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We introduce a 𝑞-generalization of Szász-Mirakjan operators 𝑆
𝑛,𝑞

and discuss their properties for fixed 𝑞 ∈ (0, 1). We show that the
𝑞-Szász-Mirakjan operators 𝑆

𝑛,𝑞
have good shape-preserving properties. For example, 𝑆

𝑛,𝑞
are variation-diminishing, and preserve

monotonicity, convexity, and concave modulus of continuity. For fixed 𝑞 ∈ (0, 1), we prove that the sequence {𝑆
𝑛,𝑞
(𝑓)} converges

to 𝐵
∞,𝑞
(𝑓) uniformly on [0, 1] for each 𝑓 ∈ 𝐶[0, 1/(1 − 𝑞)], where 𝐵

∞,𝑞
is the limit 𝑞-Bernstein operator. We obtain the estimates

for the rate of convergence for {𝑆
𝑛,𝑞
(𝑓)} by the modulus of continuity of 𝑓, and the estimates are sharp in the sense of order for

Lipschitz continuous functions.

1. Introduction

Let 𝑞 > 0. For each nonnegative integer 𝑘, the 𝑞-integer [𝑘]
and the 𝑞-factorial [𝑘]! are defined by

[𝑘] := [𝑘]
𝑞
:=

{{

{{

{

1 − 𝑞
𝑘

1 − 𝑞
, 𝑞 ̸= 1,

𝑘, 𝑞 = 1,

[𝑘]! := {
[𝑘] [𝑘 − 1] ⋅ ⋅ ⋅ [1] , 𝑘 ≥ 1,

1, 𝑘 = 0.

(1)

For integers 0 ≤ 𝑘 ≤ 𝑛, the 𝑞-binomial coefficient is defined
by

[
𝑛

𝑘
] :=

[𝑛]!

[𝑘]! [𝑛 − 𝑘]!
. (2)

We give the following two 𝑞-analogues of exponential func-
tion 𝑒𝑥:

𝑒
𝑞
(𝑥) :=

∞

∑

𝑘=0

𝑥
𝑘

[𝑘]!
=

1

((1 − 𝑞) 𝑥; 𝑞)
∞

,

|𝑥| <
1

1 − 𝑞
for 𝑞 < 1;

𝐸
𝑞
(𝑥) :=

∞

∑

𝑘=0

𝑞
𝑘(𝑘−1)/2

𝑥
𝑘

[𝑘]!
= (− (1 − 𝑞) 𝑥; 𝑞)

∞
,

𝑥 ∈ R for 𝑞 < 1,
(3)

where (𝑥; 𝑞)
∞
:= ∏
∞

𝑘=1
(1 − 𝑥𝑞

𝑘−1

). Clearly, we have

𝑒
𝑞
(𝑥) 𝐸
𝑞
(−𝑥) = 1, lim

𝑞→1−

𝑒
𝑞
(𝑥) = lim

𝑞→1−

𝐸
𝑞
(𝑥) = 𝑒

𝑥

. (4)

In [1], Phillips proposed the 𝑞-Bernstein polynomials: for
each positive integer 𝑛 and 𝑓 ∈ 𝐶[0, 1], the 𝑞-Bernstein
polynomial of 𝑓 is

𝐵
𝑛,𝑞
(𝑓) (𝑥) :=

𝑛

∑

𝑘=0

𝑓(
[𝑘]

[𝑛]
) [
𝑛

𝑘
] 𝑥
𝑘

𝑛−𝑘−1

∏

𝑠=0

(1 − 𝑞
𝑠

𝑥) . (5)

Note that for 𝑞 = 1, 𝐵
𝑛,𝑞
(𝑓) is the classical Bernstein

polynomial. In [2], II’inskiia and Ostrovska proved that, for
each 𝑓 ∈ 𝐶[0, 1] and 𝑞 ∈ (0, 1), the sequence {𝐵

𝑛,𝑞
(𝑓)(𝑥)}
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converges to 𝐵
∞,𝑞
(𝑓)(𝑥) as 𝑛 → ∞ uniformly on 𝑥 ∈ [0, 1],

where

𝐵
∞,𝑞
(𝑓) (𝑥) =

{{

{{

{

∞

∑

𝑘=0

𝑓 (1 − 𝑞
𝑘

) 𝑝
∞𝑘
(𝑞; 𝑥) , 0 ≤ 𝑥 < 1,

𝑓 (1) , 𝑥 = 1.

(6)

The operators 𝐵
∞,𝑞

are called the limit 𝑞-Bernstein operators.
They also arise as the limit for a sequence of 𝑞-Meyer-König
Zeller operators (see [3]). For results about properties of
𝐵
∞,𝑞
(𝑓, 𝑥) we refer to [2, 4, 5].
In [6], Aral introduced the following 𝑞-Szász-Mirakjan

operator: for each positive integer 𝑛 and 𝑓 ∈ 𝐶[0,∞),

𝑆
𝑏

𝑛,𝑞
(𝑓) (𝑥) := 𝐸

𝑞
(− [𝑛]

𝑥

𝑏
𝑛

)

∞

∑

𝑘=0

𝑓(
[𝑘] 𝑏
𝑛

[𝑛]
)
([𝑛] 𝑥)

𝑘

[𝑘]!(𝑏
𝑛
)
𝑘

, (7)

where 0 ≤ 𝑥 < 𝛼
𝑞
(𝑛), 𝛼

𝑞
(𝑛) := 𝑏

𝑛
/(1 − 𝑞

𝑛

), and 𝑏 = {𝑏
𝑛
} is

a sequence of positive numbers such that lim
𝑛→∞

𝑏
𝑛
= ∞.

In this paper, we introduce the following 𝑞-Szász-Mirakjan
operator: for each positive integer 𝑛 and 𝑓 ∈ 𝐶[0, 1/(1 − 𝑞𝑛)],

𝑆
𝑛,𝑞
(𝑓) (𝑥)

:=

{{{

{{{

{

𝐸
𝑞
(− [𝑛] 𝑥)

∞

∑

𝑘=0

𝑓(
[𝑘]

[𝑛]
)
([𝑛] 𝑥)

𝑘

[𝑘]!
, 𝑥 ∈ [0,

1

1 − 𝑞𝑛
) ,

𝑓 (1) , 𝑥 =
1

1 − 𝑞𝑛
.

(8)

Obviously, the operators 𝑆
𝑛,𝑞

are equal to the operators 𝑆𝑏
𝑛,𝑞

with 𝑏 = {𝑏
𝑛
}, 𝑏
𝑛
= 1. When 𝑞 = 1, the 𝑞-Szász-

Mirakjan operators 𝑆
𝑛,𝑞

reduce to the classical Szász-Mirakjan
operators.

In recent years, generalizations of linear operators con-
nected with 𝑞-Calculus have been investigated intensively.
The pioneer work has been made by Lupas [7] and Phillips
[1] who proposed generalizations of Bernstein polynomi-
als based on the 𝑞-integers. There are also other impor-
tant 𝑞-operators, for example, the two-parametric gener-
alization of 𝑞-Bernstein polynomials [8], the 𝑞-Bernstein-
Durrmeyer operator [9], 𝑞-Meyer-König Zeller operators
[10], 𝑞-Bleimann, Butzer and Hahn operators [11], and 𝑞-
Szász-Mirakjan operators [6, 12–15]. Among these generaliza-
tions, 𝑞-Bernstein polynomials proposed by Phillips attracted
the most attention and were studied widely by a number of
authors (see [1, 2, 5, 16–24]).

In this paper, we will discuss convergence and shape-
preserving properties of the 𝑞-Szász-Mirakjan operators 𝑆

𝑛,𝑞

for fixed 𝑞 ∈ (0, 1). We will show that the operators 𝑆
𝑛,𝑞

share good shape-preserving properties such as the variation-
diminishing properties, and for each 𝑓 ∈ 𝐶[0, 1/(1 −

𝑞)] the sequence {𝑆
𝑛,𝑞
(𝑓)(𝑥)} converges to the function

𝐵
∞,𝑞
(𝑓)(𝑥) uniformly on [0, 1], where 𝐵

∞,𝑞
are the limit

𝑞-Bernstein operators defined by (6). We also investigate
the rate of convergence of the 𝑞-Szász-Mirakjan operators
𝑆
𝑛,𝑞

for fixed 𝑞 ∈ (0, 1). Our results demonstrate that

in general convergence properties of the 𝑞-Szász-Mirakjan
operators 𝑆

𝑛,𝑞
are essentially different from those for the

classical Szász-Mirakjan operators; however, they are very
similar to those for the 𝑞-Bernstein polynomials. Notice
that different 𝑞-generalizations of Szász-Mirakjan operators
were introduced and studied by Aral and Gupta [6, 12], by
Radu [13], and by Mahmudov [14, 15]. However, our 𝑞-Szász-
Mirakjan operators have better convergence properties than
the other 𝑞-generalizations of Szász-Mirakjan operators for
fixed 𝑞 ∈ (0, 1).

The paper is organized as follows. In Section 2, we recall
some properties of the 𝑞-Szász-Mirakjan operators 𝑆

𝑛,𝑞
and

discuss their shape-preserving properties. In Section 3 we
investigate the convergence of 𝑆

𝑛,𝑞
(𝑓) for fixed 𝑞 ∈ (0, 1) and

obtain the rate of convergence of 𝑆
𝑛,𝑞
(𝑓) by the modulus of

continuity of 𝑓, and the estimates are sharp in the sense of
order for Lipschitz continuous functions.

2. Shape-Preserving Properties
of 𝑆
𝑛,𝑞

for 0 < 𝑞 < 1

In the sequel we always assume that 𝑞 ∈ (0, 1). First we
show that the 𝑞-Szász-Mirakjan operators 𝑆

𝑛,𝑞
are the positive

linear operators on𝐶[0, 1/(1−𝑞𝑛)]. Clearly, it suffices to prove
that, for 𝑓 ∈ 𝐶[0, 1/(1 − 𝑞𝑛)],

lim
𝑥→ (1/(1−𝑞𝑛))−

𝑆
𝑛,𝑞
(𝑓) (𝑥) = 𝑓(

1

1 − 𝑞𝑛
) . (9)

Indeed, for arbitrary 𝜀 > 0, there exist a constant𝑀 > 0 and
a 𝛿 > 0 such that |𝑓(𝑥)| ≤ 𝑀 for all 𝑥 ∈ [0, 1/(1 − 𝑞𝑛)], and
|𝑓(𝑥) − 𝑓(1/(1 − 𝑞

𝑛

))| ≤ 𝜀 for 𝑥 ∈ (1/(1 − 𝑞𝑛) − 𝛿, 1/(1 − 𝑞𝑛)).
We choose𝐴 to be theminimumpositive integer greater than
log
𝑞
((1 − 𝑞

𝑛

)𝛿. Then, for any 𝑘 > 𝐴,



[𝑘]

[𝑛]
−
1

1 − 𝑞𝑛


=
𝑞
𝑘

1 − 𝑞𝑛
< 𝛿,


𝑓 (
[𝑘]

[𝑛]
) − 𝑓(

1

1 − 𝑞𝑛
)


≤ 𝜀.

(10)

It follows from the Euler identity that

𝐸
𝑞
(− [𝑛] 𝑥)

∞

∑

𝑘=0

([𝑛] 𝑥)
𝑘

[𝑘]!
= 1 for 𝑥 ∈ [0, 1

1 − 𝑞𝑛
) ,

𝐸
𝑞
(− [𝑛] 𝑥) = ((1 − 𝑞

𝑛

) 𝑥; 𝑞)
∞

=

∞

∏

𝑠=0

(1 − 𝑞
𝑠

(1 − 𝑞
𝑛

) 𝑥) → 0+,

as 𝑥 → 1

1 − 𝑞𝑛
− .

(11)
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This implies that, for 𝑥 ∈ [0, 1/(1 − 𝑞𝑛)),

𝑆
𝑛,𝑞
(𝑓) (𝑥) − 𝑓(

1

1 − 𝑞𝑛
)



=



𝐸
𝑞
(− [𝑛] 𝑥)

∞

∑

𝑘=0

(𝑓(
[𝑘]

[𝑛]
) − 𝑓(

1

1 − 𝑞𝑛
))
([𝑛] 𝑥)

𝑘

[𝑘]!



≤ 𝐸
𝑞
(− [𝑛] 𝑥)(

𝐴

∑

𝑘=0


𝑓 (
[𝑘]

[𝑛]
) − 𝑓(

1

1 − 𝑞𝑛
)



([𝑛] 𝑥)
𝑘

[𝑘]!

+

∞

∑

𝑘=𝐴+1


𝑓 (
[𝑘]

[𝑛]
) − 𝑓(

1

1 − 𝑞𝑛
)



([𝑛] 𝑥)
𝑘

[𝑘]!
)

≤ 2𝑀𝐸
𝑞
(− [𝑛] 𝑥)

𝐴

∑

𝑘=0

1

(1 − 𝑞)
𝑘

[𝑘]!

+ 𝜀𝐸
𝑞
(− [𝑛] 𝑥)

∞

∑

𝑘=𝐴+1

([𝑛] 𝑥)
𝑘

[𝑘]!

≤ 𝐵𝐸
𝑞
(− [𝑛] 𝑥) + 𝜀,

(12)

where𝐵 := 2𝑀∑𝐴
𝑘=0
(1/(1−𝑞)

𝑘

[𝑘]!) is a constant independent
of 𝑥 and 𝐸

𝑞
(−[𝑛]𝑥) → 0 as 𝑥 → (1/(1 − 𝑞𝑛))−. This proves

(9).
The 𝑞-Szász-Mirakjan operators 𝑆

𝑛,𝑞
possess the end-

point interpolation property:

𝑆
𝑛,𝑞
(𝑓) (0) = 𝑓 (0) , 𝑆

𝑛,𝑞
(𝑓) (

1

1 − 𝑞𝑛
) = 𝑓(

1

1 − 𝑞𝑛
) ,

𝑛 ∈ N.

(13)

They leave invariant linear functions:

𝑆
𝑛,𝑞
(𝑎𝑡 + 𝑏) (𝑥) = 𝑎𝑥 + 𝑏 (14)

and are degree-preserving on polynomials; that is, if 𝑇 is
a polynomial of degree 𝑚, then 𝑆

𝑛,𝑞
(𝑇) is a polynomial of

degree𝑚 (see [6, Lemma 1] or [25, Theorem 1]).
The following representation of the 𝑞-Szász-Mirakjan

operators 𝑆
𝑛,𝑞
, called the 𝑞-difference form, was obtained in

[6, Corollary 4]:

𝑆
𝑛,𝑞
(𝑓) (𝑥) =

∞

∑

𝑘=0

𝑞
𝑘(𝑘−1)/2

𝑓([
[0]

[𝑛]
;
[1]

[𝑛]
; . . . ;

[𝑘]

[𝑛]
]) 𝑥
𝑘

, (15)

where 𝑓([𝑥
0
; 𝑥
1
; . . . ; 𝑥

𝑘
]) denotes the usual divided differ-

ence; that is,

𝑓 ([𝑥
0
]) = 𝑓 (𝑥

0
) ; 𝑓 ([𝑥

0
; 𝑥
1
]) =
𝑓 (𝑥
1
) − 𝑓 (𝑥

0
)

𝑥
1
− 𝑥
0

, . . . ,

𝑓 ([𝑥
0
; 𝑥
1
; . . . ; 𝑥

𝑘
]) =
𝑓 ([𝑥
1
; . . . ; 𝑥

𝑘
]) − 𝑓 ([𝑥

0
; . . . ; 𝑥

𝑘−1
])

𝑥
𝑘
− 𝑥
0

.

(16)

Aral and Gupta discussed the shape-preserving proper-
ties of the 𝑞-Szász-Mirakjan operators in [12, Corollary 3.2].
We say a function 𝑓 on an interval 𝐼 is 𝑖-convex, 𝑖 ≥ 1, if
𝑓 ∈ 𝐶(𝐼) and all 𝑖th forward differences

Δ
𝑖

ℎ
𝑓 (𝑡) :=

𝑖

∑

𝑘=0

(−1)
𝑖−𝑘

(
𝑖

𝑘
)𝑓 (𝑡 + 𝑘ℎ) ,

0 ≤ ℎ ≤
1

𝑖
, 𝑡, 𝑡 + 𝑘ℎ ∈ 𝐼

(17)

are nonnegative. Obviously, a 1-convex function is nonde-
creasing and a 2-convex function is convex. Aral and Gupta
obtained that, for an 𝑖-convex function on [0,∞), there exists
𝑞 ∈ (0, 1) such that 𝑆

𝑛,𝑞
(𝑓) is also 𝑖-convex on [0, 1/(1 − 𝑞𝑛))

for 𝑞 ∈ (𝑞, 1).
In this section we also study the shape-preserving prop-

erties of the operators 𝑆
𝑛,𝑞
. We use a completely different

method from the one in [12], and our results hold for all
𝑞 ∈ (0, 1). In order to state the results, we introduce some
notations.

For any real sequence 𝑎, finite or infinite, we denote by
𝑆
−

(𝑎) the number of strict sign changes in 𝑎. For 𝑓 ∈ 𝐶(𝐼),
where 𝐼 is an interval, we define 𝑆−(𝑓) to be the number of
sign changes of 𝑓; that is,

𝑆
−

(𝑓) = sup 𝑆− (𝑓 (𝑥
0
) , . . . , 𝑓 (𝑥

𝑚
)) , (18)

where the supremum is taken over all increasing sequences
𝑥
0
< ⋅ ⋅ ⋅ < 𝑥

𝑚
and 𝑥

0
, 𝑥
𝑚
∈ 𝐼 for all positive integers𝑚.

Let 𝐿 be a positive linear operator on 𝐶(𝐼). We say that
𝐿 is variation-diminishing if, for all functions 𝑓 ∈ 𝐶(𝐼), we
have

𝑆
−

(𝐿
𝑛
𝑓) ≤ 𝑆

−

(𝑓) . (19)

A function 𝜔(𝑡) on [0, 𝐴], 𝐴 > 0 is called a modulus of
continuity if 𝜔(𝑡) is continuous, nondecreasing, and semiad-
ditive and 𝜔(0) = 0. We denote by𝐻𝜔 the class of continuous
functions 𝑓 on [0, 𝐴] satisfying the inequality 𝜔(𝑓, 𝑡) ≤ 𝜔(𝑡),
where 𝜔(𝑓, 𝑡) = max

|𝑥
1
−𝑥
2
|≤𝑡
|𝑓(𝑥
2
) − 𝑓(𝑥

1
)| is the modulus

of continuity of 𝑓(𝑥). Note that if 𝑓(𝑥) is a concave modulus
of continuity, then 𝑥−1𝑓(𝑥) is nonincreasing on (0, 𝐴]. Also,
if 𝑓(𝑥) is a nondecreasing function such that 𝑓(0) = 0 and
𝑥
−1

𝑓(𝑥) is nonincreasing on (0, 𝐴], then 𝑓(𝑥) is a modulus
of continuity.

Our main results of this section can be formulated as
follows.

Theorem 1. (i)The operators 𝑆
𝑛,𝑞

are variation-diminishing on
[0, 1/(1 − 𝑞

𝑛

)].
(ii) If a function 𝑓 is 𝑖-convex on [0, 1/(1 − 𝑞𝑛)], then the

functions 𝑆
𝑛,𝑞
(𝑓) are also 𝑖-convex on [0, 1/(1 − 𝑞𝑛)]. Specially,

if a function 𝑓 is nondecreasing (nonincreasing) on [0, 1/(1 −
𝑞
𝑛

)], then 𝑆
𝑛,𝑞
(𝑓) are also nondecreasing (nonincreasing) on

[0, 1/(1 − 𝑞
𝑛

)] and if 𝑓 is convex (concave) on [0, 1/(1 − 𝑞𝑛)],
then so are 𝑆

𝑛,𝑞
(𝑓).

(iii) If a function 𝑓 is convex on [0, 1/(1 − 𝑞𝑛)], then
𝑆
𝑛,𝑞
(𝑓)(𝑥) ≥ 𝑓(𝑥), 𝑥 ∈ [0, 1/(1 − 𝑞𝑛)].
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(iv) If 𝜔(𝑡) is a modulus of continuity, then 𝑓 ∈ 𝐻𝜔 implies
that, for each 𝑛 ≥ 1, 𝑆

𝑛,𝑞
(𝑓) ∈ 𝐻

2𝜔; if 𝜔(𝑡) is concave, then, for
each 𝑛 ≥ 1, 𝑆

𝑛,𝑞
(𝑓) ∈ 𝐻

𝜔.
(v) If𝜔(𝑡) is a concave modulus of continuity, then, for each

𝑛 ≥ 1, 𝑆
𝑛,𝑞
(𝜔) is also a concave modulus of continuity and

𝑆
𝑛,𝑞
(𝜔)(𝑡) ≤ 𝜔(𝑡).
(vi) If 𝑓(𝑥) is a nonnegative function such that 𝑥−1𝑓(𝑥)

is nonincreasing on (0, 1/(1 − 𝑞𝑛)], then, for each 𝑛 ≥ 1,
𝑥
−1

𝑆
𝑛,𝑞
(𝑓)(𝑥) is nonincreasing also.

Proof. (i) Let 𝐼 be an interval, 𝐼 ⊂ [0,∞). We assume that,
for a real sequence 𝑎 = {𝑎

𝑘
}
∞

𝑘=0
, the power series ∑∞

𝑘=0
𝑎
𝑘
𝑥
𝑘

converges to the function 𝑔 on 𝐼. Bymeans of the well-known
Descartes’ rule of sign it is easy to prove that

𝑆
−

(𝑔) = 𝑆
−

(

∞

∑

𝑘=0

𝑎
𝑘
𝑥
𝑘

) ≤ 𝑆
−

(𝑎) . (20)

Obviously, if ℎ(𝑥) > 0 for any 𝑥 ∈ 𝐼 and 𝑏
𝑘
> 0 for 𝑘 ≥ 0, then

𝑆
−

(𝑓) = 𝑆
−

(𝑓 ⋅ ℎ) , 𝑆
−

({𝑎
𝑘
𝑏
𝑘
}
∞

𝑘=0
) = 𝑆
−

({𝑎
𝑘
}
∞

𝑘=0
) .

(21)

It follows that

𝑆
−

(𝑆
𝑛,𝑞
(𝑓)) = 𝑆

−

(

∞

∑

𝑘=0

𝑓(
[𝑘]

[𝑛]
)
[𝑛]
𝑘

[𝑘]!
𝑥
𝑘

)

≤ 𝑆
−

({𝑓(
[𝑘]

[𝑛]
)}

∞

𝑘=0

) ≤ 𝑆
−

(𝑓) ,

(22)

which implies that 𝑆
𝑛,𝑞

are variation-diminishing.
(ii)The operators 𝑆

𝑛,𝑞
possess the end-point interpolation

property and are degree-preserving on polynomials and
variation-diminishing. Then, (ii) follows from [26, Lemma
15].

(iii) It follows from [27, p. 281] that if a positive operator 𝐿
on 𝐶[0, 𝐴] reproduces linear functions, then 𝐿(𝑓, 𝑥) ≥ 𝑓(𝑥)
for any convex function𝑓 and for any𝑥 ∈ [0, 𝐴]. Since 𝑆

𝑛,𝑞
are

the positive linear operators and reproduce linear functions,
we obtain (iii).

(iv) From [26, Corollary 8], we know that if a positive
linear operator 𝐿 on𝐶[0, 𝐴] (𝐴 > 0) is variation-diminishing
and reproduces linear functions, then, for all𝑓 ∈ 𝐶[0, 𝐴] and
𝑡 ∈ (0, 𝐴],

𝜔 (𝐿𝑓, 𝑡) ≤ �̃� (𝑓, 𝑡) . (23)

Thus, if 𝑓 ∈ 𝐻𝜔, then

𝜔 (𝑆
𝑛,𝑞
(𝑓) , 𝑡) ≤ �̃� (𝑓, 𝑡) ≤ �̃� (𝑡) , (24)

where �̃�(𝑡) and �̃�(𝑓, 𝑡) denote the least concave majorant of
𝜔(𝑡) and 𝜔(𝑓, 𝑡), respectively. It is well known that for each
modulus of continuity 𝜔 there exists a concave modulus of
continuity �̃� such that 𝜔(𝑡) ≤ �̃�(𝑡) ≤ 2𝜔(𝑡) for 𝑡 ∈ [0, 𝐴].
Thence, 𝑆

𝑛,𝑞
(𝑓) ∈ 𝐻

2𝜔 and furthermore 𝑆
𝑛,𝑞
(𝑓) ∈ 𝐻

𝜔 if 𝜔 is
concave, which means (iv) holds.

(v) From (i) we know that, for a concave modulus of
continuity 𝜔 and each 𝑛 ≥ 1, the function 𝑆

𝑛,𝑞
(𝜔) is

nondecreasing and concave on (0, 𝐴], where 𝐴 = 1/(1 − 𝑞𝑛).
We also have 𝑆

𝑛,𝑞
(𝜔)(0) = 0. This means that 𝑆

𝑛,𝑞
(𝜔) is a

concave modulus of continuity. The inequality 𝑆
𝑛,𝑞
(𝜔)(𝑡) ≤

𝜔(𝑡) follows directly from (iii).
(vi) Since, for any constant 𝑐,

𝑆
−

(
𝑆
𝑛,𝑞
(𝑓) (𝑥)

𝑥
− 𝑐)

= 𝑆
−

(𝑆
𝑛,𝑞
(𝑓) (𝑥) − 𝑐𝑥) = 𝑆

−

(𝑆
𝑛,𝑞
(𝑓 (𝑡) − 𝑐𝑡) (𝑥))

≤ 𝑆
−

(𝑓 (𝑥) − 𝑐𝑥) = 𝑆
−

(
𝑓 (𝑥)

𝑥
− 𝑐) ≤ 1

(25)

we get that 𝑆
𝑛,𝑞
(𝑓)(𝑥)/𝑥 is nondecreasing or nonincreasing

on (0, 𝐴], where 𝐴 = 1/(1 − 𝑞𝑛). For any 𝑡 ∈ (0, 𝐴), 𝑓(𝑡)/𝑡 ≥
𝑓(𝐴)/𝐴, we have 𝑓(𝑡) ≥ 𝑓(𝐴)𝑡/𝐴, and thus 𝑆

𝑛,𝑞
(𝑓)(𝑥) ≥

𝑆
𝑛,𝑞
(𝑓(𝐴)𝑡/𝐴)(𝑥) = 𝑓(𝐴)𝑥/𝐴. Hence,

𝑆
𝑛,𝑞
(𝑓) (𝑥)

𝑥
≥
𝑓 (𝐴)

𝐴
=
𝑆
𝑛,𝑞
(𝑓) (𝐴)

𝐴
, (26)

which implies that 𝑆
𝑛,𝑞
(𝑓)(𝑥)/𝑥 is nonincreasing on [0, 𝐴].

Theorem 1 is proved.

3. The Rate of Convergence for the 𝑞-Szász-
Mirakjan Operators 𝑆

𝑛,𝑞
for Fixed 𝑞 ∈ (0, 1)

The approximation properties of the sequence {𝑆𝑏
𝑛,𝑞
𝑛

(𝑓)} in
weighted spaces as lim

𝑛→∞
𝑞
𝑛
= 1− were investigated in [6,

Theorem 2] and [25, Theorem 6]. The obtained results are
similar to the ones of the classical Szász-Mirakjan operators.
However, there are few results about convergence properties
of 𝑆
𝑛,𝑞

for fixed 𝑞 ∈ (0, 1).This section is devoted to discussing
the convergence properties of the 𝑞-Szász-Mirakjan operators
𝑆
𝑛,𝑞

for fixed 𝑞 ∈ (0, 1).
We set

𝑠
𝑛,𝑘
(𝑞; 𝑥) = 𝐸

𝑞
(− [𝑛] 𝑥)

([𝑛] 𝑥)
𝑘

[𝑘]!
=
([𝑛] 𝑥)

𝑘

[𝑘]!
((1 − 𝑞

𝑛

) 𝑥; 𝑞)
∞
,

(27)

𝑝
∞,𝑘
(𝑞; 𝑥) =

𝑥
𝑘

(1 − 𝑞)
𝑘

[𝑘]!

(𝑥; 𝑞)
∞
. (28)

Formerly, for 𝑓 ∈ 𝐶[0, 1/(1−𝑞)] and each 𝑘 ≥ 0, {𝑓([𝑘]/[𝑛])}
converges to𝑓(1−𝑞𝑘), {𝑠

𝑛,𝑘
(𝑞; 𝑥)} converges to𝑝

∞,𝑘
(𝑞; 𝑥), and

𝑆
𝑛,𝑞
(𝑓) (𝑥) =

∞

∑

𝑘=0

𝑓(
[𝑘]

[𝑛]
) 𝑠
𝑛,𝑘
(𝑞; 𝑥)

→

∞

∑

𝑘=0

𝑓 (1 − 𝑞
𝑘

) 𝑝
∞,𝑘
(𝑞; 𝑥)

= 𝐵
∞,𝑞
(𝑓) (𝑥) ,

(29)

as 𝑛 → ∞. Indeed, the above conclusion holds. We have the
following stronger results.
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Theorem 2. Let 𝑓 ∈ 𝐶[0, 1/(1 − 𝑞)]. Then, we have

sup
𝑥∈[0,1]


𝑆
𝑛,𝑞
(𝑓) (𝑥) − 𝐵

∞,𝑞
(𝑓) (𝑥)


≤ 𝐶
𝑞
𝜔 (𝑓, 𝑞

𝑛

) , (30)

where 𝐶
𝑞
= 4 + 𝑞/(1 − 𝑞) + (1/(1 − 𝑞))𝑒

𝑞
2

/(1−𝑞)
2

. This estimate
is sharp in the following sense of order: for each 𝛼, 0 < 𝛼 ≤ 1,
there exists a function𝑓

𝛼
(𝑥)which belongs to the Lipschitz class

Lip𝛼 := {𝑓 ∈ 𝐶[0, 1] | 𝜔(𝑓; 𝑡) ≤ 𝑡𝛼} such that

sup
𝑥∈[0,1]


𝑆
𝑛,𝑞
(𝑓
𝛼
) (𝑥) − 𝐵

∞,𝑞
(𝑓
𝛼
) (𝑥)

≥ 𝐶𝑞
𝑛𝛼

, (31)

where 𝐶 is a positive constant independent of 𝑛.

Remark 3. It follows from (30) that, for 𝑓 ∈ 𝐶[0, 1/(1 − 𝑞)],
lim
𝑛→∞

𝑆
𝑛,𝑞
(𝑓)(𝑥) = 𝐵

∞,𝑞
(𝑓)(𝑥) uniformly on 𝑥 ∈ [0, 1] as

𝑛 → ∞. Since 𝐵
∞,𝑞
(𝑓)(𝑥) = 𝑓(𝑥), 𝑥 ∈ [0, 1], if and only

if 𝑓 is linear on [0, 1] (see [2, Theorem 6]), we get that the
sequence 𝑆

𝑛,𝑞
(𝑓)(𝑥) converges to 𝑓 uniformly on [0, 1] if and

only if 𝑓 is linear on [0, 1].

Remark 4. It should be emphasized that the proof of
Theorem 2 requires estimation techniques involving the
infinite product. Also, it is a little more difficult than
the one used for 𝑞-Bernstein polynomials (see [23]), since
𝑆
𝑛,𝑞
(𝑓)(1) ̸= 𝑓(1) = 𝐵

∞,𝑞
(𝑓)(1).

Proof. Since the operators 𝑆
𝑛,𝑞

and 𝐵
∞,𝑞

reproduce linear
functions, we get that, for 𝑥 ∈ [0, 1),

∞

∑

𝑘=0

𝑠
𝑛,𝑘
(𝑞; 𝑥) = 1,

∞

∑

𝑘=0

[𝑘]

[𝑛]
𝑠
𝑛,𝑘
(𝑞; 𝑥) = 𝑥,

𝑥 ∈ [0,
1

1 − 𝑞𝑛
) ,

(32)

∞

∑

𝑘=0

𝑝
∞,𝑘
(𝑞; 𝑥) = 1,

∞

∑

𝑘=0

(1 − 𝑞
𝑘

) 𝑝
∞,𝑘
(𝑞; 𝑥) = 𝑥,

𝑥 ∈ [0, 1) ,

(33)

where 𝑠
𝑛,𝑘
(𝑞; 𝑥) and 𝑝

∞,𝑘
(𝑞; 𝑥) are defined by (27) and (28),

respectively. By means of (32) and (33), direct calculations
give that

𝑛

∑

𝑘=0

𝑞
𝑘

𝑠
𝑛,𝑘
(𝑞; 𝑥) = 1 − 𝑥 + 𝑞

𝑛

𝑥,

∞

∑

𝑘=0

𝑞
𝑘

𝑝
∞,𝑘
(𝑞; 𝑥) = 1 − 𝑥.

(34)

For 𝑥 = 0, we have


𝑆
𝑛,𝑞
(𝑓) (0) − 𝐵

∞,𝑞
(𝑓) (0)


=
𝑓 (0) − 𝑓 (0)

 = 0. (35)

For 𝑥 = 1, it follows that


𝑆
𝑛,𝑞
(𝑓) (1) − 𝐵

∞,𝑞
(𝑓) (1)



=



∞

∑

𝑘=0

(𝑓(
[𝑘]

[𝑛]
) − 𝑓 (1)) 𝑠

𝑛,𝑘
(𝑞; 1)



≤

∞

∑

𝑘=0

(


𝑓 (
[𝑘]

[𝑛]
) − 𝑓 (1 − 𝑞

𝑘

)



+

𝑓 (1) − 𝑓 (1 − 𝑞

𝑘

)

) 𝑠
𝑛,𝑘
(𝑞; 1)

≤

∞

∑

𝑘=0

(𝜔(𝑓,
[𝑘] 𝑞
𝑛

[𝑛]
) + 𝜔 (𝑓, 𝑞

𝑘

)) 𝑠
𝑛,𝑘
(𝑞; 1)

≤ 𝜔 (𝑓, 𝑞
𝑛

)

∞

∑

𝑘=0

(2 +
[𝑘]

[𝑛]
+
𝑞
𝑘

𝑞𝑛
) 𝑠
𝑛,𝑘
(𝑞; 1)

= 4𝜔 (𝑓, 𝑞
𝑛

) ,

(36)

where in the first equality we used (32); in the last inequality
we used the inequality 𝜔(𝑓, 𝜆𝑡) ≤ (1 + 𝜆)𝜔(𝑓, 𝑡) for any 𝜆, 𝑡 >
0; in the last equality we used (32) and (34).

Now for 𝑥 ∈ (0, 1), by (32) and (33), we have


𝑆
𝑛,𝑞
(𝑓, 𝑥) − 𝐵

∞,𝑞
(𝑓, 𝑥)



=



∞

∑

𝑘=0

𝑓(
[𝑘]

[𝑛]
) 𝑠
𝑛,𝑘
(𝑞; 𝑥) −

∞

∑

𝑘=0

𝑓 (1 − 𝑞
𝑘

) 𝑝
∞,𝑘
(𝑞; 𝑥)



=



∞

∑

𝑘=0

(𝑓(
[𝑘]

[𝑛]
) − 𝑓 (1 − 𝑞

𝑘

)) 𝑠
𝑛,𝑘
(𝑞; 𝑥)

+

∞

∑

𝑘=0

(𝑓 (1 − 𝑞
𝑘

) − 𝑓 (1)) (𝑠
𝑛,𝑘
(𝑞; 𝑥) − 𝑝

∞,𝑘
(𝑞; 𝑥))



≤

∞

∑

𝑘=0


𝑓 (
[𝑘]

[𝑛]
) − 𝑓 (1 − 𝑞

𝑘

)


𝑠
𝑛,𝑘
(𝑞; 𝑥)

+

∞

∑

𝑘=0


𝑓 (1 − 𝑞

𝑘

) − 𝑓 (1)


𝑠𝑛,𝑘 (𝑞; 𝑥) − 𝑝∞,𝑘 (𝑞; 𝑥)


=: 𝐽
1
+ 𝐽
2
.

(37)

Since



[𝑘]

[𝑛]
− (1 − 𝑞

𝑘

)


=
[𝑘] 𝑞
𝑛

[𝑛]
,

𝜔 (𝑓; 𝜆𝑡) ≤ (1 + 𝜆) 𝜔 (𝑓; 𝑡) , 𝜆, 𝑡 > 0,

(38)
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we get by (32)

𝐽
1
≤

∞

∑

𝑘=0

𝜔(𝑓,
[𝑘] 𝑞
𝑛

[𝑛]
) 𝑠
𝑛,𝑘
(𝑞; 𝑥)

≤ 𝜔 (𝑓, 𝑞
𝑛

)

∞

∑

𝑘=0

(1 +
[𝑘]

[𝑛]
) 𝑠
𝑛,𝑘
(𝑞; 𝑥)

= (1 + 𝑥) 𝜔 (𝑓, 𝑞
𝑛

) ≤ 2𝜔 (𝑓, 𝑞
𝑛

) .

(39)

In order to estimate 𝐽
2
, we need to estimate |𝑠

𝑛,𝑘
(𝑞; 𝑥) −

𝑝
∞,𝑘
(𝑞; 𝑥)|. We have

𝑠𝑛,𝑘 (𝑞; 𝑥) − 𝑝∞,𝑘 (𝑞; 𝑥)


=



([𝑛] 𝑥)
𝑘

[𝑘]!

∞

∏

𝑠=0

(1 − (1 − 𝑞
𝑛

) 𝑞
𝑠

𝑥)

−
𝑥
𝑘

(1 − 𝑞)
𝑘

[𝑘]!

∞

∏

𝑠=0

(1 − 𝑞
𝑠

𝑥)



≤
𝑥
𝑘

(1 − 𝑞)
𝑘

[𝑘]!



∞

∏

𝑠=0

(1 − 𝑞
𝑠

(1 − 𝑞
𝑛

) 𝑥) (1 − 𝑞
𝑛

)
𝑘

−

∞

∏

𝑠=0

(1 − 𝑞
𝑠

𝑥) (1 − 𝑞
𝑛

)
𝑘



+
𝑥
𝑘

(1 − 𝑞)
𝑘

[𝑘]!

∞

∏

𝑠=0

(1 − 𝑞
𝑠

𝑥)

1 − (1 − 𝑞

𝑛

)
𝑘


≤ 𝑝
∞,𝑘
(𝑞; 𝑥) (



∞

∏

𝑠=0

(1+
𝑞
𝑠+𝑛

𝑥

1 − 𝑞𝑠𝑥
) − 1



+

1 − (1 − 𝑞

𝑛

)
𝑘

) .

(40)

We note that

𝑞
𝑘

(1 − (1 − 𝑞
𝑛

)
𝑘

) = 𝑞
𝑘+𝑛

(1 + (1 − 𝑞
𝑛

) + ⋅ ⋅ ⋅ + (1 − 𝑞
𝑛

)
𝑘−1

)

≤ 𝑘𝑞
𝑘+𝑛

≤
𝑞
𝑛+1

1 − 𝑞
.

(41)

It follows that

𝐽
2
≤

∞

∑

𝑘=0

𝜔 (𝑓, 𝑞
𝑘

)
𝑠𝑛,𝑘 (𝑞; 𝑥) − 𝑝∞,𝑘 (𝑞; 𝑥)



≤ 𝜔 (𝑓, 𝑞
𝑛

)

∞

∑

𝑘=0

(1 +
𝑞
𝑘

𝑞𝑛
)
𝑠𝑛,𝑘 (𝑞; 𝑥) − 𝑝∞,𝑘 (𝑞; 𝑥)



≤ 𝜔 (𝑓, 𝑞
𝑛

)(

∞

∑

𝑘=0

(𝑠
𝑛,𝑘
(𝑞; 𝑥) + 𝑝

∞,𝑘
(𝑞; 𝑥))

+

∞

∑

𝑘=0

𝑞
𝑘

𝑞𝑛

𝑠𝑛,𝑘 (𝑞; 𝑥) − 𝑝∞,𝑘 (𝑞; 𝑥)
)

≤ 𝜔 (𝑓, 𝑞
𝑛

)(2 +

∞

∑

𝑘=0

𝑞
𝑘

𝑞𝑛
𝑝
∞,𝑘
(𝑞; 𝑥)

× (



∞

∏

𝑠=0

(1 +
𝑞
𝑠+𝑛

𝑥

1 − 𝑞𝑠𝑥
) − 1



+

1 − (1 − 𝑞

𝑛

)
𝑘

))

≤ 𝜔 (𝑓, 𝑞
𝑛

)(2 +

∞

∑

𝑘=0

𝑝
∞,𝑘
(𝑞; 𝑥)

× (𝑞
𝑘−𝑛



∞

∏

𝑠=0

(1 +
𝑞
𝑠+𝑛

𝑥

1 − 𝑞𝑠𝑥
) − 1



+
𝑞

1 − 𝑞
))

≤ 𝜔 (𝑓, 𝑞
𝑛

) (2 + 𝑞
−𝑛

(1 − 𝑥)

×



∞

∏

𝑠=0

(1 +
𝑞
𝑠+𝑛

𝑥

1 − 𝑞𝑠𝑥
) − 1



+
𝑞

1 − 𝑞
)

=: 𝜔 (𝑓, 𝑞
𝑛

) (2 + 𝐻 +
𝑞

1 − 𝑞
) ,

(42)

where in the fourth inequality we used (32) and (33); in the
last inequality we used (34) and (33).We estimate𝐻. We have

𝐻 = 𝑞
−𝑛



(1 − 𝑥 + 𝑞
𝑛

𝑥)

∞

∏

𝑠=1

(1 +
𝑞
𝑠+𝑛

𝑥

1 − 𝑞𝑠𝑥
) − (1 − 𝑥)



= 𝑥

∞

∏

𝑠=1

(1 +
𝑞
𝑠+𝑛

𝑥

1 − 𝑞𝑠𝑥
) + 𝑞
−𝑛

(1 − 𝑥)

×



∞

∏

𝑠=1

(1 +
𝑞
𝑠+𝑛

𝑥

1 − 𝑞𝑠𝑥
) − 1



=: 𝑥𝑒
𝐾

+ 𝑞
−𝑛

(1 − 𝑥) (𝑒
𝐾

− 1) ,

(43)

where𝐾 := ∑∞
𝑠=1

ln(1 + 𝑞𝑠+𝑛𝑥/(1 − 𝑞𝑠𝑥)). Using the inequality
ln(1 + 𝑡) ≤ 𝑡, 𝑡 ≥ 0, we get that

𝐾 ≤

∞

∑

𝑠=1

𝑞
𝑠+𝑛

𝑥

1 − 𝑞𝑠𝑥
≤

∞

∑

𝑠=1

𝑞
𝑠+𝑛

1 − 𝑞𝑥
≤

𝑞
𝑛+1

(1 − 𝑞) (1 − 𝑞𝑥)

≤
𝑞
2

(1 − 𝑞)
2
.

(44)

It follows that

𝑒
𝐾

≤ 𝑒
𝑞
2

/(1−𝑞)
2

,

𝑒
𝐾

− 1 = 𝐾𝑒
𝜉

≤ 𝐾𝑒
𝐾

≤
𝑞
𝑛+1

(1 − 𝑞) (1 − 𝑞𝑥)
𝑒
𝑞
2

/(1−𝑞)
2

,

𝜉 ∈ [0, 𝐾] .

(45)
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This deduces that, for 𝑥 ∈ (0, 1),

𝐻 ≤ 𝑒
𝑞
2

/(1−𝑞)
2

+ (1 − 𝑥)
𝑞

(1 − 𝑞) (1 − 𝑞𝑥)
𝑒
𝑞
2

/(1−𝑞)
2

≤
1

1 − 𝑞
𝑒
𝑞
2

/(1−𝑞)
2

,

(46)

and thence

𝐽
2
≤ 𝜔 (𝑓, 𝑞

𝑛

) (2 +
𝑞

1 − 𝑞
+
1

1 − 𝑞
𝑒
𝑞
2

/(1−𝑞)
2

) . (47)

We conclude from (39) and (47) that, for 𝑥 ∈ (0, 1),

𝑆
𝑛,𝑞
(𝑓, 𝑥) − 𝐵

∞,𝑞
(𝑓, 𝑥)


≤ 𝐽
1
+ 𝐽
2

≤ 𝜔 (𝑓, 𝑞
𝑛

) (4 +
𝑞

1 − 𝑞
+
1

1 − 𝑞
𝑒
𝑞
2

/(1−𝑞)
2

) .

(48)

Hence, (30) follows from (35), (36), and (48).
At last we show that the estimate (30) is sharp. For each

𝛼, 0 < 𝛼 ≤ 1, suppose that 𝑓∗
𝛼
(𝑥) is a continuous function,

which is equal to zero in [0, 1 − 𝑞] and [1 − 𝑞2, 1], equal to
(𝑥 − (1 − 𝑞))

𝛼 in [1 − 𝑞, 1 − 𝑞 + 𝑞(1 − 𝑞)/2], and linear in
the rest of [0, 1]. It is easy to see that 𝜔(𝑓∗

𝛼
, 𝑡) ≤ 𝐴𝑡

𝛼. We set
𝑓
𝛼
(𝑡) = (1/𝐴)𝑓

∗

𝛼
(𝑡). Then, 𝑓

𝛼
∈ Lip𝛼, and for sufficiently

large 𝑛, we have

sup
𝑥∈[0,1]


𝑆
𝑛,𝑞
(𝑓
𝛼
) (𝑥) − 𝐵

∞,𝑞
(𝑓
𝛼
) (𝑥)


=
1

𝐴

(1 − 𝑞)
𝛼

𝑞
𝑛𝛼

(1 − 𝑞𝑛)
𝛼

sup
𝑥∈[0,1]

𝑠𝑛,1 (𝑞; 𝑥)


≥
(1 − 𝑞)

𝛼

𝑞
𝑛𝛼

𝐴


𝑠
𝑛,1
(𝑞;
1

2
)



≥
(1 − 𝑞)

𝛼

2𝐴 (1 − 𝑞)

∞

∏

𝑠=0

(1 −
𝑞
𝑠

2
) 𝑞
𝑛𝛼

=: 𝐶𝑞
𝑛𝛼

.

(49)

The proof of Theorem 2 is complete.
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