𝑖) + ⋅ ⋅ ⋅ + 𝑒

(𝑏̂𝐾−1+𝑤
𝑇

𝐾−1
𝑥𝑖)]

⋅𝑒
∑
𝐾−1

𝑘=1
|(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)−(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖)|)

−1

≤ 1

⇐⇒ log 1 + 𝑒
(𝑏
∗

1
+𝑤
∗𝑇

1
𝑥𝑖) + ⋅ ⋅ ⋅ + 𝑒

(𝑏
∗

𝐾−1
+𝑤
∗𝑇

𝐾−1
𝑥𝑖)

1 + 𝑒
(𝑏̂1+𝑤

𝑇

1
𝑥𝑖) + ⋅ ⋅ ⋅ + 𝑒

(𝑏̂𝐾−1+𝑤
𝑇

𝐾−1
𝑥𝑖)

≤

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
(𝑏
∗

𝑘
+ 𝑤
∗𝑇

𝑘
𝑥
𝑖
) − (𝑏̂

𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)
󵄨󵄨󵄨󵄨󵄨

⇐⇒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log(1 +
𝐾−1

∑

𝑘=1

𝑒
(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖)) − log(1 +

𝐾−1

∑

𝑘=1

𝑒
(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
(𝑏
∗

𝑘
+ 𝑤
∗𝑇

𝑘
𝑥
𝑖
) − (𝑏̂

𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)
󵄨󵄨󵄨󵄨󵄨
.

(28)

Hence, inequality (21) holds. This completes the proof.

Using the results in Theorem 1, we prove that the multi-
nomial regression with elastic net penalty (19) can encourage
a grouping effect.

Theorem 2. Give the training data set (𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
),

. . . , (𝑥
𝑛
, 𝑦
𝑛
) and assume that the matrix 𝑋 and vector 𝑌

satisfy (1). If the pairs (𝑏̂, 𝑤) are the optimal solution of the
multinomial regression with elastic net penalty (19), then the
following inequality

󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)
󵄩󵄩󵄩󵄩2
≤
2√𝐾

√𝑛𝜆
2

√2 (1 − 𝜌). (29)

holds, where𝜌 = 𝑥𝑇
(𝑚)
𝑥
(𝑙)
= ∑
𝑛

𝑖=1
𝑥
𝑖𝑚
𝑥
𝑖𝑙
,𝑤
(𝑚)

is the𝑚th column
of parametermatrix𝑤, and𝑤

(𝑚)
is the 𝑙th column of parameter

matrix 𝑤.

Proof. First of all, we construct the new parameter pairs
(𝑏
∗
, 𝑤
∗
) = ([𝑏

∗

−
; 0⃗], [𝑤

∗

𝑘
; 0⃗]), where

𝑏
∗

−
= 𝑏̂
−
, 𝑤

∗

𝑘𝑗
󸀠 =

{

{

{

1

2
(𝑤
𝑘𝑚
+ 𝑤
𝑘𝑙
) , 𝑗
󸀠
= 𝑚, 𝑙,

𝑤
𝑘𝑗
󸀠
,

𝑗
󸀠
̸= 𝑚, 𝑙.

(30)

Let

𝐿 = −
1

𝑛

𝑛

∑

𝑖=1

[

𝐾−1

∑

𝑘=1

𝑦
𝑘𝑖
(𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)

− log(1 +
𝐾−1

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖))]

+ 𝜆
2

𝐾−1

∑

𝑘=1

𝑝

∑

𝑗=1

𝑤
2

𝑘𝑗
+ 𝜆
1

𝐾−1

∑

𝑘=1

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
.

(31)

Since the pairs (𝑏̂, 𝑤) are the optimal solution of the multino-
mial regression with elastic net penalty (19), it can be easily
obtained that

0 ≤ 𝐿 (𝜆
1
, 𝜆
2
, 𝑏
∗

−
, 𝑤
∗

−
) − 𝐿 (𝜆

1
, 𝜆
2
, 𝑏̂
−
, 𝑤
−
) . (32)
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Note that the function 𝐿
𝑘𝑖
(𝑏̂
𝑘
, 𝑤
𝑘
, 𝑥
𝑖
) = 𝑏
𝑘
+𝑤
𝑇

𝑘
𝑥
𝑖
is Lipschitz

continuous. Hence, we have

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑘𝑖
(𝑏
∗

𝑘
, 𝑤
∗

𝑘
, 𝑥
𝑖
) − 𝐿
𝑘𝑖
(𝑏̂
𝑘
, 𝑤
𝑘
, 𝑥
𝑖
)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑤
∗

𝑘
− 𝑤
𝑘
)
𝑇

𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
. (33)

From (33) and (21) and the definition of the parameter pairs
(𝑏
∗
, 𝑤
∗
), we have

−
1

𝑛

𝑛

∑

𝑖=1

[

𝐾−1

∑

𝑘=1

𝐿
𝑘𝑖
(𝑏
∗

𝑘
, 𝑤
∗

𝑘
, 𝑥
𝑖
) − 𝐿
𝑘𝑖
(𝑏̂
𝑘
, 𝑤
𝑘
, 𝑥
𝑖
)

− log(1 +
𝐾−1

∑

𝑘=1

𝑒
(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖))

+ log(1 +
𝐾−1

∑

𝑘=1

𝑒
(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖))]

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
1

𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

𝐿
𝑘𝑖
(𝑏
∗

𝑘
, 𝑤
∗

𝑘
, 𝑥
𝑖
) − 𝐿
𝑘𝑖
(𝑏̂
𝑘
, 𝑤
𝑘
, 𝑥
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log(1 +
𝐾−1

∑

𝑘=1

𝑒
(𝑏
∗

𝑘
+𝑤
∗𝑇

𝑘
𝑥𝑖))

− log(1 +
𝐾−1

∑

𝑘=1

𝑒
(𝑏̂𝑘+𝑤

𝑇

𝑘
𝑥𝑖))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑘𝑖
(𝑏
∗

𝑘
, 𝑤
∗

𝑘
, 𝑥
𝑖
) − 𝐿
𝑘𝑖
(𝑏̂
𝑘
, 𝑤
𝑘
, 𝑥
𝑖
)
󵄨󵄨󵄨󵄨󵄨

+
1

𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
(𝑏
∗

𝑘
+ 𝑤
∗𝑇

𝑘
𝑥
𝑖
) − (𝑏̂

𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)
󵄨󵄨󵄨󵄨󵄨

≤
1

𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑤
∗

𝑘
− 𝑤
𝑘
)
𝑇

𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

+
1

𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑤
∗

𝑘
− 𝑤
𝑘
)
𝑇

𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

=
1

2𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨(𝑤𝑘𝑚 − 𝑤𝑘𝑙) (𝑥𝑖𝑚 − 𝑥𝑖𝑙)
󵄨󵄨󵄨󵄨

+
1

2𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨(𝑤𝑘𝑚 − 𝑤𝑘𝑙) (𝑥𝑖𝑚 − 𝑥𝑖𝑙)
󵄨󵄨󵄨󵄨

=
1

2𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨(𝑤𝑘𝑚 − 𝑤𝑘𝑙) (𝑥𝑖𝑚 − 𝑥𝑖𝑙)
󵄨󵄨󵄨󵄨

+
1

2𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨(𝑤𝑘𝑚 − 𝑤𝑘𝑙) (𝑥𝑖𝑚 − 𝑥𝑖𝑙)
󵄨󵄨󵄨󵄨

=
1

2𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨(𝑥𝑖𝑚 − 𝑥𝑖𝑙)
󵄨󵄨󵄨󵄨 ⋅

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨(𝑤𝑘𝑚 − 𝑤𝑘𝑙)
󵄨󵄨󵄨󵄨

+
1

2𝑛

𝑛

∑

𝑖=1

𝐾−1

∑

𝑘=1

󵄨󵄨󵄨󵄨(𝑤𝑘𝑚 − 𝑤𝑘𝑙) (𝑥𝑖𝑚 − 𝑥𝑖𝑙)
󵄨󵄨󵄨󵄨

=
1

𝑛

󵄩󵄩󵄩󵄩𝑥(𝑚) − 𝑥(𝑙)
󵄩󵄩󵄩󵄩1
⋅
󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)

󵄩󵄩󵄩󵄩1
.

(34)

Analogically, we have

𝐾−1

∑

𝑘=1

𝑝

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑤
∗

𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑤
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
)

=

𝐾−1

∑

𝑘=1

(2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
𝑘𝑚
+ 𝑤
𝑘𝑙

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
󵄨󵄨󵄨󵄨𝑤𝑘𝑚

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑤𝑘𝑙
󵄨󵄨󵄨󵄨) ≤ 0,

𝐾−1

∑

𝑘=1

𝑝

∑

𝑗=1

(𝑤
∗

𝑘𝑗
)
2

− (𝑤
2

𝑘𝑗
)

= −
1

2

𝐾−1

∑

𝑘=1

(𝑤
𝑘𝑚
− 𝑤
𝑘𝑙
)
2

= −
1

2

󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)
󵄩󵄩󵄩󵄩

2

2
.

(35)

Substituting (34) and (35) into (32) gives

0 ≤
1

𝑛

󵄩󵄩󵄩󵄩𝑥(𝑚) − 𝑥(𝑙)
󵄩󵄩󵄩󵄩1
⋅
󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)

󵄩󵄩󵄩󵄩1
−
𝜆
2

2

󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)
󵄩󵄩󵄩󵄩

2

2
.

(36)

that is,

0 ≤
2

𝑛𝜆
2

󵄩󵄩󵄩󵄩𝑥(𝑚) − 𝑥(𝑙)
󵄩󵄩󵄩󵄩1
⋅
󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)

󵄩󵄩󵄩󵄩1
−
󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)

󵄩󵄩󵄩󵄩

2

2

≤
2√𝐾

𝑛𝜆
2

󵄩󵄩󵄩󵄩𝑥(𝑚) − 𝑥(𝑙)
󵄩󵄩󵄩󵄩1
⋅
󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)

󵄩󵄩󵄩󵄩2
−
󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)

󵄩󵄩󵄩󵄩

2

2
.

(37)

From (37), it can be easily obtained that

󵄩󵄩󵄩󵄩𝑤(𝑚) − 𝑤(𝑙)
󵄩󵄩󵄩󵄩

2

2

≤
2√𝐾

𝑛𝜆
2

󵄩󵄩󵄩󵄩𝑥(𝑚) − 𝑥(𝑙)
󵄩󵄩󵄩󵄩1
≤
2√𝐾

𝑛𝜆
2

⋅ √𝑛
󵄩󵄩󵄩󵄩𝑥(𝑚) − 𝑥(𝑙)

󵄩󵄩󵄩󵄩2

=
2√𝐾

√𝑛𝜆
2

√2 − 2𝑥
𝑇

(𝑚)
𝑥
(𝑙)
=
2√𝐾

√𝑛𝜆
2

√2 (1 − 𝜌),

(38)

where 𝜌 = 𝑥𝑇
(𝑚)
𝑥
(𝑙)
= ∑
𝑛

𝑖=1
𝑥
𝑖𝑚
𝑥
𝑖𝑙
. This completes the proof.

According to the inequality shown in Theorem 2, the
multinomial regression with elastic net penalty can assign
the same parameter vectors (i.e., 𝑤

(𝑚)
= 𝑤
(𝑙)
) to the high

correlated predictors 𝑥
(𝑚)
, 𝑥
(𝑙)

(i.e., 𝜌 = 1). This means that
the multinomial regression with elastic net penalty can select
genes in groups according to their correlation. According
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to the technical term in [14], this performance is called
grouping effect in gene selection for multiclass classification.
Particularly, for the binary classification, that is, 𝐾 = 2,
inequality (29) becomes

󵄨󵄨󵄨󵄨𝑤1𝑚 − 𝑤1𝑙
󵄨󵄨󵄨󵄨 ≤

2

√𝑛𝜆
2

√2 (1 − 𝜌). (39)

This corresponds with the results in [7].

3.3. SolvingAlgorithm. Microarray is the typical small 𝑛, large
𝑝 problem. Because the number of the genes in microarray
data is very large, it will result in the curse of dimensionality
to solve the proposed multinomial regression. To improve
the solving speed, Friedman et al. proposed the pairwise
coordinate decent algorithm which takes advantage of the
sparse property of characteristic. Therefore, we choose the
pairwise coordinate decent algorithm to solve the multi-
nomial regression with elastic net penalty. To this end, we
convert (19) into the following form:

argmin
(𝑏,𝑤)

{

{

{

−
1

𝑛

𝑛

∑

𝑖=1

[

𝐾

∑

𝑘=1

𝑦
𝑖𝑘
(𝑏
𝑘
+ 𝑤
𝑇

𝑘
𝑥
𝑖
)

− log
𝐾

∑

𝑘=1

𝑒
(𝑏𝑘+𝑤

𝑇

𝑘
𝑥𝑖)]

+𝜆[

[

𝛼

𝐾

∑

𝑘=1

𝑝

∑

𝑗=1

𝑤
2

𝑘𝑗
+ (1 − 𝛼)

𝐾

∑

𝑘=1

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

}

}

}

.

(40)

Equation (40) can be easily solved by using the R package
“glmnet” which is publicly available.

4. Conclusion

By combining the multinomial likelihood loss function hav-
ing explicit probability meanings with the multiclass elastic
net penalty selecting genes in groups, themultinomial regres-
sion with elastic net penalty for the multiclass classification
problem of microarray data was proposed in this paper. The
proposed multinomial regression is proved to encourage a
grouping effect in gene selection. In the next work, we will
apply this optimizationmodel to the real microarray data and
verify the specific biological significance.
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