
Research Article
Robust Stability Analysis of Neutral-Type Hybrid Bidirectional
Associative Memory Neural Networks with Time-Varying Delays

Wei Feng,1,2 Simon X. Yang,1,3 and Haixia Wu1,2

1 College of Automation, Chongqing University, Chongqing 400044, China
2Department of Mathematics and Information Engineering, Chongqing University of Education, Chongqing 400065, China
3 School of Engineering, University of Guelph, Guelph, ON, Canada N1G 2W1

Correspondence should be addressed to Wei Feng; fengwit@gmail.com

Received 5 March 2014; Accepted 2 May 2014; Published 27 May 2014

Academic Editor: Gani Stamov

Copyright © 2014 Wei Feng et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The global asymptotic robust stability of equilibrium is considered for neutral-type hybrid bidirectional associative memory neural
networks with time-varying delays and parameters uncertainties. The results we obtained in this paper are delay-derivative-
dependent and establish various relationships between the network parameters only. Therefore, the results of this paper are
applicable to a larger class of neural networks and can be easily verified when compared with the previously reported literature
results. Two numerical examples are illustrated to verify our results.

1. Introduction

Stability analysis of neural networks is an issue of both
theoretical and practical importance due to the fact that in
some applications the designed neural network is required
to have a unique and stable equilibrium point [1–3]. Time
delays are unavoidably encountered in the implementation
of neural networks, which may cause undesirable dynamic
network behaviors such as oscillation and instability. On the
other hand, in practice, the weight coefficients of the neurons
depend on certain resistance and capacitance values which
are subject to uncertainties. In the design of neural networks,
it is important to ensure that the system is stable with respect
to these uncertainties.

It is well known that a series of neural networks related to
bidirectional associative memory (BAM) models have been
proposed by Kosko [4, 5]. These models generalized the
single-layer autoassociative Hebbian correlation to a two-
layer pattern-matched heteroassociative circuit. This class of
networks has been successfully applied to pattern recognition
and artificial intelligence. A great number of results for BAM
neural networks concerning the existence of equilibrium
point and global asymptotic or robust stability have been
derived [6–32].

Moreover, due to the complicated dynamic properties of
the neural cells in the real world, the existing neural network
models in many cases cannot characterize the properties
of a neural reaction process precisely. It is natural and
important that systems will contain some information about
the derivative of the past state to further describe and model
the dynamics for such complex neural reactions [33, 34].
However, the stability analysis of BAM neural networks of
neutral type has been investigated by only a few researchers
[18, 35–37].

However, the existing stability results [18, 36, 37] derived
for the BAM neural networks can be applicable when only a
pure delayed neural networkmodel is considered. Recently, a
more general class of BAMneural networkmodels, called the
hybrid BAMneural network inwhich both instantaneous and
delayed signaling occur, was considered and some sufficient
condition for robust stability of this class of BAM neural
networks has been presented [23, 25, 38]. But, up to now, there
are few results on stability of neutral-type hybrid BAMneural
networks with time-varying delays.

Motivated by the preceding discussion, in this paper,
we are going to deal with the problem of global asymptotic
robust stability for neutral-type hybrid bidirectional asso-
ciative memory neural networks with time-varying delays
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and parameters uncertainties. By constructing a novel Lya-
punov functional, novel delay-derivative-dependent criteria
are derived. Finally, two examples are provided to demon-
strate the effectiveness of the obtained results.

Throughout this paper, we will use the following nota-
tions: let V = (V
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2
, . . . , V
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)
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(2)

For the vector V = (V
1
, V
2
, . . . , V

𝑛
)

𝑇, |V| will denote V =

(|V
1
|, |V
2
|, . . . , |V

𝑛
|)

𝑇. For the matrix 𝑄 = (𝑞
𝑖𝑗
)

𝑛×𝑛
, the matrix

|𝑄| will denote |𝑄| = (|𝑞
𝑖𝑗
|)

𝑛×𝑛
and 𝜆

𝑚
(𝑄) and 𝜆

𝑀
(𝑄)

will denote the minimum and maximum eigenvalues of 𝑄,
respectively. If 𝑃 = (𝑝

𝑖𝑗
)

𝑛×𝑛
and 𝑄 = (𝑞

𝑖𝑗
)

𝑛×𝑛
are two real

symmetric matrices, then 𝑃 ≤ 𝑄 will imply that 𝑝
𝑖𝑗

≤ 𝑞
𝑖𝑗
,

𝑖, 𝑗 = 1, 2, . . . , 𝑛.

2. Problem Formulation

Dynamical behavior of a neutral-type hybrid BAM neural
network with time-varying delays is described by the follow-
ing set of differential equations:
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in which 𝑢 = (𝑢
1
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2
, . . . , 𝑢
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𝑇 and 𝑧 = (𝑧
1
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, . . . , 𝑧

𝑚
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are the neuron state vectors, 𝑎
𝑖
and 𝑏
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charging time constants and passive decay rates, respectively,
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, 𝑤𝜏
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, V
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, and V𝜎
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are the connection weights at the time 𝑡,

̃
𝑓
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represent the activation functions of the neurons

and the propagational signal functions, respectively, and 𝐼
𝑖
,

𝐽
𝑗
, denote the external inputs. ℎ > 0 and 𝑑 > 0 are positive

constants which correspond to the finite speed of axonal
signal transmission.

It will be assumed that 𝑎
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𝐼
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(4)

(H1) 𝜏(𝑡) ≥ 0 and 𝜎(𝑡) ≥ 0 are differentiable functions that
satisfy

0 ≤ 𝜏 (𝑡) ≤ 𝜏, 0 ≤ 𝜎 (𝑡) ≤ 𝜎,
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̇𝜏 (𝑡) ≤ 𝜇
1
≤ 1, �̇� (𝑡) ≤ 𝜇

2
≤ 1

(5)

for all 𝑡 ≥ 0 and prescribed scalars 𝜏 > 0, 𝜎 > 0,
𝜇
1
> 0, and 𝜇

2
> 0.

The activation functions satisfy the following properties.

(H2) There exist some positive constants ℓ
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

and 𝜅
𝑗
, 𝑗 = 1, 2, . . . , 𝑚, such that
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̃
𝑓
𝑖
(𝑥) −

̃
𝑓
𝑖
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𝑥 − 𝑦

≤ ℓ
𝑖
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𝑔
𝑗
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𝑗
(𝑦)

𝑥 − 𝑦

≤ 𝜅
𝑗

(6)

for all 𝑥, 𝑦, 𝑥, 𝑦 ∈ R.
(H3) There exist positive constants 𝑀

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, and

𝐿
𝑗
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𝑖
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𝑖
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|𝑔
𝑗
(𝑧)| ≤ 𝐿

𝑖
for all𝑢, 𝑧 ∈ R. Note that this assumption

implies that the activation functions are bounded.

Assume that 𝑢

∗
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∗

1
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∗

2
, . . . , 𝑢

∗

𝑛
)

𝑇 and 𝑧

∗
= (𝑧

∗

1
, 𝑧

∗

2
, . . .

, 𝑧

∗

𝑚
)

𝑇 are the equilibrium points of the system. In order to
simplify our analysis, we transform the equilibrium points to
the origin by the relationship

𝑥
𝑖
(𝑡) = 𝑢

𝑖
(𝑡) − 𝑢

∗

𝑖
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𝑖
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𝑗
(𝑡) − 𝑧

∗

𝑗
. (7)

Then, the transformed system is as follows:
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𝜏
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(8)
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1
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1
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2
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2
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𝑛
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𝑛
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1
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1
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2
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2
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𝑛
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𝑛
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1
(𝑦
1
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2
(𝑦
2
(𝑡 −

𝜏(𝑡))), . . . , 𝑓
𝑚
(𝑦
𝑚
(𝑡 − 𝜏(𝑡))))

𝑇. The functions 𝑔
𝑖
(𝑥
𝑖
), and

𝑓
𝑗
(𝑦
𝑗
) are of the form

𝑔
𝑖
(𝑥
𝑖
(⋅)) = 𝑔

𝑖
(𝑥
𝑖
(⋅) + 𝑢

∗

𝑖
) − 𝑔
𝑖
(𝑢

∗

𝑖
) , 𝑖 = 1, 2, . . . , 𝑛,

𝑓 (𝑦
𝑗
(⋅)) =

̃
𝑓
𝑗
(𝑦
𝑗
(⋅) + 𝑧

∗

𝑗
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̃
𝑓
𝑗
(𝑧

∗

𝑗
) , 𝑗 = 1, 2, . . . , 𝑚.

(9)

It can be verified that the functions 𝑔
𝑖
and 𝑓

𝑗
satisfy the

assumptions on 𝑔
𝑖
and 𝑓

𝑗
; that is, 𝑔

𝑖
∈ 𝛽, 𝑓

𝑗
∈ 𝜅, and 𝑔

𝑖
∈ 𝛽,

𝑓
𝑗
∈ 𝛽 implies that 𝑔

𝑖
∈ 𝛽 and 𝑓

𝑗
∈ 𝛽, respectively. We also

note that 𝑔
𝑖
(0) = 0 and 𝑓

𝑗
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛.

By assumption (H2) and the above equations, we can have

0 ≤

𝑓 (𝑦)

𝑦

≤ ℓ
𝑖
, 0 ≤

𝑔 (𝑥)

𝑥

≤ 𝜅
𝑖
. (10)

3. Preliminaries

In this paper, we will assume that the norms of the matrices
𝐴, 𝐵,𝑊 = (𝑊

𝑗𝑖
), 𝑊𝜏 = (𝑊

𝜏

𝑗𝑖
), 𝑉 = (𝑉

𝑖𝑗
), and 𝑉

𝜎
= (𝑊

𝜎

𝑖𝑗
) are

bounded. Based on this property, we can directly observe the
following facts.

Fact 1. If 𝐴, 𝐵,𝑊 = (𝑊
𝑗𝑖
), 𝑊𝜏 = (𝑊

𝜏

𝑗𝑖
), 𝑉 = (𝑉

𝑖𝑗
), and 𝑉

𝜎
=

(𝑊

𝜎

𝑖𝑗
) satisfy the parameter ranges defined by (4) and have

bounded norms, then there exist some positive constants
𝜎(𝑊), 𝜎(𝑊𝜏), 𝜎(𝑉), and 𝜎(𝑉

𝜎
) :

‖𝐴‖2
≤ 𝜎 (𝐴) , ‖𝐵‖2

≤ 𝜎 (𝐵) , ‖𝑊‖2
≤ 𝜎 (𝑊) ,






𝑊

𝜏


2

≤ 𝜎 (𝑊

𝜏
) , ‖𝑉‖2

≤ 𝜎 (𝑉) ,






𝑉

𝜎


2

≤ 𝜎 (𝑉

𝜎
) .

(11)

Lemma 1 (Faydasicok and Arik [39]). For 𝑊 ∈ 𝑊
𝐼
:= {𝑊 =

(𝑤
𝑖𝑗
) : 𝑊 ≤ 𝑊 ≤ 𝑊, 𝑖.𝑒., 𝑤

𝑖𝑗
≤ 𝑤
𝑖𝑗

≤ 𝑤
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛},

the following equation holds:

𝜎
1
(𝑊) = √











𝑊

∗𝑇
𝑊

∗



+ 2






𝑊

∗𝑇



𝑊
∗
+ 𝑊

𝑇

∗
𝑊
∗




2
, (12)

where𝑊∗ = (1/2)(𝑊 + 𝑊) and𝑊
∗
= (1/2)(𝑊 − 𝑊).

Lemma 2 (Cao et al. [40]). For𝑊 ∈ 𝑊
𝐼
:= {𝑊 = (𝑤

𝑖𝑗
) : 𝑊 ≤

𝑊 ≤ 𝑊, 𝑖.𝑒., 𝑤

𝑖𝑗
≤ 𝑤
𝑖𝑗

≤ 𝑤
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛}, the following

equation holds:

𝜎
2
(𝑊) =






𝑊

∗


2

+






𝑊
∗




2
, (13)

where𝑊∗ = (1/2)(𝑊 + 𝑊) and 𝑊
∗
= (1/2)(𝑊 − 𝑊).

Lemma 3 (Ensari and Arik [41]). For 𝑊 ∈ 𝑊
𝐼

:= {𝑊 =

(𝑤
𝑖𝑗
) : 𝑊 ≤ 𝑊 ≤ 𝑊, 𝑖.𝑒., 𝑤

𝑖𝑗
≤ 𝑤
𝑖𝑗

≤ 𝑤
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛},

the following equation holds:

𝜎
3
(𝑊) =

√
‖𝑊

∗
‖

2

2
+






𝑊
∗






2

2
+ 2






𝑊

𝑇

∗
|𝑊

∗
|




2
,

(14)

where𝑊∗ = (1/2)(𝑊 + 𝑊) and𝑊
∗
= (1/2)(𝑊 − 𝑊).

Lemma 4 (Singh [42]). For 𝑊 ∈ 𝑊
𝐼
:= {𝑊 = (𝑤

𝑖𝑗
) : 𝑊 ≤

𝑊 ≤ 𝑊, 𝑡ℎ𝑎𝑡 𝑖𝑠, 𝑤

𝑖𝑗
≤ 𝑤
𝑖𝑗

≤ 𝑤
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛}, the

following equation holds:

𝜎
4
(𝑊) =







̂
𝑊





2
, (15)

where ̂
𝑊 = (𝑤

𝑖𝑗
)

𝑛×𝑛
with 𝑤

𝑖𝑗
= max{|𝑤

𝑖𝑗
|, |𝑤
𝑖𝑗
|}.

Lemma 5. For any two vectors 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)

𝑇 and 𝜐 =

(𝜐
1
, 𝜐
2
, . . . , 𝜐

𝑛
)

𝑇, the following inequality holds:

2𝜔

𝑇
𝜐 = 2𝜐

𝑇
𝜔 ≤ 𝛾𝜔

𝑇
𝜛 +

1

𝛾

𝜐

𝑇
𝜐, (16)

where 𝛾 is any positive constant.
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4. Global Robust Stability Results

Note that the equilibrium point of system (3) is globally
asymptotically stable, if the origin of system (8) is a globally
asymptotically stable equilibrium point. Therefore, in order
to prove the global asymptotic stability of the equilibrium
point of system (3), it will be sufficient to prove the global
asymptotic stability of the origin of system (8). We can now
proceed with the following result.

Theorem 6. For given scalars 0 ≤ 𝜇
1

≤ 1 and 0 ≤ 𝜇
2

≤ 1,
let the activation functions satisfy assumptions (H2) and (H3)
and let the network parameters satisfy (4). Then, the origin
of neural network model (8) is globally asymptotically stable,
if there exist positive diagonal matrices 𝐻

1
= diag(ℎ

1𝑖
> 0)

and𝐻
2

= diag(ℎ
2𝑗

> 0), positive definite matrices 𝑅, and𝑇,
and four positive scalars 𝛼, 𝛽, 𝜒, and 𝛿, such that

𝜃
1
=






𝐴




2

−






𝐻
1




2

−

1

𝛼

−

1

𝛽 (1 − 𝜇
1
)

− 𝜎

2
(𝐴)







𝑅

−1


2

> 0,

𝜃
2
=






𝐻
1




2

− 3𝜎

2
(𝐸) ‖𝑅‖2

> 0,

𝜃
3
=






𝐴




2







𝐾

−2


2

− 𝜒𝜎

2
(𝑉) − 𝜎

2
(𝑉)







𝑇

−1


2

−

1

(1 − 𝜇
2
)

𝜎

2
(𝑉

𝜎
)







𝑇

−1


2

− 𝛿𝜎

2
(𝑉

𝜎
) > 0,

𝜃
4
=






𝐵




2

−






𝐻
2




2

−

1

𝜒

−

1

𝛿 (1 − 𝜇
2
)

− 𝜎

2
(𝐵)







𝑇

−1


2

> 0,

𝜃
5
=






𝐻
2




2

− 3𝜎

2
(Σ) ‖𝑇‖

2
> 0,

𝜃
6
=






𝐵




2







𝐿

−2


2

− 𝛼𝜎

2
(𝑊) − 𝜎

2
(𝑊)







𝑅

−1


2

−

1

(1 − 𝜇
1
)

𝜎

2
(𝑊

𝜏
)







𝑅

−1


2

− 𝛽𝜎

2
(𝑊

𝜏
) > 0,

(17)

where

𝜎 (𝐴) = min {√











𝐴

∗𝑇
𝐴

∗



+ 2






𝐴

∗𝑇



𝐴
∗
+ 𝐴

𝑇

∗
𝐴
∗




2
,






𝐴

∗


2

+






𝐴
∗




2
,

√
‖𝐴

∗
‖

2

2
+






𝐴
∗






2

2
+ 2






𝐴

𝑇

∗
|𝐴

∗
|




2
,







̂
𝐴





2
} ,

(18)

𝜎 (𝐵) = min {√











𝐵

∗𝑇
𝐵

∗



+ 2






𝐵

∗𝑇



𝐵
∗
+ 𝐵

𝑇

∗
𝐵
∗




2
,






𝐵

∗


2

+






𝐵
∗




2
,

√
‖𝐵

∗
‖

2

2
+






𝐵
∗






2

2
+ 2






𝐵

𝑇

∗
|𝐵

∗
|




2
,







̂
𝐵





2
} ,

𝜎 (𝑊) = min {√











𝑊

∗𝑇
𝑊

∗



+ 2






𝑊

∗𝑇



𝑊
∗
+ 𝑊

𝑇

∗
𝑊
∗




2
,






𝑊

∗


2

+






𝑊
∗




2
,

√
‖𝑊

∗
‖

2

2
+






𝑊
∗






2

2
+ 2






𝑊

𝑇

∗
|𝑊

∗
|




2
,







̂
𝑊





2
} ,

𝜎 (𝑉)

= min {√











𝑉

∗𝑇
𝑉

∗



+ 2






𝑉

∗𝑇



𝑉
∗
+ 𝑉

𝑇

∗
𝑉
∗




2
,






𝑉

∗


2

+






𝑉
∗




2
,

√
‖𝑉

∗
‖

2

2
+






𝑉
∗






2

2
+ 2






𝑉

𝑇

∗
|𝑉

∗
|




2
,







̂
𝑉





2
} ,

𝜎 (𝑊

𝜏
)

= min {√











𝑊

𝜏∗𝑇
𝑊

𝜏∗



+ 2






𝑊

𝜏∗𝑇



𝑊

𝜏

∗
+ 𝑊

𝜏𝑇

∗
𝑊

𝜏

∗




2
,






𝑊

𝜏∗


2

+






𝑊

𝜏

∗




2
,

√
‖𝑊

𝜏∗
‖

2

2
+






𝑊

𝜏

∗






2

2
+ 2






𝑊

𝜏𝑇

∗
|𝑊

𝜏∗
|




2
,







̂
𝑊

𝜏


2
} ,

𝜎 (𝑉

𝜎
)

= min {√











𝑉

𝜎∗𝑇
𝑉

𝜎∗



+ 2






𝑉

𝜎∗𝑇



𝑉

𝜎

∗
+ 𝑉

𝜎𝑇

∗
𝑉

𝜎

∗




2
,






𝑉

𝜎∗


2

+






𝑉

𝜎

∗




2
,

√
‖𝑉

𝜎∗
‖

2

2
+






𝑉

𝜎

∗






2

2
+ 2






𝑉

𝜎𝑇

∗
|𝑉

𝜎∗
|




2
,







̂
𝑉

𝜎


2
} ,

𝐴

∗
=

1

2

(𝐴 + 𝐴) , 𝐴
∗
=

1

2

(𝐴 − 𝐴) ,

𝐵

∗
=

1

2

(𝐵 + 𝐵) , 𝐵
∗
=

1

2

(𝐵 − 𝐵) ,

𝑊

∗
=

1

2

(𝑊 + 𝑊) , 𝑊
∗
=

1

2

(𝑊 − 𝑊) ,

𝑊

𝜏∗
=

1

2

(𝑊

𝜏

+ 𝑊

𝜏
) , 𝑊

𝜏

∗
=

1

2

(𝑊

𝜏

− 𝑊

𝜏
) ,

𝑉

∗
=

1

2

(𝑉 + 𝑉) , 𝑉
∗
=

1

2

(𝑉 − 𝑉) ,

𝑉

𝜎∗
=

1

2

(𝑉

𝜎

+ 𝑉

𝜎
) , 𝑉

𝜎

∗
=

1

2

(𝑉

𝜎

− 𝑉

𝜎
) ,

̂
𝐴 = diag (𝑎

𝑖
) with 𝑎

𝑖
= max {






𝑎

𝑖






,






𝑎
𝑖






} ,

̂
𝐵 = diag (

̂
𝑏
𝑗
) with ̂

𝑏
𝑗
= max {







𝑏

𝑗







,







𝑏
𝑗







} ,

̂
𝑊 = (𝑤

𝑖𝑗
)

𝑛×𝑛
with 𝑤

𝑖𝑗
= max {







𝑤

𝑖𝑗







,







𝑤
𝑖𝑗







} ,

̂
𝑊

𝜏
= (𝑤

𝜏

𝑖𝑗
)

𝑛×𝑛
with 𝑤

𝜏

𝑖𝑗
= max {







𝑤

𝜏

𝑖𝑗







,







𝑤

𝜏

𝑖𝑗







} ,

𝐾 = diag (𝜅
𝑗
> 0) ,

̂
𝑉 = (V̂

𝑖𝑗
)

𝑛×𝑛
with V̂

𝑖𝑗
= max {







V
𝑖𝑗







,







V
𝑖𝑗







} ,

̂
𝑉

𝜎
= (V̂𝜎
𝑖𝑗
)

𝑛×𝑛
with V̂𝜎

𝑖𝑗
= max {







V𝜎
𝑖𝑗







,







V𝜎
𝑖𝑗







} ,

𝐿 = diag (ℓ
𝑖
> 0) .

(19)
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Proof. Define the following positive definite Lyapunov func-
tional:

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))

= [𝑥 (𝑡) + 𝐸𝑥 (𝑡 − ℎ)]

𝑇
[𝑥 (𝑡) + 𝐸𝑥 (𝑡 − ℎ)]

+

𝑛

∑

𝑖=1

ℎ
1𝑖
∫

𝑡

𝑡−ℎ

𝑥

2

𝑖
(𝑠) 𝑑𝑠

+ [𝑦 (𝑡) + Σ𝑦 (𝑡 − 𝑑)]

𝑇

[𝑦 (𝑡) + Σ𝑦 (𝑡 − 𝑑)]

+

𝑚

∑

𝑗=1

ℎ
2𝑗

∫

𝑡

𝑡−𝑑

𝑦

2

𝑗
(𝑠) 𝑑𝑠

+ (𝛾
1
+ 𝛽
1
)

𝑚

∑

𝑗=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑓
𝑗
(𝑦
𝑗
(𝜉)) 𝑑𝜉

+ (𝛾
2
+ 𝛽
2
)

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜎(𝑡)

𝑔
𝑖
(𝑥
𝑖
(𝜉)) 𝑑𝜉.

(20)

The derivative of 𝑉(𝑥(𝑡), 𝑦(𝑡)) along the trajectories of the
system is obtained as follows:

̇
𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))

= −2𝑥

𝑇
(𝑡) 𝐴𝑥 (𝑡) + 2𝑥

𝑇
(𝑡)𝑊𝑓 (𝑦 (𝑡))

+ 2𝑥

𝑇
(𝑡)𝑊

𝜏
𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))

− 2𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝐴𝑥 (𝑡) + 2𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝑊𝑓(𝑦 (𝑡))

+ 2𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝑊

𝜏
𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝑥

𝑇
(𝑡)𝐻
1
𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − ℎ)𝐻

1
𝑥 (𝑡 − ℎ)

− 2𝑦

𝑇
(𝑡) 𝐵𝑦 (𝑡) + 2𝑦

𝑇
(𝑡) 𝑉𝑔 (𝑥 (𝑡))

+ 2𝑦

𝑇
(𝑡) 𝑉

𝜎
𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))

− 2𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝐵𝑦 (𝑡) + 2𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝑉𝑔 (𝑥 (𝑡))

+ 2𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝑉

𝜎
𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))

+ 𝑦

𝑇
(𝑡)𝐻
2
𝑦 (𝑡) − 𝑦

𝑇
(𝑡 − 𝑑)𝐻

2
𝑦 (𝑡 − 𝑑)

+ 𝛾
1






𝑓 (𝑦 (𝑡))






2

2
− 𝛾
1
(1 − 𝜇

1
)






𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))






2

2

+ 𝛽
1






𝑓 (𝑦 (𝑡))






2

2
− 𝛽
1
(1 − 𝜇

1
)






𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))






2

2

+ 𝛾
2






𝑔 (𝑥(𝑡))






2

2
− 𝛾
2
(1 − 𝜇

2
)






𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))






2

2

+ 𝛽
2






𝑔 (𝑥(𝑡))






2

2
− 𝛽
2
(1 − 𝜇

2
)






𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))






2

2
.

(21)

We can write the following inequalities as follows:

2𝑥

𝑇
(𝑡)𝑊𝑓 (𝑦 (𝑡))

≤

1

𝛼

𝑥

𝑇
(𝑡) 𝑥 (𝑡) + 𝛼𝑓

𝑇
(𝑦 (𝑡))𝑊

𝑇
𝑊𝑓(𝑦 (𝑡))

≤

1

𝛼

‖𝑥(𝑡)‖

2

2
+ 𝛼‖𝑊‖

2

2






𝑓(𝑦(𝑡))






2

2
,

(22)

2𝑥

𝑇
(𝑡)𝑊

𝜏
𝑓 (𝑦 (𝑡 − 𝜏))

≤

1

𝛽 (1 − 𝜇
1
)

𝑥

𝑇
(𝑡) 𝑥 (𝑡)

+ 𝛽 (1 − 𝜇
1
) 𝑓

𝑇
(𝑦 (𝑡 − 𝜏 (𝑡)))𝑊

𝜏𝑇

× 𝑊

𝜏
𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))

≤

1

𝛽 (1 − 𝜇
1
)

‖𝑥 (𝑡)‖

2

2

+ 𝛽 (1 − 𝜇
1
)






𝑊

𝜏




2

2

×






𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))






2

2
,

(23)

− 2𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝐴𝑥 (𝑡)

≤ 𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝑅𝐸𝑥 (𝑡 − ℎ)

+ 𝑥

𝑇
(𝑡) 𝐴

𝑇
𝑅

−1
𝐴𝑥 (𝑡)

≤ ‖𝐸‖

2

2
‖𝑅‖2‖

𝑥 (𝑡 − ℎ)‖

2

2

+ ‖𝐴‖

2

2







𝑅

−1


2
‖𝑥(𝑡)‖

2

2
,

(24)

2𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝑊𝑓(𝑦 (𝑡))

≤ 𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝑅𝐸𝑥 (𝑡 − ℎ)

+ 𝑓 (𝑦 (𝑡))𝑊

𝑇
𝑅

−1
𝑊𝑓(𝑦 (𝑡))

≤ ‖𝐸‖

2

2
‖𝑅‖2‖

𝑥 (𝑡 − ℎ)‖

2

2

+ ‖𝑊‖

2

2







𝑅

−1


2






𝑓 (𝑦 (𝑡))






2

2
,

(25)

2𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝑊

𝜏
𝑓 (𝑦 (𝑡 − 𝜏))

≤ 𝑥

𝑇
(𝑡 − ℎ) 𝐸

𝑇
𝑅𝐸𝑥 (𝑡 − ℎ)

+ 𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))𝑊

𝜏𝑇

× 𝑅

−1
𝑊

𝜏
𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))

≤ ‖𝐸‖

2

2
‖𝑅‖2‖

𝑥 (𝑡 − ℎ)‖

2

2

+






𝑊

𝜏




2

2







𝑅

−1


2






𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))






2

2
,

(26)

2𝑦

𝑇
(𝑡) 𝑉𝑔 (𝑥 (𝑡))

≤

1

𝜒

𝑦

𝑇
(𝑡) 𝑦 (𝑡) + 𝜒𝑔

𝑇
(𝑥 (𝑡))
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× 𝑉

𝑇
𝑉𝑔 (𝑥 (𝑡))

≤

1

𝜒






𝑦 (𝑡)






2

2
+ 𝜒‖𝑉‖

2

2






𝑔 (𝑥 (𝑡))






2

2
,

(27)

2𝑦

𝑇
(𝑡) 𝑉

𝜎
𝑔 (𝑥 (𝑡 − 𝜎))

≤

1

𝛿 (1 − 𝜇
2
)

𝑦

𝑇
(𝑡) 𝑦 (𝑡) + 𝛿 (1 − 𝜇

2
) 𝑔

𝑇

× (𝑥 (𝑡 − 𝜎 (𝑡))) 𝑉

𝜎𝑇

𝑉

𝜎
𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))

≤

1

𝛿 (1 − 𝜇
2
)






𝑦 (𝑡)






2

2

+ 𝛿 (1 − 𝜇
2
)






𝑉

𝜎




2

2






𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))






2

2
,

(28)

− 2𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝐵𝑦 (𝑡)

≤ 𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝑇Σ𝑦 (𝑡 − 𝑑)

+ 𝑦

𝑇
(𝑡) 𝐵

𝑇
𝑇

−1
𝐵𝑦 (𝑡)

≤ ‖Σ‖

2

2
‖𝑇‖2






𝑦 (𝑡 − 𝑑)






2

2

+ ‖𝐵‖

2

2







𝑇

−1


2






𝑦 (𝑡)






2

2
,

(29)

2𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝑉𝑔 (𝑥 (𝑡))

≤ 𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝑇Σ𝑦 (𝑡 − 𝑑)

+ 𝑔

𝑇
(𝑥 (𝑡)) 𝑉

𝑇
𝑇

−1
𝑉𝑔 (𝑥 (𝑡))

≤ ‖Σ‖

2

2
‖𝑇‖2






𝑦 (𝑡 − 𝑑)






2

2

+ ‖𝑉‖

2

2







𝑇

−1


2






𝑔 (𝑥 (𝑡))






2

2
,

(30)

2𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝑉

𝜎
𝑔 (𝑥 (𝑡 − 𝜎))

≤ 𝑦

𝑇
(𝑡 − 𝑑) Σ

𝑇
𝑇Σ𝑦 (𝑡 − 𝑑)

+ 𝑔

𝑇
(𝑥 (𝑡 − 𝜎 (𝑡))) 𝑉

𝜎𝑇

× 𝑇

−1
𝐷𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))

≤ ‖Σ‖

2

2
‖𝑇‖2






𝑦 (𝑡 − 𝑑)






2

2

+






𝑉

𝜎




2

2







𝑇

−1


2






𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))






2

2
.

(31)

Combining (22)–(31) into (21) and considering

𝑥

𝑇
(𝑡) 𝑥 (𝑡) ≥ 𝑔

𝑇
(𝑥 (𝑡)) 𝐾

−2
𝑔 (𝑥 (𝑡)) ,

𝑦

𝑇
(𝑡) 𝑦 (𝑡) ≥ 𝑓

𝑇
(𝑦 (𝑡)) 𝐿

−2
𝑓 (𝑦 (𝑡)) ,

(32)

we have

̇
𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))

≤ −(






𝐴




2

−






𝐻
1




2

−

1

𝛼

−

1

𝛽 (1 − 𝜇
1
)

− ‖𝐴‖

2

2







𝑅

−1


2
)

× ‖𝑥 (𝑡)‖

2

2

− (






𝐻
1




2

− 3‖𝐸‖

2

2
‖𝑅‖2

) ‖𝑥 (𝑡 − ℎ)‖

2

2

− (






𝐴




2







𝐾

−2


2

− 𝜒‖𝑉‖

2

2
− ‖𝑉‖

2

2







𝑇

−1


2

− 𝛾
2
− 𝛽
2
)

×






𝑔 (𝑥 (𝑡))






2

2

− (𝛽
2
(1 − 𝜇

2
) + 𝛾
2
(1 − 𝜇

2
)

−𝛿 (1 − 𝜇
2
)






𝑉

𝜎




2

2
−






𝑉

𝜎




2

2







𝑇

−1


2
)

×






𝑔 (𝑥 (𝑡 − 𝜎 (𝑡)))






2

2

− (






𝐵




2

−






𝐻
2




2

−

1

𝜒

−

1

𝛿 (1 − 𝜇
2
)

− ‖𝐵‖

2

2







𝑇

−1


2
)

×






𝑦 (𝑡)






2

2
− (






𝐻
2




2

− 3‖Σ‖

2

2
‖𝑇‖2

)






𝑦 (𝑡 − 𝑑)






2

2

− (






𝐵




2







𝐿

−2


2

− 𝛼‖𝑊‖

2

2
− ‖𝑊‖

2

2







𝑅

−1


2

− 𝛾
1
− 𝛽
1
)

×






𝑓 (𝑦 (𝑡))






2

2

− (𝛽
1
(1 − 𝜇

1
) + 𝛾
1
(1 − 𝜇

1
) − 𝛽 (1 − 𝜇

1
)






𝑊

𝜏




2

2

−






𝑊

𝜏




2

2







𝑅

−1


2
)

×






𝑓 (𝑦 (𝑡 − 𝜏 (𝑡)))






2

2
.

(33)

Let 𝛽
1

= 𝛽‖𝑊

𝜏
‖

2

2
, 𝛾
1

= (1/(1 − 𝜇
1
))‖𝑊

𝜏
‖

2

2
‖𝑅

−1
‖
2
, 𝛽
2

=

𝛿‖𝑉

𝜎
‖

2

2
, and 𝛾

2
= (1/(1 − 𝜇

2
))‖𝑉

𝜎
‖

2

2
‖𝑇

−1
‖
2
, ̇
𝑉(𝑥(𝑡), 𝑦(𝑡)) can

be written in the form

̇
𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))

≤ −(






𝐴




2

−






𝐻
1




2

−

1

𝛼

−

1

𝛽 (1 − 𝜇
1
)

− ‖𝐴‖

2

2







𝑅

−1


2
)

× ‖𝑥 (𝑡)‖

2

2
− (






𝐻
1




2

− 3‖𝐸‖

2

2
‖𝑅‖2

) ‖𝑥 (𝑡 − ℎ)‖

2

2

− (






𝐴




2







𝐾

−2


2

− 𝜒‖𝑉‖

2

2
− ‖𝑉‖

2

2







𝑇

−1


2

−

1

(1 − 𝜇
2
)






𝑉

𝜎




2

2







𝑇

−1


2

− 𝛿






𝑉

𝜎




2

2
)






𝑔 (𝑥 (𝑡))






2

2
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− (






𝐵




2

−






𝐻
2




2

−

1

𝜒

−

1

𝛿 (1 − 𝜇
2
)

− ‖𝐵‖

2

2







𝑇

−1


2
)

×






𝑦 (𝑡)






2

2
− (






𝐻
2




2

− 3‖Σ‖

2

2
‖𝑇‖2

)






𝑦 (𝑡 − 𝑑)






2

2

− (






𝐵




2







𝐿

−2


2

− 𝛼‖𝑊‖

2

2
− ‖𝑊‖

2

2







𝑅

−1


2

−

1

(1 − 𝜇
1
)






𝑊

𝜏




2

2







𝑅

−1


2

− 𝛽






𝑊

𝜏




2

2
)






𝑓 (𝑦 (𝑡))






2

2
.

(34)

By Fact 1, ‖𝐴‖
2

≤ 𝜎(𝐴), ‖𝐵‖
2

≤ 𝜎(𝐵), ‖𝑊‖
2

≤ 𝜎(𝑊),
‖𝑊

𝜏
‖
2
≤ 𝜎(𝑊

𝜏
), ‖𝑉‖

2
≤ 𝜎(𝑉), and ‖𝑉

𝜎
‖
2
≤ 𝜎(𝑉

𝜎
), one can

have

̇
𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))

≤ −(






𝐴




2

−






𝐻
1




2

−

1

𝛼

−

1

𝛽 (1 − 𝜇
1
)

− 𝜎

2
(𝐴)







𝑅

−1


2
)

× ‖𝑥 (𝑡)‖

2

2
− (






𝐻
1




2

− 3𝜎

2
(𝐸) ‖𝑅‖2

) ‖𝑥 (𝑡 − ℎ)‖

2

2

− (






𝐴




2







𝐾

−2


2

− 𝜒𝜎

2
(𝑉) − 𝜎

2
(𝑉)







𝑇

−1


2

−

1

(1 − 𝜇
2
)

𝜎

2
(𝑉

𝜎
)







𝑇

−1


2

− 𝛿𝜎

2
(𝑉

𝜎
))

×






𝑔 (𝑥 (𝑡))






2

2

− (






𝐵




2

−






𝐻
2




2

−

1

𝜒

−

1

𝛿 (1 − 𝜇
2
)

− 𝜎

2
(𝐵)







𝑇

−1


2
)

×






𝑦 (𝑡)






2

2
− (






𝐻
2




2

− 3𝜎

2
(Σ) ‖𝑇‖2

)






𝑦 (𝑡 − 𝑑)






2

2

− (
2







𝐿

−2


2

− 𝛼𝜎

2
(𝑊) − 𝜎

2
(𝑊)







𝑅

−1


2

−

1

(1 − 𝜇
1
)

𝜎

2
(𝑊

𝜏
)







𝑅

−1


2

− 𝛽𝜎

2
(𝑊

𝜏
))

×






𝑓(𝑦(𝑡))






2

2
,

(35)

or equivalently

̇
𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) ≤ − 𝜃

1‖
𝑥 (𝑡)‖

2

2
− 𝜃
2‖
𝑥 (𝑡 − ℎ)‖

2

2

− 𝜃
3






𝑔 (𝑥 (𝑡))






2

2
− 𝜃
4






𝑦 (𝑡)






2

2

− 𝜃
5






𝑦(𝑡 − 𝑑)






2

2
− 𝜃
6






𝑓(𝑦(𝑡))






2

2
.

(36)

Clearly, 𝜃
𝑖

> 0 and 𝑖 = 1, 2, . . . , 6, imply that
̇

𝑉(𝑥(𝑡), 𝑦(𝑡)) < 0. On the other hand, 𝑉(𝑥(𝑡), 𝑦(𝑡)) →

∞ as 𝑥(𝑡) → ∞, 𝑦(𝑡) → ∞, meaning that the
Lyapunov functional used for the stability analysis is radially
unbounded. Then, by the standard Lyapunov functional
theory, it is concluded that system (8) or equivalently the

equilibrium point of system (3) is globally asymptotically
stable. This completes the proof of Theorem 6.

Remark 7. The stability results presented [18, 36, 37] con-
sidered a pure delayed neural network mode and are
expressed in the linear matrix inequality (LMI) forms.
The LMI approach to the stability problem of neutral-type
neural networks involves some difficulties with determining
the constraint conditions on the network parameters as it
requires testing positive definiteness of high dimensional
matrices. However, Theorem 6 considers hybrid BAM neural
networks and establishes various relationships between the
network parameters only. Therefore, the results of this paper
are applicable to a larger class of neural networks and can be
easily verified when compared with the previously reported
literature results.

Choosing𝐻
1
,𝐻
2
,𝑅, and𝑇 in the conditions ofTheorem 6

as 𝐻
1
= ℎ
1
𝐼, 𝐻
2
= ℎ
2
𝐼, 𝑅 = 𝑟𝐼, and 𝑇 = 𝑡𝐼, we can express

some special cases of Theorem 6 as follows.

Corollary 8. For given scalars 0 ≤ 𝜇
1

≤ 1 and 0 ≤ 𝜇
2

≤ 1,
let the activation functions satisfy assumptions (H2) and (H3)
and let the network parameters satisfy (4). Then, the origin of
neural network model (8) is globally asymptotically stable, if
there exist eight positive scalars 𝛼, 𝛽, 𝜒, 𝛿, ℎ

1
, ℎ
2
, 𝑟, and 𝑡, such

that

𝜃

∗

1
=






𝐴




2

− ℎ
1
−

1

𝛼

−

1

𝛽 (1 − 𝜇
1
)

− 𝜎

2
(𝐴)

1

𝑟

> 0,

𝜃

∗

2
= ℎ
1
− 3𝜎

2
(𝐸) 𝑟 > 0,

𝜃

∗

3
=






𝐴




2







𝐾

−2


2

− 𝜒𝜎

2
(𝑉) − 𝜎

2
(𝑉)

1

𝑡

−

1

(1 − 𝜇
2
)

𝜎

2
(𝑉

𝜎
)

1

𝑡

− 𝛿𝜎

2
(𝑉

𝜎
) > 0,

𝜃

∗

4
=






𝐵




2

− ℎ
2
−

1

𝜒

−

1

𝛿 (1 − 𝜇
2
)

− 𝜎

2
(𝐵)

1

𝑡

> 0,

𝜃

∗

5
= ℎ
2
− 3𝜎

2
(Σ) 𝑡 > 0,

𝜃

∗

6
=






𝐵




2







𝐿

−2


2

− 𝛼𝜎

2
(𝑊) − 𝜎

2
(𝑊)

1

𝑟

−

1

(1 − 𝜇
1
)

𝜎

2
(𝑊

𝜏
)

1

𝑟

− 𝛽𝜎

2
(𝑊

𝜏
) > 0,

(37)

and the other parameters are defined in Theorem 6.

By setting 𝜇
1
= 𝜇
2
= 0, the stability criterion for hybrid

BAM neural network with constant time delays is established
fromTheorem 6.

Corollary 9. Let the activation functions satisfy assumptions
(H2) and (H3) and let the network parameters satisfy (4).
Then, the origin of neural network model (8) is globally
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asymptotically stable, if there exists eight positive scalars 𝛼, 𝛽,
𝜒, 𝛿, ℎ

1
, ℎ
2
, 𝑟, and 𝑡, such that

𝜃

∗∗

1
=






𝐴




2

− ℎ
1
−

1

𝛼

−

1

𝛽

− 𝜎

2
(𝐴)

1

𝑟

> 0,

𝜃

∗∗

2
= ℎ
1
− 3𝜎

2
(𝐸) 𝑟 > 0,

𝜃

∗∗

3
=






𝐴




2







𝐾

−2


2

− 𝜒𝜎

2
(𝑉) − 𝜎

2
(𝑉)

1

𝑡

− 𝜎

2
(𝑉

𝜎
)

1

𝑡

− 𝛿𝜎

2
(𝑉

𝜎
) > 0,

𝜃

∗∗

4
=






𝐵




2

− ℎ
2
−

1

𝜒

−

1

𝛿

− 𝜎

2
(𝐵)

1

𝑡

> 0,

𝜃

∗∗

5
= ℎ
2
− 3𝜎

2
(Σ) 𝑡 > 0,

𝜃

∗∗

6
=






𝐵




2







𝐿

−2


2

− 𝛼𝜎

2
(𝑊) − 𝜎

2
(𝑊)

1

𝑟

−

1

(1 − 𝜇
1
)

𝜎

2
(𝑊

𝜏
)

1

𝑟

− 𝛽𝜎

2
(𝑊

𝜏
) > 0,

(38)

and the other parameters are defined in Theorem 6.

Assume that there are no neutral terms and the system of
BAM neural networks is described as

�̇� (𝑡) = −𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡)) + 𝑊

𝜏
𝑓 (𝑦 (𝑡 − 𝜏 (𝑡))) ,

𝑖 = 1, 2, . . . , 𝑛,

̇𝑦 (𝑡) = −𝐵𝑦 (𝑡) + 𝑉𝑔 (𝑥 (𝑡)) + 𝑉

𝜎
𝑔 (𝑥 (𝑡 − 𝜎 (𝑡))) ,

𝑗 = 1, 2, . . . , 𝑚.

(39)

Define the following positive definite Lyapunov func-
tional:

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑥

𝑇
(𝑡) 𝑥 (𝑡) 𝑦(𝑡)

𝑇
𝑦 (𝑡) +

𝑛

∑

𝑖=1

ℎ
1𝑖
∫

𝑡

𝑡−ℎ

𝑥

2

𝑖
(𝑠) 𝑑𝑠

+

𝑚

∑

𝑗=1

ℎ
2𝑗

∫

𝑡

𝑡−𝑑

𝑦

2

𝑗
(𝑠) 𝑑𝑠

+ 𝛽
1

𝑚

∑

𝑗=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑓
𝑗
(𝑦
𝑗
(𝜉)) 𝑑𝜉

+ 𝛽
2

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜎(𝑡)

𝑔
𝑖
(𝑥
𝑖
(𝜉)) 𝑑𝜉.

(40)

Following the similar line of the proof of Theorem 6,
Corollary 10 is derived as follows.

Corollary 10. For given scalars 0 ≤ 𝜇
1
≤ 1, and 0 ≤ 𝜇

2
≤ 1,

let the activation functions satisfy assumptions (H2) and (H3)
and let the network parameters satisfy (4). Then, the origin of

neural network model (8) is globally asymptotically stable, if
there exist four positive scalars 𝛼, 𝛽, 𝜒, and 𝛿, such that

𝜂
1
=






𝐴




2

−

1

𝛼

−

1

𝛽 (1 − 𝜇
1
)

> 0,

𝜂
2
=






𝐴




2







𝐾

−2


2

− 𝜒𝜎

2
(𝑉) − 𝛿𝜎

2
(𝑉

𝜎
) > 0,

𝜂
3
=






𝐵




2

−

1

𝜒

−

1

𝛿 (1 − 𝜇
2
)

> 0,

𝜂
4
=






𝐵




2







𝐿

−2


2

− 𝛼𝜎

2
(𝑊) − 𝛽𝜎

2
(𝑊

𝜏
) > 0,

(41)

and the other parameters are defined in Theorem 6.

5. Comparative Numerical Examples

We will now give the following examples to demonstrate the
applicability and advantages of our results.

Example 11. Assume that the network parameters of neural
system (8) are given as follows:

𝑊 = 𝑊

𝜏
= 𝑉 = 𝑉

𝜎
=

[

[

3𝜆 3𝜆 4𝜆

6𝜆 2𝜆 7𝜆

−7𝜆 7𝜆 −6𝜆

]

]

,

𝑊 = 𝑊

𝜏

= 𝑉 = 𝑉

𝜎

=
[

[

7𝜆 5𝜆 4𝜆

8𝜆 4𝜆 9𝜆

−3𝜆 7𝜆 −2𝜆

]

]

,

𝐴 = 𝐴 = 𝐴 = 𝐵 = 𝐵 = 𝐵 =
[

[

3 0 0

0 3 0

0 0 3

]

]

,

𝐾 = 𝐿 =
[

[

1 0 0

0 1 0

0 0 1

]

]

,

(42)

where 𝜆 = 0 is real number. We can conclude that the
matrices 𝑊

∗, 𝑊
∗
, 𝑊𝜏∗, 𝑊𝜏

∗
, 𝑉∗, 𝑉

∗
, 𝑉𝜎∗, and 𝑉

𝜎

∗
are in the

forms

‖𝐴‖2
= ‖𝐵‖2

= 3,

𝑊

∗
= 𝑊

𝜏∗
= 𝑉

∗
= 𝑉

𝜎∗
=

[

[

5𝜆 4𝜆 4𝜆

7𝜆 3𝜆 8𝜆

−5𝜆 7𝜆 −4𝜆

]

]

,

𝑊
∗
= 𝑊

𝜏

∗
= 𝑉
∗
= 𝑉

𝜎

∗
=

[

[

2𝜆 𝜆 0

𝜆 𝜆 𝜆

2𝜆 0 0

]

]

,

𝜏 = 2, 𝜎 = 3, ℎ = 1,

𝑑 = 2, 𝜇
1
= 0, 𝜇

2
= 0.

(43)



Abstract and Applied Analysis 9

Then we obtain

𝜎
1
(𝑉

𝜎
) = 𝜎
1
(𝑊

𝜏
) = 𝜎
1
(𝑉) = 𝜎

1
(𝑊)

= √











𝑊

∗𝑇
𝑊

∗



+ 2






𝑊

∗𝑇



𝑊
∗
+ 𝑊

𝑇

∗
𝑊
∗




2

=
√
272.7882𝜆

2
= 16.5163𝜆,

𝜎
2
(𝑉

𝜎
) = 𝜎
2
(𝑊

𝜏
) = 𝜎
2
(𝑉) = 𝜎

2
(𝑊)

=






𝑊

∗


2

+






𝑊
∗




2

= 17.5942𝜆.

𝜎
3
(𝑉

𝜎
) = 𝜎
3
(𝑊

𝜏
) = 𝜎
3
(𝑉) = 𝜎

3
(𝑊)

=
√
‖𝑊

∗
‖

2

2
+






𝑊
∗






2

2
+ 2






𝑊

𝑇

∗
|𝑊

∗
|




2

=
√
308.2903𝜆

2
= 17.5582𝜆.

𝜎
4
(𝑉

𝜎
) = 𝜎
4
(𝑊

𝜏
) = 𝜎
4
(𝑉)

= 𝜎
4
(𝑊) =







̂
𝑊





2

= 19.2861𝜆.

(44)

Since min{𝜎
1
(𝑊), 𝜎

2
(𝑊), 𝜎

3
(𝑊), 𝜎

4
(𝑊)} = 16.5163𝜆, we

obtain 𝜎(𝑉) = 𝜎(𝑊) = 𝜎(𝑉

𝜎
) = 𝜎(𝑊

𝜏
) = 16.5163𝜆.

For the sufficiently small values of ‖𝐸‖
2
, ‖Σ‖
2
, ℎ
1
, and ℎ

2

and sufficiently large value of 𝑟, 𝑡, and 𝛼 = 𝛽, 𝜒 = 𝛿,
the conditions of Corollary 9 can be approximately stated as
follows: 𝜃∗∗

6
= 3 − 2𝛼 × 272.7882𝜆

2
> 0, 𝜃∗∗

6
≅ 3 − 2𝛼 ×

272.7882𝜆

2
> 0, and

𝜃

∗∗

1
≅ 3 −

2

𝛼

> 0,

𝜃

∗∗

2
≅ ℎ
1
− 3𝜎

2
(𝐸) 𝑟 > 0,

𝜃

∗∗

3
≅ 3 − 2𝜒 × 272.7882𝜆

2
> 0,

𝜃

∗∗

4
≅ 3 −

2

𝜒

> 0,

𝜃

∗∗

5
≅ ℎ
2
− 3𝜎

2
(𝐹) 𝑡 > 0,

𝜃

∗∗

6
≅ 3 − 2𝛼 × 272.7882𝜆

2
> 0.

(45)

The four required conditions for stability are 𝛼 > 2/3, 𝜒 >

2/3 and 𝜆

2
< 3/(2𝜒 × 272.7882), 𝜆2 < 3/(2𝛼 × 272.7882),

implying that 𝜆 < 0.0908. Hence, if 𝜆 < 0.0908 holds, then
the conditions of Corollary 9 are satisfiedwhich indicates that
the BAM neural network is global asymptotic robust stable.

In what follows, we consider a specialmodel in this exam-
ple and give simulation results for the sake of verification
of our proposed results. We choose 𝜆 = 0.06 that satisfies
the condition 𝜆 < 0.0908. For this example, the Matlab
simulation results are presented in Figure 1.

Example 12. Assume that the network parameters of neural
system (8) are given as follows:

𝐴 = 𝐴 = 𝐴 = 𝐵 = 𝐵 = 𝐵 = 𝐼,

𝑊 = [

0.2 0.1

−0.1 0.2

] , 𝑊 = [

0.4 0.1

0.1 0.4

] ,

𝑊

𝜏
= [

0.1 0.2

0.2 0.2

] , 𝑊

𝜏

= [

0.3 0.4

0.3 0.2

] ,

𝑉 = [

0.1 0.1

−0.3 0.1

] , 𝑉 = [

0.3 0.3

0.1 0.3

] ,

𝑉

𝜎
= [

0.1𝜆 0.1𝜆

0.1𝜆 0.2𝜆

] , 𝑉

𝜎
= [

0.3𝜆 0.3𝜆

0.3𝜆 0.4𝜆

] ,

𝐸 = [

0.01 0.01

0.01 0.01

] , 𝐸 = [

0.05 0.05

0.05 0.05

] ,

Σ = [

0.01 0.01

0.01 0.01

] , Σ = [

0.05 0.05

0.05 0.05

] ,

𝐾 = Σ = 0.5𝐼, 𝜏 (𝑡) = 0.5 sin 𝑡 + 0.1,

𝜎 (𝑡) = 0.5 sin 𝑡 + 0.2, 𝜇
1
= 𝜇
2
= 0.5,

(46)

where 𝜆 > 0 is real number. We can obtain

‖𝐴‖2
= ‖𝐵‖2

= 1, 𝜎 (𝐴) = 𝜎 (𝐵) = 1,

𝑊

∗
= [

0.3 0.1

0 0.3

] , 𝑊
∗
= [

0.1 0

0.1 0.1

] ,

𝑊

𝜏∗
= [

0.2 0.3

0.25 0.2

] , 𝑊

𝜎

∗
= [

0.1 0.1

0.05 0.2

] ,

𝑉

∗
= [

0.3 0.1

0 0.3

] , 𝑉
∗
= [

0.1 0

0.1 0.1

] ,

𝑉

𝜎∗
= [

0.4𝜆 0.3𝜆

0.25𝜆 0.2𝜆

] , 𝑉

𝜎

∗
= [

0.3𝜆 0.1𝜆

0.05𝜆 0.2𝜆

] ,

𝐸

∗
= [

0.03 0.03

0.03 0.03

] , 𝐸
∗
= [

0.02 0.02

0.02 0.02

] ,

Σ

∗
= [

0.03 0.03

0.03 0.03

] , Σ
∗
= [

0.02 0.02

0.02 0.02

] .

(47)

By Lemmas 1–4, we can calculate

𝜎
1
(𝑊) = √












𝑊

∗𝑇
𝑊

∗



+ 2







𝑊

∗𝑇






𝑊
∗
+ 𝑊

𝑇

∗
𝑊
∗





2

=
√
0.2546, 𝜎

2
(𝑊) =






𝑊

∗


2

+






𝑊
∗




2

= 0.5159,

𝜎
3
(𝑊) =

√
‖𝑊

∗
‖

2

2
+






𝑊
∗






2

2
+ 2






𝑊

𝑇

∗
|𝑊

∗
|




2

= 0.5,

𝜎
4
(𝑊) =







̂
𝑊





2

= 0.2656.

(48)
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Figure 1: Trajectories of 𝑥(𝑡) and 𝑦(𝑡) of system (8) for the initial states 𝑥(0) = [0.6 −0.2 0.2] and 𝑦(0) = [0.5 −0.4 −0.1].

Since 𝜎(𝑊) = min{𝜎
1
(𝑊), 𝜎

2
(𝑊), 𝜎

3
(𝑊), 𝜎

4
(𝑊)}, we obtain

𝜎(𝑊) = 0.5, Similarly, we obtain

𝜎
1
(𝑊

𝜏
) =

√
0.5018, 𝜎

2
(𝑊

𝜏
) = 0.7188,

𝜎
3
(𝑊

𝜏
) =

√
0.4967, 𝜎

4
(𝑊

𝜏
) = 0.6085,

𝜎
1
(𝑉) =

√
0.3225, 𝜎

2
(𝑉) = 0.5618,

𝜎
3
(𝑉) =

√
0.3440, 𝜎

4
(𝑉) = 0.6,

𝜎
1
(𝑉

𝜎
) =

√
0.4281𝜆, 𝜎

2
(𝑉

𝜎
) = 0.6562𝜆,

𝜎
3
(𝑉

𝜎
) =

√
0.4292𝜆, 𝜎

4
(𝑉

𝜎
) = 0.6541𝜆,

𝜎
1
(𝐸) = 𝜎

1
(Σ) = 𝜎

2
(𝐸) = 𝜎

2
(Σ)

= 𝜎
3
(𝐸) = 𝜎

3
(Σ) = 𝜎

4
(𝐸) = 𝜎

4
(Σ) = 0.1.

(49)

Thus we have 𝜎(𝑊

𝜏
) = 0.6085, 𝜎(𝑉) = 0.5618, 𝜎(𝑉𝜎) =

0.6541𝜆, and𝜎(𝐸) = 𝜎(Σ) = 0.1.
Let 𝛼 = 𝛽 = 6, 𝜒 = 𝛿 = 6, and 𝑟 = 𝑡 = 6; the conditions of

Corollary 8 can be stated as follows:

𝜃

∗

1
= 1 − ℎ

1
−

1

6

−

1

6 (1 − 0.5)

−

1

6

> 0,

𝜃

∗

2
= ℎ
1
− 3 × 0.01 × 6 > 0,

𝜃

∗

3
= 4 − 6 × 0.3156 −

0.3156

6

−

1

(1 − 0.5)

0.6541

2
𝜆

2
×

1

6

− 6 × 0.6541

2
𝜆

2
> 0,

𝜃

∗

4
= 1 − ℎ

2
−

1

4

−

1

4 (1 − 0.5)

−

1

6

> 0,

𝜃

∗

5
= ℎ
2
− 3 × 0.01 × 6 > 0,

𝜃

∗

6
= 4 − 6 × 0.25 − 0.25 ×

1

6

−

1

(1 − 0.5)

× 0.3703 ×

1

6

− 6 × 0.3703 = 0.1131 > 0,

(50)

inwhich𝜆 < 0.8706 implies that the conditions ofCorollary 8
are satisfied which indicates that the network is global
asymptotic robust stable.

For the neural network parameters given in Example 12,
we choose 𝜆 = 0.6 that satisfies the condition 𝜆 < 0.8706. For
this example, the Matlab simulation results are presented in
Figure 2.

6. Conclusions

In this paper, we have obtained new sufficient conditions
for the global asymptotic robust stability of the equilibrium
point for the class of neutral-type hybrid bidirectional asso-
ciative memory neural networks with time-varying delays
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Figure 2: Trajectories of 𝑥(𝑡) and 𝑦(𝑡) of system (8) for the initial states 𝑥(0) = [−0.5 0.3] and 𝑦(0) = [−0.4 0.2].

and parameters uncertainties. Some new delay-derivative-
dependent stability criteria are derived to ascertain the
global asymptotic stability of the BAM neural networks.
To obtain less conservative stability criterion, some new
upper bound norms for the interconnection matrices of the
neural networks are used. The obtained results can be easily
verified as they can be expressed in terms of the network
parameters only. Two illustrative examples are given to show
the effectiveness of the proposed results.
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