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This paper is concerned with the optimal linear estimation for a class of direct-time Markov jump systems with missing
observations. An observer-based approach of fault detection and isolation (FDI) is investigated as a detection mechanic of fault
case. For systems with known information, a conditional prediction of observations is applied and fault observations are replaced
and isolated; then, an FDI linear minimum mean square error estimation (LMMSE) can be developed by comprehensive utilizing
of the correct information offered by systems. A recursive equation of filtering based on the geometric arguments can be obtained.
Meanwhile, a stability of the state estimator will be guaranteed under appropriate assumption.

1. Introduction

Discrete-time Markov jump linear systems (MJLSs) are basi-
cally linear discrete-time systems with discretional parame-
ters evolving with a finite-state Markov chain. It can be used
in modeling systems with abrupt structures, for example,
those which may be found in signal processing, fault detec-
tion [1, 2], and subsystem switching. One classical application
ismaneuvering target tracking, inwhich signals of interest are
modeled by using MJLSs [3]. In these fields, the problems of
state estimation forMJLSs play an essential role in recovering
some desired variables from given noisy observations for
output variables. However, many approaches of achieving the
state estimation of MJLSs include the generalized pseudo-
Bayesian (GPB) algorithm [4, 5], the interacting multiple
model (IMM) filtering [6], stochastic sampling based meth-
ods [7, 8], and LMMSE filter. Those methods are different
from each other in their estimation criteria and means [2, 9–
12]. Among them, LMMSE filter has been well studied for
MJLSs in many of literary works [9].

On the other hand, since applications of sensors net-
works are becoming ubiquitous in practical systems, wire-
less or wireline communication channels are essential for
data communication. Examples are offered ranging from
advanced aircraft, spacecraft to manufacturing process. As
communication channels are time varying and unreliable,

the phenomena of random time delays and random packet
dropout usually occur in these networked systems. Hence,
more and more attention has been paid to systems with
observer-based fault during the past years. For example,
studies on optimal recursive filter for systems with intermit-
tent observations can be traced back toNahi [13], whose work
assumed that uncertainty of observations is independent and
identically distributed. Afterwards, by using linear matrix
inequalities (LMIs) techniques, the 𝐿
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filtering and control problems occurring in stochastic systems
with uncertain elements [14–21]. In [22–25], the stability anal-
ysis of randomRiccati equation arising fromKalman filtering
with intermittent observations was investigated elaborately.
𝐻
∞

filtering algorithm [26–28] has been developed for
discrete systemswith randompacket losses in [29, 30]. In [31],
a robust filtering algorithmwas developed for state estimation
ofMJLSs with randommissing observation by applying basic
IMM approach and 𝐻
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technique. Reference [32] dealt with

the fault detection filtering (FDF) design within stochastic
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filtering frame for a class of discrete-time nonlinear
Markov jump systems with lost measurements.

Although the aforementioned references give efficient
and practical tools to deal with the filtering problems
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for systems with package dropout, the results given by
the methods constructed based on LMIs techniques are
sometimes too conservative. What is more, IMM approach
mentioned a priori requires online calculations. Inspired by
the effectiveness of LMMSE mechanic used in solving state
estimation problem of MJLSs with random time delays in
[33], the problem of state estimation of MJLSs with random
missing observations is formulated into LMMSE filtering
frame.This frame can lead to a time-varying linear filter easy
to implement. At the same time, most calculations can be
performed off-line.

Aiming at solving the issue of uncertain observations in
MJLSs, this paper provides a heuristic method for detecting
the fault in process of transmitting observation. An approach
of fault detection and isolation (FDI) [32, 34] for a class of
MJLSs with missing observations will be investigated. The
key point of FDI is to construct the residual generator and
determine the residual evaluation function and the threshold.
Then, by comparing the value of the evaluation function with
the prescribed threshold, we will make judgment whether an
alarm of fault is generated. The situation of uncertainties of
observation can be naturally and conveniently reflected.With
knowing the information of the faulty case, a conditional
prediction of observation will be obtained, which can be
used as replacement of the faulty one. At this time, we can
utilize the optimal state estimator of pervious instant and
parameters for constructing observer of system to estimate
the observation at current time. By this way, we can skip and
avoid the fault observation.

Accordingly, by applying the basic FDI approach and
basic LMMSE algorithm, an FDI-LMMSE filtering algorithm
is developed for state estimation of MJLSs with random
missing observation. In order to solve the optimal estimation
problem, the measurements’ loss process is modeled as a
Bernoulli distributed white sequence taking values from 0 to
1 randomly. The estimation problem is then reformulated as
an optimal linear filtering of a class of MJLSs, which have
random missing observation and necessary model compen-
sation, via state augmentation [35–38]. A recursive filtering
is formulated in terms of Riccati difference equations. At
the same time, we will show that estimator is stable under
necessary assumptions in this paper.

This paper is organized as follows. Section 2 gives the
problem formulation. A recursive optimal solution is given in
Section 3. Its stability is discussed in Section 4. In Section 5,
a numerical example is shown to explain the effectiveness of
approach proposed in our paper. At last, the conclusions are
drawn in Section 6.

2. Problem Formulation

On the stochastic basis (Ω,F
𝑘
, {F
𝑘
}, 𝑃), considering the

following jump Markov linear system model:

𝑥
𝑘+1

= 𝐴 (𝑟
𝑘
) 𝑥
𝑘
+ 𝐵 (𝑟

𝑘
) (𝑎 (𝑟

𝑘
) + 𝑤
𝑘
)

𝑦
𝑘
= 𝛾
𝑘
𝐶 (𝑟
𝑘
) 𝑥
𝑘
+ 𝐷 (𝑟

𝑘
) V
𝑘
,

(1)

where {𝑥
𝑘

∈ 𝑅
𝑛
} is continuous-valued based-state sequence

with known initial distribution 𝑥
0

= N(𝑥
0
; 𝑥̄
0
, Σ
0
). 𝑎(𝑟
𝑘
) ∈

𝑅
𝑛 is assumed to be known time-varying constant to each

value of 𝑟
𝑘
. {𝑦
𝑘

∈ 𝑅
𝑠
} is the noisy observation sequence.

{𝑤
𝑘
∈ 𝑅
𝑛
} is the noisy observation sequence with distribution

𝑤
𝑘

∼ 𝑁(𝑤
𝑘
; 0, 𝑄). {V

𝑘
∈ 𝑅
𝑠
} is a white measurement noise

sequence independent of the process noise with distribution
V
𝑘
∼ 𝑁(V

𝑘
; 0, 𝑅).

Remark 1. 𝑎(𝑟
𝑘
) is a compensation between practical systems

and models applied in this paper.
{𝑟
𝑘
} is the unknown discrete-valued Markov chain with a

finite-state space𝑁 = {1, 2, . . . , 𝑁}.The transition probability
matrix isΠ = [𝜋

𝑖𝑗
]
𝑁×𝑁

, where 𝑖, 𝑗 ∈ 𝑁.We set 𝜇
𝑖
(𝑘) := 𝑃(𝑟

𝑘
=
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𝑘
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𝑘
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0
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𝑟
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𝑘
) are assumed to be known time-varying

systemmatrices to each value of 𝑟
𝑘
. For notational simplicity,

the following notations and definitions hold in the rest of the
paper:

𝑟
𝑗

𝑘
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𝑗
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𝑗

𝑘
) .

(2)

In this paper, consider that the observations are sent to
the estimator via a Gilbert-Elliot channel, where the packet
arrival is modeled using a binary random variable {𝛾

𝑘
}, with

probability 𝑃(𝛾
𝑘

= 1) = 𝜂, and with 𝛾
𝑘
independent of 𝛾

𝑠
if

𝑘 ̸= 𝑠. Let 𝛾
𝑘
be independent of𝑤

𝑘
, V
𝑘
, 𝑥
𝑘
; that is, according to

this model, themeasurement equation consists of noise alone
or noise plus signal, depending on whether 𝛾

𝑘
is 0 or 1.

Notation 1. Some notations which we will use throughout
the paper should be presented first. We will denote by 𝑅

𝑚×𝑛

the space of 𝑚 × 𝑛 real matrices and by 𝑅
𝑚 the space of 𝑚-

dimensional real vectors. The superscript 𝑇 indicates trans-
pose of a matrix. For a collection of 𝑁 matrices 𝐷

1
, . . . , 𝐷

𝑁
,

with 𝐷
𝑗
∈ 𝑅
𝑚×𝑛, diag{𝐷

𝑗
} ∈ 𝑅
𝑁𝑚×𝑁𝑛 represents the diagonal

matrix formed by 𝐷
𝑗
in the diagonal.

Notation 2. Define𝐻𝑛 = {𝑋 = (𝑋
1
⋅ ⋅ ⋅ 𝑋
𝑁
); 𝑋
𝑖
∈ 𝑅
𝑛×𝑛

, 𝑖 ∈ 𝑁}

and 𝐻
+𝑛

= {𝑋 = (𝑋
1
⋅ ⋅ ⋅ 𝑋
𝑁
); 𝑋
𝑖

≥ 0, 𝑖 ∈ 𝑁}. For 𝑋 =

(𝑋
1
⋅ ⋅ ⋅ 𝑋
𝑁
) ∈ 𝐻

+𝑛, 𝑉 = (𝑉
1
⋅ ⋅ ⋅ 𝑉
𝑁
) ∈ 𝐻

+𝑛, if 𝑋 ≥ 𝑉 for each
𝑖 ∈ 𝑁, we have 𝑋

𝑖
≥ 𝑉
𝑖
.

3. Recursive Optimal Solution

In this section, a solution to the optimal estimator will be pre-
sented via the projection theory and the state augmentation
in the Hilbert space.

3.1. Preliminaries. First, we denote byL(𝑦
𝑘
) the linear space

spanned by the observation 𝑦
𝑘

= {𝑦
𝑇

𝑘
, . . . , 𝑦

𝑇

0
}. If 𝜃 =

∑
𝑘

𝑖=1
𝜉(𝑖)
𝑇
𝑦
𝑖
for some 𝜉(𝑖) ∈ 𝑅

𝑚, 𝑖 = 1, . . . , 𝑘, the random
variable 𝜃 ∈ L(𝑦

𝑘
).
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Let 1
{𝑟𝑘=𝑗}

represent an indicator of Markov process,
which is defined as follows:

𝑧
𝑗
(𝑘) ≜ 𝑥

𝑘
1
{𝑟𝑘=𝑗}

∈ 𝑅
𝑛 (3)

𝑧 (𝑘) ≜ (

𝑧
1
(𝑘)

...
𝑧
𝑁

(𝑘)

) ∈ 𝑅
𝑁𝑛

. (4)

And call 𝑧̂(𝑘) = 𝐸(𝑧(𝑘)). Define also 𝑧̂(𝑘 | 𝑘 − 1) as the
projection of 𝑧(𝑘) onto the linear spaceL(𝑦

𝑘
) and

𝑧̃ (𝑘 | 𝑘 − 1) ≜ 𝑧 (𝑘) − 𝑧̂ (𝑘 | 𝑘 − 1) . (5)

Then, we first define the following second-moment matrices
associated with the aforementioned variables. They play key
roles in deriving the covariance matrices of the estimator
errors and optimal estimator:

𝑍
𝑖
(𝑘) ≜ 𝐸 {𝑧

𝑖
(𝑘) (𝑧
𝑖
(𝑘))
𝑇

} ∈ B (𝑅
𝑛
) ,

𝑍 (𝑘) ≜ 𝐸 {𝑧 (𝑘) (𝑧 (𝑘))
𝑇
} ∈ B (𝑅

𝑁𝑛
) ,

𝑍 (𝑘 | 𝑙) ≜ 𝐸 {𝑧̂ (𝑘 | 𝑙) (𝑧̂(𝑘 | 𝑙))
𝑇
} ∈ B (𝑅

𝑁𝑛
) ,

𝑍 (𝑘 | 𝑙) ≜ 𝐸 {𝑧̃ (𝑘 | 𝑙) (𝑧̃(𝑘 | 𝑙))
𝑇
} ∈ B (𝑅

𝑁𝑛
) .

(6)

Considering the following augment matrices:

𝐴 (𝑘) ≜
[
[

[

𝜋
11

(𝑘) 𝐴
1
(𝑘) ⋅ ⋅ ⋅ 𝜋

1𝑁
(𝑘) 𝐴
𝑁

(𝑘)

... d
...

𝜋
𝑁1

(𝑘) 𝐴
1
(𝑘) ⋅ ⋅ ⋅ 𝜋

𝑁𝑁
(𝑘) 𝐴
𝑁

(𝑘)

]
]

]

∈ B (𝑅
𝑁𝑛

)

𝐷 (𝑘) ≜ [𝐷
1
(𝑘) 𝜇
1
(𝑘)
1/2

⋅ ⋅ ⋅ 𝐷
𝑁

(𝑘) 𝜇
𝑁
(𝑘)
1/2

]

∈ B (𝑅
𝑁𝑠

, 𝑅
𝑠
) ,

𝐶 (𝑘) ≜ [𝐶1 ⋅ ⋅ ⋅ 𝐶
𝑁] ∈ B (𝑅

𝑁𝑛
, 𝑅
𝑠
) ,

𝑎 ≜ [𝑎
1
, . . . , 𝑎

𝑁
] ,

𝐵 (𝑘) ≜ diag [[(𝜋
1𝑗

𝑘
𝜇
1

𝑘
)
1/2

𝐵
1
⋅ ⋅ ⋅ (𝜋
𝑁𝑗

𝑘
𝜇
𝑁

𝑘
)
1/2

𝐵
𝑁
]]

∈ B (𝑅
𝑁
2
𝑛
, 𝑅
𝑁𝑛

)

(7)

then system can be described as follows:

𝑧 (𝑘 + 1) = 𝐴 (𝑘) 𝑧 (𝑘) + 𝐵 (𝑘) (𝑎 + 𝑤 (𝑘))

𝑦 (𝑘) = 𝛾
𝑘
𝐶 (𝑘) 𝑧 (𝑘) + 𝐷 (𝑘) V (𝑘) .

(8)

Note that 𝑦(𝑘) = 𝑦
𝑘
.

Assumption 2. For all 𝑘, 𝐵(𝑘)𝑎 𝑎
𝑇
𝐵(𝑘)
𝑇

≫ 𝑃, where 𝑃

convergency value of 𝑍(𝑘 | 𝑘 − 1), which will be given in
Section 3.

3.2. Optimal Estimator. From geometric arguments in [39],
the LMMSE filter for MJLSs with uncertain observations can
be derived in this section. The following lemmas present
necessary and sufficient conditions on derivation of FDI-
LMMSE filtering.

Lemma 3. For any given time instant 𝑘, one has

𝑍
𝑗
(𝑘 + 1) =

𝑚

∑

𝑖=1

𝜋
𝑖𝑗
𝐴
𝑖
(𝑘) 𝑍
𝑖
(𝑘) 𝐴
𝑇

𝑖
(𝑘)

+

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝜇
𝑖

𝑘−1
𝐵
𝑖
(𝑎
𝑖
𝑎
𝑇

𝑖
+ 𝑄)𝐵

𝑇

𝑖

𝑍 (𝑘) = diag [𝑍
𝑗
(𝑘)] ,

(9)

where 𝑍
𝑖
(0) = 𝜇

𝑖

0
𝑋
0
.

Proof. For any given instant 𝑘, we have from (8) that

𝑍
𝑗
(𝑘 + 1) = 𝐸 [𝑧

𝑗
(𝑘 + 1) 𝑧

𝑇

𝑗
(𝑘 + 1)]

=

𝑚

∑

𝑖=1

𝜋
𝑖𝑗
𝐴
𝑖
(𝑘) 𝑍
𝑖
(𝑘) 𝐴
𝑇

𝑖
(𝑘)

+

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝜇
𝑖

𝑘−1
𝐵
𝑖
(𝑎
𝑖
𝑎
𝑇

𝑖
+ 𝑄)𝐵

𝑇

𝑖
.

(10)

Recalling that 𝑋
0

= 𝐸[𝑥̄
0
𝑥̄
𝑇

0
], initial covariance matrix

𝑍
𝑖
(0) = 𝜇

𝑖

0
𝑋
0
.

To derive the optimal filter, we first define the innovation
sequence as

𝑦 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘 | 𝑘 − 1) , (11)

where conditional prediction 𝑦(𝑘 | 𝑘 − 1) is the projection of
𝑦(𝑘) onto the linear space ofL(𝑦

𝑘−1
). Consider

𝑦 (𝑘 | 𝑘 − 1) = 𝐶 (𝑘) 𝑧̂ (𝑘 | 𝑘 − 1) . (12)

Then, according to (4) and (8), the generated residual will be
obtained as

𝑦 (𝑘 | 𝑘 − 1) = {
𝐶 (𝑘) 𝑧̃ (𝑘 | 𝑘 − 1) + 𝐷 (𝑘) V (𝑘) , 𝛾

𝑘
= 1,

𝐷 (𝑘) V (𝑘) − 𝐶 (𝑘) 𝑧̂ (𝑘 | 𝑘 − 1) , 𝛾
𝑘
= 0.

(13)

In the following, an FDI scheme will be constructed,
which can detect whether observation at instant 𝑘 is lost.
In this paper, we choose the following mean square of the
residual as the residual evaluation function to measure the
energy of the residual:

𝑆
𝑘
= 𝐸 (𝑦 (𝑘 | 𝑘 − 1) 𝑦(𝑘 | 𝑘 − 1)

𝑇
) . (14)

From (12)-(13) we get that

𝐸 (𝑦 (𝑘 | 𝑘 − 1) 𝑦(𝑘 | 𝑘 − 1)
𝑇
)

= {
𝐶 (𝑘) 𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
, 𝛾
𝑘
= 1,

𝐶 (𝑘) 𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
, 𝛾
𝑘
= 0.

(15)
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Suppose that𝑍(𝑘 | 𝑘 − 1) is convergent to 𝑃 at the instant
𝑘, from Assumption 2, we have that

𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
≫ 𝑍(𝑘 | 𝑘 − 1) . (16)

If 𝛾
𝑘
= 1, we have that

𝑆
𝛾𝑘=1

𝑘
= 𝐶 (𝑘) 𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇

≪ 𝐶 (𝑘) 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
𝐶(𝑘)
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
.

(17)

If 𝛾
𝑘
= 0,

𝑆
𝛾𝑘=0

𝑘
= 𝐶 (𝑘) 𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
. (18)

From (8),

𝑍 (𝑘 | 𝑘 − 1) = 𝐴 (𝑘 − 1)𝑍 (𝑘 − 1 | 𝑘 − 1)𝐴(𝑘 − 1)
𝑇

+ 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇

≥ 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
;

(19)

we have that

𝑆
𝛾𝑘=0

𝑘
≥ 𝐶 (𝑘) 𝐵 (𝑘 − 1) 𝑎 𝑎

𝑇
𝐵(𝑘 − 1)

𝑇
𝐶(𝑘)
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
.

(20)

The FDI scheme in the following lemma will play a key role
in deriving the main results of this paper.

Lemma 4. With above derivation, we can decide whether the
observations of system were lost and detect the lost information
at instant 𝑘 according to the following rule:

𝑆
𝑘
> 𝑆
𝑡ℎ

󳨐⇒ 𝛾
𝑘
= 0

𝑆
𝑘
≤ 𝑆
𝑡ℎ

󳨐⇒ 𝛾
𝑘
= 1,

(21)

where

𝑆
𝑡ℎ

= 𝐶 (𝑘) 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
𝐶(𝑘)
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
.

(22)

With the fault being detected, the missing information
𝛾
𝑘
can be taken into consideration when designing the FDI-

LMMSE filter. The fault observation can be replaced and
isolated by 𝑦(𝑘 | 𝑘 − 1). By the above approach, we can
skip the error information at the instant 𝑘 and use the correct
information of pervious instant 𝑘 − 1 to estimate the value of
𝑥(𝑘 | 𝑘) state at instant 𝑘 directly.

Theorem 5. Consider the system represented by (8). Then the
LMMSE 𝑥

𝑘|𝑘
is given by

𝑥
𝑘|𝑘

=

𝑁

∑

𝑖=1

𝑧̂
𝑖
(𝑘 | 𝑘) , (23)

where 𝑧̂
𝑐
(𝑘 | 𝑘) satisfies the recursive equation

𝑧̂
𝛾𝑘

(𝑘 | 𝑘) = 𝑧̂ (𝑘 | 𝑘 − 1) + 𝛾
𝑘
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇

× [𝐶(𝑘)𝑍(𝑘 | 𝑘 − 1)𝐶(𝑘)
𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]
−1

× (𝐶 (𝑘) 𝑧̃ (𝑘 | 𝑘 − 1) + 𝐷 (𝑟
𝑘
) V (𝑘))

(24)

𝑧̂ (𝑘 + 1 | 𝑘) = 𝐴 (𝑘) 𝑧̂ (𝑘 | 𝑘) + 𝐵 (𝑘) 𝑎, (25)

where 𝑧̂(0 | −1) = [𝜇
1

0
𝑥
0
, . . . , 𝜇

𝑁

0
𝑥
0
]
𝑇.

Proof. Recall that observation estimator is given by (12).
Now, 𝑦(𝑘 | 𝑘 − 1) can be rewritten as the following

equation:

𝑦 (𝑘 | 𝑘 − 1) = 𝛾
𝑘 [𝐶 (𝑘) 𝑧̃ (𝑘 | 𝑘 − 1) + 𝐷 (𝑘) V (𝑘)] . (26)

Considering the geometric argument as in [39], the
estimator 𝑧̂(𝑘 | 𝑘 − 1) satisfies the following equations:

𝑧̂ (𝑘 | 𝑘 − 1) = 𝐸(𝑧 (𝑘) (𝑦
𝑘−1

)
𝑇

) cov ((𝑦
𝑘−1

)
−1

𝑦
𝑘−1

) (27)

𝑧̂ (𝑘 | 𝑘) = 𝑧̂ (𝑘 | 𝑘 − 1) + 𝐸 (𝑧̂ (𝑘) 𝑦(𝑘 | 𝑘 − 1)
𝑇
)

× 𝐸(𝑦 (𝑘 | 𝑘 − 1) 𝑦(𝑘 | 𝑘 − 1)
𝑇
)
−1

× (𝑦 (𝑘) − 𝑦 (𝑘 | 𝑘 − 1)) .

(28)

From (26), we get that

𝐸 (𝑧̂ (𝑘) 𝑦(𝑘 | 𝑘 − 1)
𝑇
) = 𝛾
𝑘
[𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇
] . (29)

Because V
𝑘
is independent of {𝑟

𝑘
, 𝑦(𝑘 − 1)}, we have that

⟨𝛼
𝑇
𝐷(𝑟
𝑘
) V
𝑘
; 𝛽
𝑇
𝑦 (𝑘 − 1)⟩

= 𝐸 (𝛼
𝑇
𝐷(𝑟
𝑘
) V
𝑘
𝛽
𝑇
𝑦 (𝑘 − 1))

= 𝐸 (V𝑇
𝑘
) 𝐸 [𝛼

𝑇
𝐷(𝑟
𝑘
) 𝛽
𝑇
𝑦 (𝑘 − 1)]

= 0,

(30)

showing that 𝐷(𝑘)V
𝑘
is orthogonal to L(𝑦

𝑘−1
). Similar

reasoning shows the orthogonality between𝐷(𝑘)V
𝑘
and 𝑧̃(𝑘 |

𝑘 − 1). Recalling that 𝑧̂(𝑘 | 𝑘 − 1) ∈ L(𝑦
𝑘−1

) and 𝑧̃(𝑘 | 𝑘 − 1)

are orthogonal toL(𝑦
𝑘−1

), we can obtain that 𝑧̃(𝑘 | 𝑘 − 1) is
orthogonal to 𝑧̂(𝑘 | 𝑘 − 1). Then, from (27), the result can be
obtained as follows:

𝑧̂
𝑗
(𝑘 | 𝑘 − 1) = 𝐸(𝑧

𝑗
(𝑘) (𝑦

𝑘−1
)
𝑇

) cov ((𝑦
𝑘−1

)
−1

𝑦
𝑘−1

)

=

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝐴
𝑖
𝑧̂
𝑖
(𝑘 − 1 | 𝑘 − 1) +

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝜇
𝑖

𝑘−1
𝐵
𝑖
𝑎
𝑖
.

(31)
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From (11), (28) and (26), (29), we get that

𝑧̂ (𝑘 | 𝑘)

= 𝑧̂ (𝑘 | 𝑘 − 1) + 𝛾
𝑘
𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇

× [𝐶(𝑘)𝑍(𝑘 | 𝑘 − 1)𝐶(𝑘)
𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]
−1

× (𝐶 (𝑘) 𝑧̃ (𝑘 | 𝑘 − 1) + 𝐷 (𝑟
𝑘
) V (𝑘)) .

(32)

The positive-semidefinite matrices 𝑍(𝑘 | 𝑘 − 1) are
obtained from

𝑍 (𝑘 | 𝑘 − 1) = 𝑍 (𝑘) − 𝑍 (𝑘 | 𝑘 − 1) . (33)

And the recursive equation about 𝑍(𝑘 | 𝑘 − 1) is given as
follows:

𝑍
𝛾𝑘

(𝑘 | 𝑘)

= 𝑍
𝛾𝑘

(𝑘 | 𝑘 − 1)

+ 𝛾
2

𝑘
𝑍
𝛾𝑘

(𝑘 | 𝑘 − 1) 𝐶(𝑘)
𝑇

× (𝐶(𝑘)𝑍
𝛾𝑘
(𝑘 | 𝑘 − 1)𝐶(𝑘)

𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
)
−1

× 𝐶 (𝑘) 𝑍
𝛾𝑘

(𝑘 | 𝑘 − 1)

𝑍
𝛾𝑘

(𝑘 | 𝑘 − 1)

= 𝐴 (𝑘 − 1) 𝑍
𝛾𝑘−1

(𝑘 − 1 | 𝑘 − 1)𝐴(𝑘 − 1)
𝑇

+ 𝐵 (𝑘 − 1) 𝑎 𝑎
𝑇
𝐵(𝑘 − 1)

𝑇
,

(34)

where 𝑍(0 | −1) = 𝑧(0 | −1)𝑧(0 | −1)
𝑇.

𝑍(𝑘 + 1 | 𝑘) can be derived directly as a recursive Riccati
equation in the following derivation. In the following, we
denote the linear operator

Ψ (⋅, 𝑘) : 𝐻
𝑛
󳨀→ 𝐵(𝑅

𝑁𝑛
) (35)

by Γ(𝑘), in which Ψ(⋅, 𝑘) is

Ψ (Γ (𝑘)) = diag[

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
𝐴
𝑖
𝑍
𝑖
(𝑘) 𝐴
𝑇

𝑖
]

− 𝐴 (𝑘) (diag [𝑍
𝑖
(𝑘)]) 𝐴(𝑘)

𝑇
≥ 0.

(36)

Theorem6. 𝑍(𝑘+1 | 𝑘) satisfies the following recursive Riccati
equation:

𝑍 (𝑘 + 1 | 𝑘) = 𝐴 (𝑘) 𝑍 (𝑘 | 𝑘 − 1)𝐴(𝑘)
𝑇

+ Ψ (Γ (𝑘) , 𝑘) + 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇

− 𝛾
2

𝑘
𝐴 (𝑘)𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)

𝑇

× [𝐶(𝑘)𝑍(𝑘 | 𝑘 − 1)𝐶(𝑘)
𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]
−1

× 𝐶 (𝑘) 𝑍 (𝑘 | 𝑘 − 1)𝐴(𝑘)
𝑇
,

(37)

where Γ(𝑘) = (𝑍
1
(𝑘), 𝑍

2
(𝑘), . . . , 𝑍

𝑁
(𝑘)) is given by the

recursive equation (9) from Lemma 3.
Unlike the classical case, the sequence {𝑍(𝑘 + 1 | 𝑘)}

𝑘∈𝑍+
is

now random, which result from its dependence on the random
sequence {𝛾

𝑘
}
𝑘∈𝑍+

.

Proof. Rewrite state equation in (8) as follows:

𝑧 (𝑘 + 1) = 𝐴 (𝑘) 𝑧 (𝑘) + 𝑀 (𝑘 + 1) 𝑧 (𝑘) + 𝐵 (𝑘) 𝑎 + 𝜗 (𝑘) ,

(38)

where

𝑀(𝑘 + 1, 𝑗) = [𝑚
1
(𝑘 + 1, 𝑗) ⋅ ⋅ ⋅ 𝑚

𝑁
(𝑘 + 1, 𝑗)] ,

𝑚
𝑖
(𝑘 + 1, 𝑗) = (1

{𝑟𝑘+1=𝑗}
− 𝜋
𝑖𝑗
)𝐴
𝑖
1
{𝑟𝑘=𝑖}

,

𝑀 (𝑘 + 1) =
[
[

[

𝑀(𝑘 + 1, 1)

...
𝑀(𝑘 + 1,𝑁)

]
]

]

,

𝜗 (𝑘) =
[
[

[

1
{𝑟𝑘+1=1}

𝐵
1
𝑤 (𝑘)

...
1
{𝑟𝑘+1=𝑁}

𝐵
𝑁
𝑤 (𝑘)

]
]

]

.

(39)

From (32), we define

𝑇 (𝑘) = − 𝐴 (𝑘) 𝑍 (𝑘 | 𝑘 − 1) 𝐶(𝑘)
𝑇

× [𝐶(𝑘)𝑍(𝑘 | 𝑘 − 1)𝐶(𝑘)
𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]
−1

.

(40)

From (25) and (32), we have that

𝑧̂
𝛾𝑘

(𝑘 + 1 | 𝑘) = 𝐴 (𝑘) 𝑧̂ (𝑘 | 𝑘 − 1)

+ 𝛾
𝑘
𝑇 (𝑘) 𝐶 (𝑘) 𝑧̃ (𝑘 | 𝑘 − 1)

+ 𝐵 (𝑘) 𝑎 + 𝛾
𝑘
𝑇 (𝑘)𝐷 (𝑘)𝑤

𝑘
.

(41)

Then from (41) and (38), we get that

𝑧̃
𝛾𝑘

(𝑘 + 1 | 𝑘) = 𝐴 (𝑘) 𝑧̃ (𝑘 | 𝑘 − 1)

+ 𝛾
𝑘
𝑇 (𝑘) 𝐶 (𝑘) 𝑧̃ (𝑘 | 𝑘 − 1)

+ 𝑀 (𝑘) 𝑧 (𝑘) + 𝜗 (𝑘) + 𝛾
𝑘
𝑇 (𝑘)𝐷 (𝑘)𝑤

𝑘
.

(42)

Therefore, at this point, we obtain the recursive equation
for 𝑍(𝑘 | 𝑘 − 1) as follows:

𝑍
𝛾𝑘

(𝑘 + 1 | 𝑘) = (𝐴 (𝑘) + 𝛾
𝑘
𝑇 (𝑘) 𝐶 (𝑘))

× 𝑍 (𝑘 | 𝑘 − 1) (𝐴(𝑘) + 𝛾
𝑘
𝑇(𝑘)𝐶(𝑘))

𝑇

+ 𝐸 (𝑀 (𝑘 + 1) 𝑧 (𝑘) 𝑧(𝑘)
𝑇
𝑀(𝑘 + 1)

𝑇
)

+ 𝐸 (𝜗 (𝑘) 𝜗(𝑘)
𝑇
)

+ 𝛾
2

𝑘
𝑇 (𝑘)𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
𝑇(𝑘)
𝑇
.

(43)
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By a series of algebraic manipulations, we have

𝐸 (𝑀 (𝑘 + 1) 𝑧 (𝑘) 𝑧(𝑘)
𝑇
𝑀(𝑘 + 1)

𝑇
) = Ψ (Γ (𝑘) , 𝑘)

𝐸 (𝜗 (𝑘) 𝜗(𝑘)
𝑇
) = 𝐵 (𝑘)𝑄𝐵(𝑘)

𝑇
.

(44)

Substituting (44) into (43) yields the recursive equation
for 𝑍(𝑘 | 𝑘 − 1) as

𝑍
𝛾𝑘

(𝑘 + 1 | 𝑘) = (𝐴 (𝑘) + 𝛾
𝑘
𝑇 (𝑘) 𝐶 (𝑘)) 𝑍 (𝑘 | 𝑘 − 1)

× (𝐴(𝑘) + 𝛾
𝑘
𝑇(𝑘)𝐶(𝑘))

𝑇

+ Ψ (Γ (𝑘) , 𝑘) + 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇

+ 𝛾
2

𝑘
𝑇 (𝑘)𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
𝑇(𝑘)
𝑇
.

(45)

4. Stability of the State Estimator

As we all see, the intermittent observations are the source
of potential instability. From Theorem 6, however, the error
covariance matrix obtained from the LMMSE can be rewrit-
ten in terms of a recursive Riccati equation of 𝛾

𝑘
. In this

section, based on that following assumptions hold, we show
that the proposed estimator is stable as provided in our paper.

Assumption 7. {𝑟
𝑘
, 𝑘 = 0, 1 ⋅ ⋅ ⋅ } is assumed to be ergodic

Markov chain.

Assumption 8. System (1) is mean square stable (MSS)
according to the definition in [35].

First, (37) describes a recursive Riccati equation for𝑍(𝑘+

1 | 𝑘). We should establish now its convergence when 𝑘 →

∞. It follows fromAssumption 2 that lim
𝑘→∞

𝑃(𝑟
𝑘
= 𝑖) exists

and it is independent of 𝑟
0
. We define

𝜇
𝑖
= lim
𝑘→∞

𝑃 (𝑟
𝑘
= 𝑖) = lim

𝑘→∞

𝜇
𝑖
(𝑘) . (46)

We redefine the matrix as follows:

𝐴 ≜ (

𝜋
11
𝐴
1

⋅ ⋅ ⋅ 𝜋
1𝑁

𝐴
𝑁

... d
...

𝜋
𝑁1

𝐴
1

⋅ ⋅ ⋅ 𝜋
𝑁𝑁

𝐴
𝑁

),

𝐵 ≜ diag [[(𝜋
1𝑗
𝜇
1
)
1/2

𝐵
1
⋅ ⋅ ⋅ (𝜋
𝑁𝑗

𝜇
𝑁

𝑁
)
1/2

𝐵
𝑁
]] ,

𝐶 ≜ [𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑁
] , 𝐷 ≜ [𝐷

1
𝜇
1/2

1
⋅ ⋅ ⋅ 𝐷
𝑁
𝜇
1/2

𝑁
] .

(47)

Then, we give the following facts and lemmas for system,
which will be used in the proof of stability of the covariance
matrix of estimation error.

With regard toAssumptions 2 and 7 and Proposition 3.36
in [35], Γ(𝑘) → Γ as 𝑘 → ∞, where Γ = {𝑍

1
, 𝑍
2
, . . . , 𝑍

𝑁
} is

the unique solution that satisfies

𝑍
𝑗
=

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
(𝐴
𝑖
𝑍
𝑖
𝐴
𝑇

𝑖
+ 𝜇
𝑖
𝐵
𝑖
(𝑎
𝑖
𝑎
𝑇

𝑖
+ 𝑄)𝐵

𝑇

𝑖
) . (48)

Then we have inf
𝑙≥𝑘

𝜇
𝑖
(𝑙) > 0 holding for all 𝑖 ∈ N (since

∃𝑙, we have 𝜇
𝑖
(𝑙) → 𝜇

𝑖
> 0 as 𝑘 → ∞). Defining 𝛼

𝑖
(𝑘) =

inf
𝑙≥𝑘

𝜇
𝑖
(𝑘 + 𝑙), then we get

𝜇
𝑖
(𝑘 + 𝜅) ≥ 𝛼

𝑖
(𝑘) ≥ 𝛼

𝑖
(𝑘 − 1) , 𝑘 = 1, 2, . . . ; 𝑖 ∈ N. (49)

At the same time, 𝛼
𝑖
(𝑘) → 𝜇

𝑖
(𝑘 → ∞) exponentially fast.

From (37), as 𝑘 → ∞, we obtain the mean state
covariance as follows:

𝑍 (𝑘 + 1 | 𝑘) = lim
𝑘→∞

𝑍 (𝑘 + 1 | 𝑘)

= lim
𝑘→∞

𝐸 [𝑍 (𝑘 + 1 | 𝑘)]

= 𝐴𝑍 (𝑘 | 𝑘 − 1)𝐴
𝑇
+ Ψ (Γ (𝑘))

+ 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇
− 𝜂𝑍 (𝑘 | 𝑘 − 1) 𝐶

𝑇

× [𝐶𝑍(𝑘 | 𝑘 − 1)𝐶
𝑇
+ 𝐷(𝑘)𝑅𝐷(𝑘)

𝑇
]

−1

× 𝐶𝑍 (𝑘 | 𝑘 − 1)𝐴
𝑇
.

(50)

An operator is introduced for any positive-semidefinite
matrix 𝑋 as follows:

T = −𝐴𝑋𝐶
𝑇
(𝐶𝑋𝐶

𝑇
+ 𝐷𝑅𝐷

𝑇
)
−1

. (51)

Then

T (𝑘) = −𝐴𝑍 (𝑘 | 𝑘 − 1) 𝐶
𝑇
(𝐶𝑍(𝑘 | 𝑘 − 1)𝐶

𝑇
+ 𝐷𝑅𝐷

𝑇
)

−1

.

(52)

Define now Γ̄(𝑘) = (𝑍̄
1
(𝑘), . . . , 𝑍̄

𝑁
(𝑘)) ∈ 𝐻

𝑛+ with
𝑍̄
𝑖
(0) = 0, 𝑗 ∈ N+, and

𝑍̄
𝑗
(𝑘 + 1) =

𝑁

∑

𝑖=1

𝜋
𝑖𝑗
(𝐴
𝑖
𝑍̄
𝑖
(𝑘) 𝐴
𝑇
+ 𝛼
𝑖
(𝑘) 𝐵
𝑖
𝑄𝐵
𝑇

𝑖
) . (53)

Lemma 9 (see [35]). Γ̄(𝑘)
𝑘→∞

󳨀󳨀󳨀󳨀󳨀→ Γ and for each 𝑘 =

0, 1, 2, . . ., one can get that

Γ (𝑘 + 𝜅) ≥ Γ̄ (𝑘) ≥ Γ̄ (𝑘 − 1) . (54)

Now, one defines

Υ (𝑘 + 1) = 𝐴Υ (𝑘)𝐴
𝑇
+ diag[

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝜋
𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
] + Ψ (Γ̄)

− 𝜂𝐴Υ (𝑘) 𝐶
𝑇
(𝐶Υ(𝑘)𝐶

𝑇
+ 𝐷̄(𝑘)𝑅𝐷̄(𝑘)

𝑇
)
−1

× 𝐶𝑃
1
(𝑘) 𝐴
𝑇
,

(55)

where Υ(0) = 0, 𝐷̄(𝑘) = [𝐷
1
𝛼
1
(𝑘)
1/2

⋅ ⋅ ⋅ 𝐷
𝑁
𝛼
𝑁
(𝑘)
1/2

].
From the definition of 𝜅 and condition of 𝐷𝑅𝐷

𝑇
> 0, one

notices that the inverse of 𝐶Υ(𝑘)𝐶
𝑇
+ 𝐷𝑅𝐷

𝑇 exists.



Abstract and Applied Analysis 7

Lemma 10. For each 𝑘 = 0, 1 ⋅ ⋅ ⋅ , one gets that

Υ (𝑘) ≤ Υ (𝑘 + 1) ≤ 𝑍 (𝑘 + 1 + 𝜅 | 𝑘 + 𝜅) . (56)

Proof. In order to deduce (56), we define

M (𝑘) = −𝐴Υ (𝑘) 𝐶
𝑇
(𝐶Υ(𝑘)𝐶

𝑇
+ 𝐷̄(𝑘)𝑅𝐷̄(𝑘)

𝑇
)
−1

. (57)

Then, if Υ(𝑘) ≤ 𝑍(𝑘 + 𝜅 | 𝑘 + 𝜅 − 1),

Υ (𝑘 + 1)

= (𝐴 + √𝜂T (𝑘 + 𝜅) 𝐶)Υ (𝑘) (𝐴 + √𝜂T (𝑘 + 𝜅) 𝐶)
𝑇

+ Ψ (Γ̄ (𝑘)) + 𝜂T (𝑘 + 𝜅) 𝐷̄ (𝑘) 𝑅𝐷̄ (𝑘)T(𝑘 + 𝜅)
𝑇

− 𝜂 (T (𝑘 + 𝜅) − M (𝑘)) (𝐶Υ (𝑘) 𝐶
𝑇
+ 𝐷̄ (𝑘) 𝑅𝐷̄ (𝑘))

× (T (𝑘 + 𝜅) − M (𝑘))
𝑇
+ diag[

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝜋
𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
]

≤ (𝐴 + √𝜂T (𝑘 + 𝜅) 𝐶)𝑍 (𝑘 + 𝜅 | 𝑘 + 𝜅 − 1)

× (𝐴 + √𝜂T (𝑘 + 𝜅) 𝐶)
𝑇

+ diag[

𝑁

∑

𝑖=1

𝜇
𝑖
(𝑘 + 𝜅) 𝜋

𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
] + Ψ (Γ̄ (𝑘 + 𝜅))

+ 𝜂T (𝑘 + 𝜅)𝐷 (𝑘 + 𝜅) 𝑅𝐷 (𝑘 + 𝜅)T(𝑘 + 𝜅)
𝑇

= 𝑍 (𝑘 + 1 + 𝜅 | 𝑘 + 𝜅) .

(58)

Obviously, when Υ(0) = 0 ≤ 𝑍(𝜅 | 𝜅 − 1), it yields Υ(𝑘) ≤

𝑍(𝑘+𝜅 | 𝑘+𝜅−1), 𝑘 = 0, 1, 2 ⋅ ⋅ ⋅ . Similarly ifΥ(𝑘−1) ≤ Υ(𝑘),
based on (49) and (54), we have
Υ (𝑘)

= (𝐴 + √𝜂M (𝑘) 𝐶) Υ (𝑘 − 1) (𝐴 + √𝜂M (𝑘) 𝐶)
𝑇

+ Ψ (Γ̄ (𝑘)) + 𝜂M (𝑘) 𝐷̄ (𝑘) 𝑅𝐷̄ (𝑘)M(𝑘)
𝑇

+ 𝜂 (M (𝑘) − M (𝑘 − 1))

× (𝐶Υ (𝑘) 𝐶
𝑇
+ 𝐷̄ (𝑘) 𝑅𝐷̄ (𝑘)) (M (𝑘) − M (𝑘 − 1))

𝑇

+ diag[

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘 − 1) 𝜋

𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
]

≤ (𝐴 + √𝜂M (𝑘) 𝐶) Υ (𝑘) (𝐴 + √𝜂M (𝑘) 𝐶)
𝑇

+ Ψ (Γ̄ (𝑘))

+ diag[

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑘) 𝜋
𝑖𝑗
𝐵
𝑖
𝑄𝐵
𝑇

𝑖
]

+ 𝜂M (𝑘) 𝐷̄ (𝑘) 𝑅𝐷̄ (𝑘)M(𝑘)
𝑇

= Υ (𝑘 + 1) .

(59)

Since Υ(0) = 0 ≤ Υ(1), the induction argument is completed
for Υ(𝑘) ≤ Υ(𝑘 + 1).

Theorem 11. Suppose that Assumptions 7 and 8 hold. Consider
that the algebraic Riccati equation

𝑃 = 𝐴𝑃𝐴
𝑇
+ Ψ (Γ) + 𝐵𝑄𝐵

𝑇
− 𝜂𝐴𝑃𝐶[𝐶𝑃𝐶

𝑇
+ 𝐷𝑅𝐷]

−1

𝐶𝑃𝐴
𝑇

(60)

satisfies (48), where Γ = {𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑁
}. Then, there exists a

unique nonnegative definite solution 𝑃 to (60). 𝑟
𝜎
(𝐴) ≤ 1, and

for any Γ(0) = {𝑍
1
(0), . . . , 𝑍

𝑁
(0)}, 𝑍

𝑖
(0) ≥ 0, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁, and

𝑍(0 | −1) = 𝑍(0 | −1) ≥ 0, one has 𝑍(𝑘 + 1 | 𝑘) given by (50)
satisfying 𝑍(𝑘 + 1 | 𝑘) → 𝑃, 𝑘 → ∞.

Proof. Due to MSS of 5.38 [35], we have from Proposition
3.6 in chapter 3 [35] that 𝑟

𝜎
(𝐴) < 1. According to the

standard results for algebraic Riccati equation there is a
unique positive-semidefinite solution 𝑃 ∈ 𝐵(𝑅

𝑁𝑛
) to (60).

And moreover 𝑟
𝜎
(𝐴 + √𝜂T(𝑃)𝐶) < 1.

FromTheorem 11, we get that 𝑃 satisfied

𝑃 = (𝐴 + √𝜂T(𝑃)𝐶)𝑃(𝐴 + √𝜂T(𝑃)𝐶)
𝑇

+ Ψ (Γ) + 𝐵𝑄𝐵
𝑇
+ 𝜂T (𝑃)𝐷𝑅𝐷

𝑇
T(𝑃)
𝑇
.

(61)

Define 𝑃(0) = 𝑍(0 | −1) = 𝑍(0 | −1) and

𝑃 (𝑘 + 1) = (𝐴 + √𝜂T (𝑃) 𝐶) 𝑃 (𝑘) (𝐴 + √𝜂T(𝑃)𝐶)
𝑇

+ Ψ (Γ (𝑘)) + 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇

+ 𝜂T (𝑃)𝐷 (𝑘) 𝑅𝐷(𝑘)
𝑇
T(𝑃)
𝑇
.

(62)

Then (50) can be rewritten as

𝑍 (𝑘 + 1 | 𝑘)

= (𝐴 + √𝜂T (𝑃) 𝐶)𝑍 (𝑘 | 𝑘 − 1) (𝐴 + √𝜂T (𝑃) 𝐶)
𝑇

+ Ψ (Γ (𝑘)) + 𝐵 (𝑘)𝑄𝐵(𝑘)
𝑇

+ 𝜂T (𝑃)𝐷 (𝑘) 𝑅𝐷 (𝑘)T(𝑃)
𝑇
− 𝜂 (T (𝑘) − T (𝑃))

× [𝐶𝑍 (𝑘 | 𝑘 − 1) 𝐶
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
]

× (T (𝑘) − T (𝑃))
𝑇
.

(63)
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Suppose that 𝑃(𝑘) ≥ 𝑍(𝑘 | 𝑘 − 1), we have that

𝑃 (𝑘 + 1) − 𝑍 (𝑘 + 1 | 𝑘)

= (𝐴 + √𝜂T (𝑃) 𝐶)

× (𝑃 (𝑘) − 𝑍 (𝑘 | 𝑘 − 1)) (𝐴 + √𝜂T (𝑃) 𝐶)
𝑇

+ 𝜂 (T (𝑘) − T (𝑃))

× (𝐶𝑍 (𝑘 | 𝑘 − 1) 𝐶
𝑇
+ 𝐷 (𝑘) 𝑅𝐷(𝑘)

𝑇
)

× (T (𝑘) − T (𝑃))
𝑇
.

(64)

By definition, 𝑃(0) = 𝑍(0 | 1). Suppose that 𝑃(𝑘) ≥ 𝑍(𝑘 |

𝑘 − 1). From (64), we have that 𝑃(𝑘 + 1) ≥ 𝑍(𝑘 + 1 | 𝑘).
Therefore we have shown by induction that 𝑃(𝑘) ≥ 𝑍(𝑘 |

𝑘 − 1) for all 𝑘 = 0, 1, 2 ⋅ ⋅ ⋅ . From MSS and ergodicity of the
Markov chainwe have that Γ(𝑘) 𝑘→∞󳨀󳨀󳨀󳨀󳨀→ Γ,𝐷(𝑘)

𝑘→∞

󳨀󳨀󳨀󳨀󳨀→ 𝐷, and
𝐵(𝑘)

𝑘→∞

󳨀󳨀󳨀󳨀󳨀→ 𝐵 exponentially fast. From 𝑟
𝜎
(𝐴+√𝜂T(𝑃)𝐶) < 1

and same reasoning as in the proof of proposition 3.36 in [35]
we have that 𝑃(𝑘) → 𝑃 as 𝑘 → ∞, where 𝑃 satisfies

𝑃̄ = (𝐴 + √𝜂T (𝑃) 𝐶) 𝑃̄(𝐴 + √𝜂T (𝑃) 𝐶)
𝑇

+ Ψ (Γ) + 𝐵𝑄𝐵
𝑇
+ 𝜂T (𝑃)𝐷𝑅𝐷

𝑇
T(𝑃)
𝑇
.

(65)

And 𝑃 is the unique solution to (65). Recalling that 𝑃

satisfies (62), we get that 𝑃 is also a solution to (65) and from
uniqueness, 𝑃̄ = 𝑃. Then, we obtain that

𝑍 (𝑘 | 𝑘 − 1) ≤ 𝑃. (66)

And 𝑃(𝑘) → 𝑃. From (66) and (56) in Lemma 10 it
follows that 0 ≤ Υ(𝑘) ≤ Υ(𝑘 + 1) ≤ 𝑃(𝑘 + 1 + 𝜅). And
thus we can conclude that Υ(𝑘) → Υ whenever 𝑘 → ∞

for some Υ ≥ 0. Moreover, from the fact that 𝛼
𝑖
(𝑘)
𝑘→∞

󳨀󳨀󳨀󳨀󳨀→ 𝜇
𝑖

and Γ̄(𝑘)
𝑘→∞

󳨀󳨀󳨀󳨀󳨀→ Γ, we have that Υ satisfies (60).
From uniqueness of the positive-semidefinite solution to

(60), we can conclude thatΥ = 𝑃. From (66) and (56),Υ(𝑘) ≤

𝑍(𝑘 + 𝜅 | 𝑘 + 𝜅 − 1) ≤ 𝑃(𝑘 + 𝜅) and since Υ(𝑘) → 𝑃 and
𝑃(𝑘) → 𝑃 as 𝑘 → ∞, we get that𝑍(𝑘 | 𝑘 − 1)

𝑘→∞

󳨀󳨀󳨀󳨀󳨀→ 𝑃.

The upper bound 𝑃 for the error covariance matrix to
a stationary value for linear minimum mean square error
(LMMSE) estimation can be easily obtained. It is described
that if the system is MSS and the missing information is
detected, then the error covariance matrix will converge
to the unique nonnegative definite solution of an algebraic
Riccati equation associated with the problem.
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Figure 1: Value of observations.
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Figure 2: Mean square of residual.

5. Numerical Example

In order to evaluate the performance of our method, in this
section, we are going to use a scalar MJLS described by the
following equations:

𝑥
𝑘+1

= 𝐴
𝑟𝑘
𝑥
𝑘
+ 𝐵
𝑟𝑘

(𝑎
𝑟𝑘

+ 𝑤
𝑘
)

𝑦
𝑘
= 𝛾
𝑘
𝐶
𝑟𝑘
𝑥
𝑘
+ 𝐷
𝑟𝑘
V
𝑘

𝐴
1
= (

1 0.995

0 1
) , 𝐴

2
= (

1 0.99

0 1
) ,
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Figure 3: Detection of fault.
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𝐵
1
= 𝐵
2
= (

0.1

0
) , 𝐶

1
= 𝐶
2
= (

1

0
) ,

𝐷
1
= 𝐷
2
= (

5

0
) , 𝑎

1
= 1, 𝑎

2
= 2,

(67)

where 𝑥
𝑘
(1, 1), 𝑥

𝑘
(2, 1), and 𝑎

𝑘
denote the target position,

velocity, and acceleration, respectively. The initial state 𝑥
0

is normally distributed with mean 10 and variance 1. 𝑟
𝑘

∈

{1, 2}, and𝑤
𝑘
, V
𝑘
are independent white noise sequences with
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Figure 5: Comparison between state estimators of 𝑥(1) under no
faulty case and faulty case, respectively, and real state value.

covariance of 0.1
2, and 𝜇

1

0
= 𝜇
2

0
= 0.5. The transition

probability matrix for the finite-state Markov chain is

Π = (
0.6 0.4

0.4 0.6
) ,

𝑃 (𝛾
𝑘
= 1) = 0.9, 𝑃 (𝛾

𝑘
= 0) = 0.1.

(68)

To assess the performance of algorithms, the average root
mean square (RMS) error based on 𝐻 times Monte-Carlo
simulation is defined as

RMS =
1

𝐻

1

𝑇

𝐻

∑

𝑖=1

𝑇

∑

𝑘=1

[(𝑥
𝑖

𝑘
− 𝑥
𝑖

𝑘
)
2

]

1/2

, (69)

where the time step 𝑇 is chosen as 500, 𝐻 = 50.
The simulation results are obtained as follows. Figure 5

presents the real states and their estimators subject to fault-
free case and faulty case, respectively, based on the given
path. Figure 1 shows the observations with lost data from
unreliable channel and observations from reliable channel. As
the proposed algorithm can be thought of as a generalization
of the well-known LMMSE filtering, we denote it by FDI-
LMMSE filtering in the simulation. The RMS in the position
of FDI-LMMSE filtering in the faulty case is compared with
that of LMMSE filtering in the fault-free case in the Figure 4.
It can be shown in Figures 2 and 3 that the residual can deliver
fault alarms soon after the fault occurs. From the simulation
results, we can see that the obtained linear estimator for
systems with random missing data are tracking well to the
real state value, which is the estimation scheme proposed in
this paper produces good performance.
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6. Conclusions

This paper has addressed the estimation problem for MJLSs
with randommissing data. Randommissing data introduced
by the network is modeled as Bernoulli distribution variable.
By usage of an observer-based FDI as a residual generator,
the design of FDI-LMMSE filter has been formulated in the
framework of LMMSE filtering. Complete analytical solution
has been obtained by solving the recursive Riccati equations.
It has been proved from theorem derivation and a numerical
example simulation that the proposed state estimator is
effective.
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