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TheDirichlet resonant boundary value problems are considered. If the respective nonlinear equation can be reduced to a quasilinear
one with a nonresonant linear part and both equations are equivalent in some domain Ω and if solutions of the quasilinear
problem are in Ω, then the original problem has a solution. We say then that the original problem allows for quasilinearization.
If quasilinearization is possible for essentially different linear parts, then the original problem has multiple solutions. We give
conditions for Emden-Fowler type resonant boundary value problem solvability and consider examples.

1. Introduction

Two-point nonlinear boundary value problems often appear
in applications. Consider the following one. Let a nonlinear
equation

(𝑙
2
𝑥) (𝑡) = 𝑓 (𝑡, 𝑥, 𝑥


) (1)

be given together with the Dirichlet boundary conditions

𝑥 (𝑎) = 0, 𝑥 (𝑏) = 0. (2)

The left hand side of the equation is the second order linear
form

(𝑙
2
𝑥) (𝑡) = 𝑥


+ 𝑝𝑥

+ 𝑞𝑥, (3)

where𝑝 and 𝑞 generally are continuous functions given in the
interval [𝑎, 𝑏]. The right side 𝑓 is continuous. A solution 𝑥(𝑡)
is a function in 𝐶2[𝑎, 𝑏]. Even equation of the form

𝑥

= 𝑓 (𝑡, 𝑥, 𝑥


) (4)

and related boundary value problems are investigated insuffi-
ciently.The classical result says that the problem (4) and (2) is
solvable if 𝑓 is a bounded function. Otherwise various cases
are possible. To reduce the problem to that with bounded
right hand side the method of lower and upper functions
can be used. This method is well developed and related

descriptions and other information can be found in the books
[1–4]. This method cannot be applied to equations which
exhibit oscillatory behavior however. The lower and upper
functions in case of the existence of a solution exist but
coincide with a solution.

As to the problem (1) and (2) with a bounded function 𝑓,
a similar result holds; namely, the problem (1) and (2) is
solvable if the homogeneous problem

(𝑙
2
𝑥) (𝑡) = 0, 𝑥 (𝑎) = 0, 𝑥 (𝑏) = 0 (5)

has only the trivial solution.
If this is not true the existence of a solution cannot be

proved. There are examples, for instance, 𝑥 + 𝜋2𝑥 = 1,
𝑥(0) = 0 and𝑥(1) = 0 showing that a solution does not exist.
This type of problems are called resonant problems.

There is an intensive literature on resonant problems. We
mention several papers [5–13].

To treat resonant problems, various approaches were
used. We focused on the quasilinearization method [14, 15],
which consists in reducing the resonant problem to nonreso-
nant one using suitable estimations of expected solutions.

Below we give a description of the quasilinearization
method.

We consider the Dirichlet boundary value problem

𝑥

+ 𝑝 (𝑡) 𝑥


+ 𝑞 (𝑡) 𝑥 = 𝑓 (𝑡, 𝑥, 𝑥


) , (6)

𝑥 (𝑎) = 𝑥 (𝑏) = 0, (7)
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where 𝑡 ∈ 𝐼 := [𝑎, 𝑏] and 𝑓 ∈ 𝐶(𝐼 × R2,R). The linear part
of differential equation (6) (𝑙

2
𝑥)(𝑡) := 𝑥


+ 𝑝(𝑡)𝑥


+ 𝑞(𝑡)𝑥 is

resonant with respect to given boundary conditions (7).

Definition 1. The linear part (𝑙
2
𝑥)(𝑡) := 𝑥


+𝑝(𝑡)𝑥


+ 𝑞(𝑡)𝑥 of

differential equation (6) is called a nonresonant with respect
to the boundary conditions (7) if the homogeneous problem

(𝑙
2
𝑥) (𝑡) = 0, 𝑥 (𝑎) = 𝑥 (𝑏) = 0 (8)

has only the trivial solution. Otherwise, if the homogeneous
problem (8) has nontrivial solutions, then the linear part is
called resonant.

For instance, 𝑥 = 0 is nonresonant, but 𝑥 + 𝜋2𝑥 = 0 is
resonant in [0, 1]; 𝑥 + 𝑘2𝑥 = 0 is nonresonant with respect
to the boundary conditions 𝑥(0) = 𝑥(1) = 0, if 𝑘 ̸= 𝜋𝑖, 𝑖 =
0, 1, . . .; that is, the coefficient 𝑘 belongs to one of the intervals

(0, 𝜋) , (𝜋, 2𝜋) , . . . , (𝑖𝜋, (𝑖 + 1) 𝜋) , . . . . (9)

These intervals are called nonresonant intervals.
The classical result states that the problem (6) and (7)

is solvable if linear part (𝑙
2
𝑥)(𝑡) is nonresonant and 𝑓 is

continuous and bounded (the Picard theorem [3]).Therefore
it is desirable to obtain the conditions for the boundary value
problem (6) and (7) to be solvable for resonant linear parts.

In [16] the author considered the resonant boundary
value problem (6) and (7) if 𝑓 = 𝑓(𝑡) and formulated the
theorem that the problem (6) and (7) is solvable if

∫

𝑏

𝑎

𝑓 (𝑡)
sin𝛽𝑡
𝑒𝛼
𝑑𝑡 = 0, (10)

where 𝛼 = −𝑝/2, 𝛽 = √4𝑞 − 𝑝2/2 = 𝜋𝑛, 𝑛 is an integer, and
𝑝
2
− 4𝑞 < 0.
In one of the most popular articles on resonant problems

[10] the authors considered the boundary value problem

𝑥

+ 𝛼
2
𝑥 + 𝑔 (𝑥) = ℎ (𝑡) , 𝑥 (𝑎) = 𝑥 (𝑏) = 0. (11)

Here ℎ(𝑡) ∈ 𝐿2([𝑎, 𝑏]), 𝛼2 is a constant, 𝑔 : R → R is a
continuous function, and the limits

𝑔
−
(𝑡) = lim
𝑥→−∞

sup𝑔 (𝑥) , 𝑔
+
(𝑡) = lim
𝑥→∞

inf 𝑔 (𝑥) (12)

exist and are finite.
In [10] the authors formulated the theorem that problem

(11) has at least one solution if the inequalities

∫

𝑏

𝑎

𝑔
−
(𝑡) sin𝛼𝑡 𝑑𝑡 < ∫

𝑏

𝑎

𝑓 (𝑡) sin𝛼𝑡 𝑑𝑡 < ∫
𝑏

𝑎

𝑔
+
(𝑡) sin𝛼𝑡 𝑑𝑡

(13)

hold. This theorem is known as the Landesman-Lazer con-
dition. Boundary value problem (11) has also been studied by
Lazer [11], Alonso andOrtega [6], Ahmad [5], and Cesari and
Kannan [7].

The function 𝑓 in the Landesman-Lazer condition is of
the specific form ℎ(𝑡) − 𝑔(𝑢(𝑡)). And it is an actual question

to find the conditions ensuring that the problem (6) and (7)
is solvable if 𝑓 = 𝑓(𝑡, 𝑥, 𝑥).

Our main result in this paper is to get conditions which
guarantee that the resonant boundary value problem is
solvable and we do not use the Landesman-Lazer condition.

We use the quasilinearization approach. This approach
was developed in [14, 15]. Using this approach we reduce (6)
to a quasilinear one of the form

(𝐿
2
𝑥) (𝑡) := 𝑥


+ 𝑃 (𝑡) 𝑥


+ 𝑄 (𝑡) 𝑥 = 𝐹 (𝑡, 𝑥, 𝑥


) , (14)

where a function 𝐹 is continuous and bounded by a constant
𝑀 and the linear part (𝐿

2
𝑥)(𝑡) is nonresonant yet with respect

to the given boundary conditions (7) that means that the
respective homogeneous problem

(𝐿
2
𝑥) (𝑡) = 0, 𝑥 (𝑎) = 𝑥 (𝑏) = 0 (15)

has only the trivial solution.
If such reduction is possible then according to Conti’s

theorem [17] the modified problem (14) and (7) is solvable.
If a solution 𝑥(𝑡) of the modified quasilinear problem (14)

and (7) is located in the domain Ω(𝑡, 𝑥, 𝑥), where both (6)
and (14) are equivalent, then the original problem (6) and (7)
at resonance has a solution.

Our paper consists of the introduction, four sections,
conclusions and references.

Definitions of the type of a solution toDirichlet boundary
value problems are given in Section 2. The general result and
related auxiliary results for quasilinear problems are stated.

In Section 3 we describe quasilinearization process and
formulate and prove the theorem for resonant boundary
value problem (6) and (7) to be solvable.

In Section 4 the idea of quasilinearization is applied to the
investigation of the Emden-Fowler type resonant boundary
problem.

In Section 5 we consider an example.

2. Auxiliary Results

We consider quasilinear problem (14) and (7).

Theorem 2 (see [17]). If 𝐹(𝑡, 𝑥, 𝑥) in (14) is a continuous and
bounded function and the homogeneous problem (15) has only
the trivial solution, then the problem (14) and (7) is solvable.

The solution of quasilinear problem (14) and (7) can be
written in the integral form

𝑥 (𝑡) = ∫

𝑏

𝑎

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠) , 𝑥

(𝑠)) 𝑑𝑠. (16)

Respectively,

𝑥

(𝑡) = ∫

𝑏

𝑎

𝜕

𝜕𝑡
𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠) , 𝑥


(𝑠)) 𝑑𝑠, (17)

where 𝐺(𝑡, 𝑠) is the Green function for the respective homo-
geneous problem (15).
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If |𝐹(𝑡, 𝑥, 𝑥)| ≤ 𝑀∀(𝑡, 𝑥, 𝑥) ∈ 𝐼 ×R2, then from (16) and
(17) it follows that

|𝑥 (𝑡)| ≤ (𝑏 − 𝑎) Γ ⋅ 𝑀,

𝑥

(𝑡)

≤ (𝑏 − 𝑎) Γ

1
⋅ 𝑀, ∀𝑡 ∈ 𝐼,

(18)

where Γ and Γ
1
are bounds for |𝐺(𝑡, 𝑠)| and |(𝜕/𝜕𝑡)𝐺(𝑡, 𝑠)|,

respectively.
For instance, if the linear part is (𝐿

2
𝑥)(𝑡) := 𝑥


+𝑘
2
𝑥 then

Green’s function for Dirichlet problem (15) in the interval
[0, 1] is given by

𝐺 (𝑡, 𝑠) =

{{{

{{{

{

sin 𝑘 (𝑠 − 1) sin 𝑘𝑡
𝑘 sin 𝑘

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

sin 𝑘 (𝑡 − 1) sin 𝑘𝑠
𝑘 sin 𝑘

, 0 ≤ 𝑠 < 𝑡 ≤ 1

(19)

and satisfies the estimates

|𝐺 (𝑡, 𝑠)| ≤ Γ =
1

𝑘 |sin 𝑘|
,



𝜕

𝜕𝑡
𝐺 (𝑡, 𝑠)



≤ Γ
1
=

1

|sin 𝑘|
.

(20)

Definition 3 (see [14, 15]). We will say that the linear part
(𝐿
2
𝑥)(𝑡) is 𝑖-nonresonant with respect to the boundary

conditions (7), if a solution 𝑥(𝑡) of the Cauchy problem

(𝐿
2
𝑥) (𝑡) = 0, 𝑥 (𝑎) = 0, 𝑥


(𝑎) = 1 (21)

has exactly 𝑖 zeros in the interval (𝑎, 𝑏) and 𝑥(𝑏) ̸= 0.

Definition 4 (see [14, 15]). We will say that 𝜉(𝑡) is an 𝑖-type
solution of the problem (6) and (7) (resp., (14) and (7)) if
for small enough 𝑟 > 0 the difference 𝑢(𝑡; 𝑟) = 𝑥(𝑡; 𝑟) −
𝜉(𝑡) has exactly 𝑖 zeros in (𝑎, 𝑏) and 𝑢(𝑏; 𝑟) ̸= 0, where 𝑥(𝑡; 𝑟)
is a solution of (6) (resp., (14)), which satisfies the initial
conditions

𝑥 (𝑎; 𝑟) = 𝜉 (𝑎) , 𝑥

(𝑎; 𝑟) = 𝜉


(𝑎) ± 𝑟. (22)

Theorem 5 (see [15], Theorem 2.1). Quasilinear problem (14)
and (7) with an 𝑖-nonresonant linear part (𝐿

2
𝑥)(𝑡) has an 𝑖-

type solution.

The proof can be found in [14, 15].

Definition 6. Let (6) and (14), where the linear part (𝐿
2
𝑥)(𝑡)

is nonresonant with respect to the boundary conditions (7) in
the interval 𝐼, be equivalent in the domain

Ω
1
= {(𝑡, 𝑥, 𝑥


) : 𝑎 ≤ 𝑡 ≤ 𝑏, |𝑥| < 𝑁,


𝑥

< 𝑁
1
} (23)

in the sense that any solution 𝑥 : 𝐼 → R of (6) with a graph
inΩ
1
is also a solution of (14) and vice versa. Suppose that any

solution 𝑥(𝑡) of the quasilinear problem (14) and (7) satisfies
the estimates

|𝑥 (𝑡)| < 𝑁,

𝑥

(𝑡)

< 𝑁
1
. (24)

We will say then that the problem (6) and (7) allows for
quasilinearization with respect to a domain Ω

1
and a linear

part (𝐿
2
𝑥)(𝑡).

The following results in [14, 15] form a basis for appli-
cation of the quasilinearization process for proving the
existence of multiple solutions.

Theorem 7 (see [14, 15]). If the problem (6) and (7) allows for
quasilinearization with respect to some domainΩ

1
and some 𝑖-

nonresonant linear part (𝐿
2
𝑥)(𝑡), then it has an 𝑖-type solution.

Theorem 8 (see [14, 15]). Suppose that the problem (6) and
(7) allows for quasilinearization with respect to Ω

1
and 𝑖-

nonresonant linear part (𝐿
2
𝑥)(𝑡), and, at the same time, it

allows for quasilinearization with respect to a domain

Ω
2
= {(𝑡, 𝑥, 𝑥


) : 𝑎 ≤ 𝑡 ≤ 𝑏, |𝑥| < 𝐾,


𝑥

< 𝐾
1
} (25)

and 𝑗-nonresonant linear part (𝐿∗
2
𝑥)(𝑡), where 𝑖 ̸= 𝑗. Then the

problem (6) and (7) has at least 2 solutions of different types.

Corollary 9. Suppose that the problem (6) and (7) allows for
quasilinearization with respect to 𝑛 essentially different (in the
sense of Definition 3) linear parts and 𝑛 domains of the form
(23). Then it has at least 𝑛 different solutions.

3. Preliminary Results

We consider the resonant problem (6) and (7), where
𝑓(𝑡, 𝑥, 𝑥


) is continuous function and the linear part (𝑙

2
𝑥)(𝑡)

is resonant.
We use quasilinearization process as follows.

(1) First we modify the equation adding a linear part so
that the resulting linear part is not resonant yet

(𝑙
2
𝑥) (𝑡) + 𝜀

2
𝑥 = 𝜀
2
𝑥 + 𝑓 (𝑡, 𝑥, 𝑥


) =: 𝐹 (𝑡, 𝑥, 𝑥


) . (26)

(2) We choose constants𝑁 > 0 and𝑁
1
> 0 and truncate

right side:

(𝐿
2
𝑥) (𝑡) = 𝐹

𝑁,𝑁
1

(𝑡, 𝑥, 𝑥

)

:= 𝐹 (𝑡, 𝛿 (−𝑁, 𝑥,𝑁) , 𝛿 (−𝑁
1
, 𝑥

, 𝑁
1
)) ,

(27)

where

𝛿 (𝑢, V, 𝑧) =
{{

{{

{

𝑧, V > 𝑧
V, 𝑢 ≤ V ≤ 𝑧
𝑢, V < 𝑢.

(28)

(3) We check the inequalities

Γ ⋅ 𝑀 (𝑏 − 𝑎) ≤ 𝑁,

Γ
1
⋅ 𝑀 (𝑏 − 𝑎) ≤ 𝑁

1
,

(29)

where Γ and Γ
1
are the estimates of Green’s function

and its derivative associated with the linear part in
(27);𝑀 = sup

𝐼×R2 |𝐹𝑁,𝑁1
(𝑡, 𝑥, 𝑥


)|.
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Theorem 10. Suppose that 𝜀2,𝑁 and𝑁
1
as above can be found

such that the inequalities

Γ ⋅ 𝑀 (𝑏 − 𝑎) ≤ 𝑁, (30)

Γ
1
⋅ 𝑀 (𝑏 − 𝑎) ≤ 𝑁

1 (31)

are fulfilled.
Then the problem (6) and (7) has a solution such that

|𝑥(𝑡)| ≤ 𝑁 ∀𝑡 ∈ [𝑎, 𝑏] and |𝑥(𝑡)| ≤ 𝑁
1
∀𝑡 ∈ [𝑎, 𝑏].

Proof. Apply (26) and (27). From Theorem 2 the boundary
value problem (27) and (7) is solvable and has a solution
𝑥(𝑡), which can be written in the integral form using Green’s
function.

The inequalities (30) and (31) are fulfilled.Thismeans that

|𝑥 (𝑡)| ≤ 𝑁,

𝑥

(𝑡)

≤ 𝑁
1
, ∀𝑡 ∈ [𝑎, 𝑏] . (32)

For these values of 𝑥 and 𝑥 the original equation (6) and the
modified equation (27) are equivalent:

(𝐿
2
𝑥) (𝑡) = 𝐹 (𝑡, 𝑥, 𝑥


) ,

⇓

(𝑙
2
𝑥) (𝑡) := (𝐿

2
𝑥) (𝑡) − 𝜀

2
𝑥

= 𝑓 (𝑡, 𝑥, 𝑥

) := 𝐹 (𝑡, 𝑥, 𝑥


) − 𝜀
2
𝑥,

⇓

(𝑙
2
𝑥) (𝑡) = 𝑓 (𝑡, 𝑥, 𝑥


) .

(33)

It follows that 𝑥(𝑡) is also a solution of the original
problem (6) and (7).

Remark 11. If the right side in (6) does not depend on 𝑥, then
𝑁
1
can be set to+∞ and therefore only inequality (30) should

be verified.

4. Application: Emden-Fowler Type Equation

Consider the Emden-Fowler type resonant problem

𝑥

+ 𝜋
2
𝑥 = −𝑞 (𝑡) |𝑥|

𝑝 sign𝑥, 𝑝 > 0, 𝑞 ∈ 𝐶 (𝐼, (0,∞)) ,
(34)

𝑥 (0) = 0, 𝑥 (1) = 0. (35)

Theorem 12. Suppose that

0 < 𝑞
1
≤ 𝑞 (𝑡) ≤ 𝑞

2 (36)

and inequality

𝜋𝑘
2

2√𝑘2 + 4

sin (𝜋/2)√𝑘2 + 4

< 𝛽
𝑝
𝑝/(𝑝−1)

𝑝 − 1


(
𝑞
1

𝑞
2

)

1/|𝑝−1|

(37)

holds for some 𝑘 ∈ (2√𝑖2 − 1, 2√(𝑖 + 1)2 − 1), (𝑖 = 1, 2, . . .),
where 𝛽 > 1 is the root of the equation

𝛽
𝑝
= 𝛽 + (𝑝 − 1) 𝑝

𝑝/(1−𝑝)
. (38)

mk(t
∗
)

−mk(t
∗
)

y

p > 1 t = t
∗

xx0

nk(t
∗
)

y = fk(t
∗
, x(t

∗
))

Figure 1: Existence of a number 𝑛
𝑘
.

Then there exists an 𝑖-type solution of the problem (34) and
(35).

Proof. Let us consider instead of (34) the equivalent one

𝑥

+ 𝜋
2
𝑥 +
𝜋
2
𝑘
2

4
𝑥 =
𝜋
2
𝑘
2

4
𝑥 − 𝑞 (𝑡) |𝑥|

𝑝 sign𝑥. (39)

The linear part (𝐿
2
𝑥)(𝑡) = 𝑥


+(𝜋
2
(4+𝑘
2
)/4)𝑥 is nonresonant

with respect to the boundary conditions (35) if 𝑘 ̸= 2√𝑛2 − 1,
where 𝑖 is an integer. We wish to make the right side in (39)
bounded. Denote

𝑓
𝑘
(𝑡, 𝑥) :=

𝑘
2
𝜋
2

4
𝑥 − 𝑞 (𝑡) |𝑥|

𝑝 sign𝑥. (40)

The function 𝑓
𝑘
(𝑡, 𝑥) is odd in 𝑥 for fixed 𝑡. Consider it for

nonnegative values of 𝑥.There exists point of local extremum
𝑥
0
(it is either a point of maximum in case of 𝑝 > 1 or a point

of minimum in case of 0 < 𝑝 < 1):

𝑥
0
= (

𝜋
2
𝑘
2

4𝑝𝑞(𝑡)
)

1/(𝑝−1)

. (41)

Figure 1 illustrates the case of 𝑝 > 1 for fixed 𝑡 = 𝑡∗.
We can calculate the value of the function at the point of

maximum 𝑥
0
. Set

𝑚
𝑘
(𝑡) =

𝑓𝑘 (𝑡, 𝑥0)
 = (

𝜋
2
𝑘
2

4𝑝
)

𝑝/(𝑝−1)

𝑝 − 1
 𝑞
1/(1−𝑝)

. (42)

Choose 𝑛
𝑘
(𝑡) such that

|𝑥| ≤ 𝑛𝑘 (𝑡) ⇒
𝑓𝑘 (𝑡, 𝑥)

 ≤ 𝑚𝑘 (𝑡) , ∀𝑡 ∈ 𝐼. (43)

The value of 𝑛
𝑘
(𝑡) is computed by solving the equation

𝑓
𝑘
(𝑡, 𝑥) = −𝑓

𝑘
(𝑡, 𝑥
0
) , (44)

or, equivalently, that of

𝜋
2
𝑘
2

4
𝑥 − 𝑞 (𝑡) 𝑥

𝑝
= (
𝜋
2
𝑘
2

4𝑝
)

𝑝/(𝑝−1)

(1 − 𝑝) 𝑞
1/(1−𝑝) (45)
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with respect to 𝑥 for any fixed 𝑡. Computation gives that

𝑛
𝑘
(𝑡) = (

𝜋
2
𝑘
2

4𝑞(𝑡)
)

1/(𝑝−1)

𝛽, (46)

where a constant 𝛽 > 1 is described in (38). Set

𝑁
𝑘
= min {𝑛

𝑘
(𝑡) : 𝑡 ∈ [0, 1]} ,

𝑀
𝑘
= max {𝑚

𝑘
(𝑡) : 𝑡 ∈ [0, 1]} .

(47)

Let us consider the quasilinear equation

𝑥

+

𝜋
2
(4 + 𝑘

2
)

4
𝑥 = 𝐹
𝑘
(𝑡, 𝑥) , (48)

where 𝐹
𝑘
(𝑡, 𝑥) = 𝑓

𝑘
(𝑡, 𝛿(−𝑁

𝑘
, 𝑥,𝑁
𝑘
)).

The modified quasilinear equation (48) is equivalent to
the given equation (34) in the respective domains

Ω
𝑘
= {(𝑡, 𝑥) : 0 ≤ 𝑡 ≤ 1, |𝑥| < 𝑁

𝑘
} . (49)

The problem (48) and (35) is solvable and solutions can
be written in integral form

𝑥
𝑘
(𝑡) = ∫

1

0

𝐺
𝑘
(𝑡, 𝑠) ⋅ 𝐹

𝑘
(𝑠, 𝑥
𝑘
(𝑠)) 𝑑𝑠, (50)

where 𝐺
𝑘
(𝑡, 𝑠) is the Green function to the respective homo-

geneous problem

𝑥

+

𝜋
2
(4 + 𝑘

2
)

4
𝑥 = 0, 𝑥 (0) = 𝑥 (1) = 0. (51)

It is given by

𝐺
𝑘
(𝑡, 𝑠) =

{{{{{{{{{{{

{{{{{{{{{{{

{

sin (𝜋/2)√4 + 𝑘2 (𝑠 − 1) sin (𝜋/2)√4 + 𝑘2𝑡
(𝜋/2)√4 + 𝑘

2 sin (𝜋/2)√4 + 𝑘2
,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

sin (𝜋/2)√4 + 𝑘2 (𝑡 − 1) sin (𝜋/2)√4 + 𝑘2𝑠
(𝜋/2)√4 + 𝑘

2 sin (𝜋/2)√4 + 𝑘2
,

0 ≤ 𝑠 < 𝑡 ≤ 1

(52)

and satisfies the estimate

𝐺𝑘 (𝑡, 𝑠)
 < Γ𝑘 =

1

(𝜋/2)√4 + 𝑘
2

sin (𝜋/2)√4 + 𝑘2

. (53)

It follows from (50) that

|𝑥 (𝑡)| ≤ Γ
𝑘
⋅ 𝑀
𝑘
. (54)

If inequality

Γ
𝑘
𝑀
𝑘
< 𝑁
𝑘 (55)

holds, then a solution𝑥(𝑡) of the quasilinear problem (48) and
(35) satisfies the estimate

|𝑥 (𝑡)| < 𝑁𝑘, ∀𝑡 ∈ [0, 1] (56)

and the original problem (34) and (35) allows for quasilin-
earization with respect to the domain Ω

𝑘
and the linear part

(𝐿
2
𝑥)(𝑡) := 𝑥


+ (𝜋
2
/4)(4 + 𝑘

2
)𝑥. It follows fromTheorem 5

that if the linear part (𝐿
2
𝑥)(𝑡) is 𝑖-nonresonant, then the

problem (34) and (35) has an 𝑖-type solution.
Then 𝑘 should satisfy the inequalities

(𝑖𝜋)
2
<

𝜋
2
(4 + 𝑘

2
)

4
< ((𝑖 + 1) 𝜋)

2 (57)

or

2√𝑖2 − 1 < 𝑘 < 2√(𝑖 + 1)
2
− 1, (58)

where 𝑖 = 1, 2, . . ..
Consider inequality (55) and assume that 𝑞(𝑡) satisfies the

estimates (36). If 𝑝 > 1, then

max
𝑡∈[0,1]

𝑚
𝑘
(𝑡) = (

𝜋
2
𝑘
2

4𝑝
)

𝑝/(𝑝−1)

𝑝 − 1
 𝑞
1/(1−𝑝)

1
,

min
𝑡∈[0,1]

𝑛
𝑘
(𝑡) = (

𝜋
2
𝑘
2

4𝑞
2

)

1/(𝑝−1)

𝛽,

(59)

but in the case of 0 < 𝑝 < 1 we have

max
𝑡∈[0,1]

𝑚
𝑘
(𝑡) = (

𝜋
2
𝑘
2

4𝑝
)

𝑝/(𝑝−1)

𝑝 − 1
 𝑞
1/(1−𝑝)

2
,

min
𝑡∈[0,1]

𝑛
𝑘
(𝑡) = (

𝜋
2
𝑘
2

4𝑞
1

)

1/(𝑝−1)

𝛽.

(60)

Hence inequality (55) reduces to (37).

We have computed results (see Table 1) for 𝑞 = 1, various
𝑝, which show that some 𝑘2 satisfy inequality (37). It may
happen that several 𝑘 fall into the samenonresonance interval
(2√𝑖2 − 1; 2√(𝑖 + 1)

2
− 1). In Table 1 we select only one 𝑘 for

any respective nonresonance interval (this prevents an error
when estimating the number of solutions of different types).
For instance, in the case 𝑝 = 3/2, two values of 𝑘, namely, 𝑘 =
1 and 𝑘 = 3, fall into the samenonresonance interval (0, 2√3).
We show only 𝑘 = 1 in Table 1. Intervals of nonresonance are
given in the third column of Table 1.

Example 13. For instance, we consider the resonant equation

𝑥

+ 𝜋
2
𝑥 = −|𝑥|

3 sign𝑥, (61)

with boundary conditions (35).
Function−|𝑥|3 sign𝑥 is odd. And for𝑥 > 0we can rewrite

𝑥

+ 𝜋
2
𝑥 = −𝑥

3
. (62)

Rewrite (62) equivalently:

𝑥

+ 𝜋
2
𝑥 + (

𝜋

2
)

2

𝑥 = (
𝜋

2
)

2

𝑥 − 𝑥
3
. (63)
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Table 1: Results of calculations for the boundary value problem 𝑥 + 𝜋2𝑥 = −|𝑥|𝑝 sign𝑥, 𝑥(0) = 0 = 𝑥(1).

𝑝 𝑖 Nonresonant intervals 𝑘 Γ𝑀
𝑘

𝑁
𝑘

3 1 (0; 2√3) 1 1.172 1.814

2 1 (0; 2√3) 1 1.196 2.978

3/2 1 (0; 2√3) 1 1.748 7.616

4/3

1 (0; 2√3) 1 3.071 19.083

2 (2√3; 2√8) 5 219478 298164

3 (2√8; 2√15) 7 2.178 ⋅ 10
6

2.245 ⋅ 10
6

5/4

1 (0; 2√3) 1 5.886 47.492

2 (2√3; 2√8) 5 1.052 ⋅ 10
7

1.855 ⋅ 10
7

3 (2√8; 2√15) 7 2.045 ⋅ 10
8

2.738 ⋅ 10
8

4 (2√15; 2√24) 9 1.917 ⋅ 10
9

2.044 ⋅ 10
9

6/5

1 (0; 2√3) 1 11.875 117.828

2 (2√3; 2√8) 5 5.304 ⋅ 10
8

11.507 ⋅ 10
8

3 (2√8; 2√15) 7 2.021 ⋅ 10
10

3.328 ⋅ 10
10

4 (2√15; 2√24) 9 3.132 ⋅ 10
11

4.108 ⋅ 10
11

5 (2√24; 2√35) 11 2.813 ⋅ 10
12

3.056 ⋅ 10
12

5/6

1 (0; 2√3) 1 0.00148 0.00601

2 (2√3; 2√8) 5 1.078 ⋅ 10
−11

2.460 ⋅ 10
−11

3 (2√8; 2√15) 7 2.506 ⋅ 10
−13

4.339 ⋅ 10
−13

4 (2√15; 2√24) 9 1.541 ⋅ 10
−14

2.127 ⋅ 10
−14

5 (2√24; 2√35) 11 1.675 ⋅ 10
−15

1.914 ⋅ 10
−15

4/5

1 (0; 2√3) 1 0.0017 0.0149

2 (2√3; 2√8) 5 8.132 ⋅ 10
−10

15.264 ⋅ 10
−10

3 (2√8; 2√15) 7 3.706 ⋅ 10
−11

5.277 ⋅ 10
−11

4 (2√15; 2√24) 9 3.767 ⋅ 10
−12

4.275 ⋅ 10
−12

3/4

1 (0; 2√3) 1 0.0055 0.0371

2 (2√3; 2√8) 5 6.459 ⋅ 10
−8

9.502 ⋅ 10
−8

3 (2√8; 2√15) 7 5.768 ⋅ 10
−9

6.439 ⋅ 10
−9

2/3 1 (0; 2√3) 1 0.0191 0.0931

1/6 1 (0; 2√3) 1 0.382 0.566

1.5

1.5

1.0

1.0

0.5

0.5

−0.5

−0.5

−1.0

−1.0

−1.5

−1.5

N

M

Figure 2: Graph of function 𝑓(𝑥) = (𝜋2/4)𝑥 − 𝑥3.

The linear part in (63) is no more resonant with respect to
(35).

We would like to make the function 𝑓(𝑥) := (𝜋2/4)𝑥 −𝑥3
bounded and still continuous. The function 𝑓(𝑥) is an odd
functionwith amaximumat 𝑥 = 𝜋/√12 (cf. Figure 2). Define

1.5

1.0

0.5

−0.5

−1.0

−1.5

N

M

−2 −1 1 2

Figure 3: Graph of truncated function 𝐹(𝑥), (65).

𝑀 := 𝑓(𝜋/√12) = 𝜋
3
/6√12. Solve the equation 𝑓(𝑥) = −𝑀

for 𝑥 > 0. The solution is𝑁 := 𝜋/√3.
Define the truncated function

𝐹 (𝑥) =

{{

{{

{

−𝑀, 𝑥 > 𝑁,

𝑓 (𝑥) , −𝑁 ≤ 𝑥 ≤ 𝑁,

𝑀, 𝑥 < −𝑁.

(64)
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Figure 4: (a) 2-type solution and (b) 3-type solution of the Emden-Fowler type boundary value problem (72).

In this example it is

𝐹 (𝑥) =

{{{{{{{{{

{{{{{{{{{

{

−
𝜋
3

6√12
, 𝑥 >

𝜋

√3
,

𝜋
2

4
𝑥 − 𝑥
3
, −

𝜋

√3
≤ 𝑥 ≤

𝜋

√3
,

𝜋
3

6√12
, 𝑥 < −

𝜋

√3
.

(65)

The function 𝐹(𝑥) is continuous and bounded by the
number𝑀 (cf. Figure 3). Therefore the problem

𝑥

+
5𝜋
2

4
𝑥 = 𝐹 (𝑥) , 𝑥 (0) = 0, 𝑥 (1) = 0 (66)

has a solution 𝑥(𝑡). Let us show that |𝑥(𝑡)| ≤ 𝑁 ∀𝑡 ∈ [0, 1]
and hence 𝑥(𝑡) is also a solution of the problem (61) and (35).

A solution 𝑥(𝑡) of (66) satisfies the integral equation

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠, (67)

where 𝐺 is the Green function for the problem

𝑥

+
5𝜋
2

4
𝑥 = 0, 𝑥 (0) = 0, 𝑥 (1) = 0. (68)

It follows from (67) that

|𝑥 (𝑡)| ≤ Γ ⋅ 𝑀, ∀𝑡 ∈ [0, 1] , (69)

where Γ = 2/√5𝜋| sin(√5𝜋/2)|, holds.
Then,

|𝑥 (𝑡)| ≤ 𝑁 ∀𝑡 ∈ [0, 1] (70)

satisfies, since

Γ ⋅ 𝑀 =
2

√5𝜋

sin (√5𝜋/2)

⋅
𝜋
3

6√12
≈ 1.172

< 𝑁 =
𝜋

√3
≈ 1.814.

(71)

Thismeans that the problem (61) allows for quasilinearization
with respect to the linear part (𝐿

2
𝑥)(𝑡) := 𝑥


+(𝜋
2
/4)(4+𝑘

2
)𝑥,

where 𝑘 = 1 and one can only propose that there exists 1-type
solution.

The problem

𝑥

+ 𝜋
2
𝑥 = −|𝑥|

4/3 sign𝑥, 𝑥 (0) = 0 = 𝑥 (1) (72)

allows for three essentially different quasilinearizations with
𝑘 = 1, 5 and 7. Then there exist at least 3 solutions of
different types. First, it has the trivial solution, which is a
1-type solution. Figure 4 illustrates the 2-type and 3-type
solutions of the boundary value problem (72).

5. Example: Equation 𝑥+𝜋2𝑥=−𝑥7 + 𝑥5 − 𝑥3

We consider the boundary value problem

𝑥

+ 𝜋
2
𝑥 = −𝑥

7
+ 𝑥
5
− 𝑥
3
, 𝑥 (0) = 0, 𝑥 (1) = 0.

(73)

Similar to the previous example we rewrite the equation
equivalently:

𝑥

+ 𝜋
2
𝑥 +
𝜋
2

4
𝑥 = −𝑥

7
+ 𝑥
5
− 𝑥
3
+
𝜋
2

4
𝑥. (74)

The function 𝑓(𝑡) := −𝑥7 + 𝑥5 − 𝑥3 + (𝜋2/4)𝑥 is odd
and we would like to make this function bounded and still
continuous. The function 𝑓(𝑥) has a maximum at 𝑥 ≈

0.871975. Define 𝑀 := 𝑓(0.871975) ≈ 1.60933. Solve the
equation 𝑓(𝑥) = −𝑀 for 𝑥 > 0. The solution is𝑁 :≈ 1.30261.

We define the truncated function
𝐹 (𝑥)

=

{{{

{{{

{

−1.60933, 𝑥 > 1.30261,

−𝑥
7
+ 𝑥
5
− 𝑥
3
+
𝜋
2

4
𝑥, −1.30261 ≤ 𝑥 ≤ 1.30261,

1.60933, 𝑥 < −1.30261,

(75)

which is bounded and continuous.The quasilinear boundary
value problem

𝑥

+
5𝜋
2

4
𝑥 = 𝐹 (𝑥) , 𝑥 (0) = 0, 𝑥 (1) = 0 (76)
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has a solution 𝑥(𝑡). We can write it through Green’s function,
where the estimate of Green’s function is

Γ =
2

√5𝜋

sin (√5𝜋/2)

≈ 0.785664. (77)

Therefore,

Γ ⋅ 𝑀 ≈ 0.785664 ⋅ 1.60933 ≈ 1.26439 < 1.30261 ≈ 𝑁.

(78)

This means that for this example the problem (73)
allows for quasilinearization with respect to the linear part
(𝐿
2
𝑥)(𝑡) := 𝑥


+ (𝜋
2
/4)(4 + 𝑘

2
)𝑥, where 𝑘 = 1. Using

quasilinearization process we can say that resonant boundary
problem (73) is solvable.

6. Conclusions

We show that the resonant boundary value problem can be
studied by using a quasilinearization process. The respective
cases are considered, when the differential equations of res-
onant type with bounded or unbounded right side function
allow for quasilinearization. As an application the conditions
for solvability of the Emden-Fowler type resonant boundary
value problem are given. Two examples are considered in
detail showing the quasilinearization approach in action. By
using quasilinearization process with different linear parts we
can state the existence of different solutions of a problem thus
obtaining multiplicity of results.
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