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A novel approach for a Poisson cluster stochastic rainfall generator was validated in its ability to reproduce important rainfall
and watershed response characteristics at 104 locations in the United States. The suggested novel approach, The Hybrid Model
(THM), as compared to the traditional Poisson cluster rainfall modeling approaches, has an additional capability to account for the
interannual variability of rainfall statistics. THM and a traditional approach of Poisson cluster rainfall model (modified Bartlett-
Lewis rectangular pulse model) were compared in their ability to reproduce the characteristics of extreme rainfall and watershed
response variables such as runoff and peak flow. The results of the comparison indicate that THM generally outperforms the
traditional approach in reproducing the distributions of peak rainfall, peak flow, and runoff volume. In addition, THM significantly
outperformed the traditional approach in reproducing extreme rainfall by 2.3% to 66% and extreme flow values by 32% to 71%.

1. Introduction

Stochastic rainfall generators provide synthetic rainfall input
to hydrologic simulation models whenever the observed
data with sufficient length are not available. Because they
enable theMonte-Carlo simulation approach by providing an
infinite length of rainfall time series to hydrologic simulation
models, they are extensively utilized to assess the risks
associatedwith hydrologic systems. Poisson cluster stochastic
rainfall generationmodels [1, 2] are considered to be themost
robust and practical stochastic rainfall generators because
of their model structure that reflects well the seasonal and
climatological features of rainfall generating mechanisms
[3]. The performance of Poisson cluster rainfall models in
reproducing conventional rainfall statistics such as mean,
variance, autocorrelation, and probability of dry periods has

beenwell validated over various geographical locations across
the world [4–11]. For this reason, Poisson cluster rainfall
models have been applied in a wide range of practices for
hydrological risk assessments dealing with flooding (e.g.,
[12]), drought (e.g., [13]), contaminant transport (e.g., [14]),
and ecosystem behavior (e.g., [15]).

The Poisson cluster model has been constantly improved
after Rodriguez-Iturbe et al. [1] have suggested the original
model structure and parameter calibration scheme. For
example, Rodriguez-Iturbe et al. [2] introduced an additional
parameter that can account for the storm-to-storm variability
of rain cell duration. Cowpertwait [17, 18] derived analytical
expressions for the probability of a dry h-hr period and skew-
ness of a synthetically generated rainfall time series, respec-
tively, which can subsequently be used for the calibration
of model parameters. Velghe et al. [19] and Onof et al. [20]
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Figure 1: Location of the 104US National Climate Data Center (NCDC) precipitation stations used for the validation of THM in the present
study (gray circles). The numbers next to the dots represent the calendar month on which the validation was performed.The locations of the
11 gauges validated by Kim et al. [16] are shown as black squares. The location of the Texas rainfall gauge (NCDC ID 4300) used to generate
Figure 3 is also shown (gray star).

replaced the one-parameter exponential distributionwith the
two-parameter gamma distribution to represent the distribu-
tion of rain cell intensity more accurately. Cowpertwait [17]
proposed a model that can account for the rainfall process in
which both convective and stratiform events simultaneously
exist.

While most of these previous studies regarding Poisson
cluster rainfall generators tried to enhance the performance
of the model by modifying the fundamental assumptions
of the model structures, Kim et al. [16, 21] indicated that
the performance of the model can be enhanced not only
by modifying the model structure, but also by providing
more information about the rainfall process. Particularly,
they suggested that the interannual variability of rainfall is
highly associated with extreme rainfall events and that the
conventional calibration scheme of a Poisson cluster rainfall
model cannot account for this interannual variability. They
suggested an approach that can take this variability into
account, which was termedTheHybridModel (THM). THM
successfully reduced the systematic bias of extreme rainfall
and flow values that exist in a synthetic rainfall time series
generated by the traditional approach of Poisson cluster
rainfall modeling. However, the performance of the model
was tested only at 11 rain gauges across the United States

(black squares in Figure 1) for 12 calendarmonths (total of 132
months), so a general conclusion regarding the advantage of
using THM over the traditional approach of Poisson cluster
modeling can be constituted only after it is verified over
various rainfall characteristics. For this reason, the present
study tested THM for an additional 104 geographic locations
across the United States.The results of this study are expected
to expand the applicability of THM, especially in climatic
regions that cannot be represented by the 11 gauges that were
analyzed by Kim et al. [16, 21].

2. Methodology

2.1. Data Description. A total of 104 months of precipitation
data observed at 104US National Data Climate Center [22]
precipitation gauges (one month per one gauge) across the
contiguous United States (gray circles in Figure 1) were used
in the analysis. The gauges were randomly drawn from the
pool of all NCDC rain gauges that contain at least 50 years of
records to make sure that the rainfall statistics represent well
the rainfall characteristics at the gauges.

2.2. Modified Bartlett Lewis Rectangular Pulse (MBLRP)
Model. THM shares its fundamental model structure with
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Figure 2: Schematic of the MBLRP model. White and gray circles
represent the arrival time of storms and rain cells, respectively.
Each rain cell is represented by a rectangle whose width and height
represent rainfall duration and rainfall intensity.

the Modified Bartlett-Lewis rectangular pulse (MBLRP)
model [2]. In the MBLRP model, the rainfall time series are
represented as sequences of storms comprised of rain cells
(see Figure 2). In the model, X1 [𝑇] is a random variable that
represents the storm arrival time, which is governed by a
Poisson processwith parameter𝜆; X2 [𝑇] is a randomvariable
that represents the duration of storm activity (i.e., the time
window after the beginning of the storm within which rain
cells can arrive), which varies according to an exponential
distribution with parameter 𝛾; X3 [𝑇] is a random variable
that represents the rain cell arrival time within the duration
of storm activity, which is governed by a Poisson process with
parameter 𝛽; X4 [𝑇] is a random variable that represents
the duration of the rain cells, which varies according to an
exponential distribution with parameter 𝜂 that, in turn, is a
random variable represented by a gamma distribution with
parameters ] and 𝛼; and X5 [𝐿/𝑇] is a random variable that
represents the rain cell intensity, which varies according to an
exponential distributionwith parameter 1/𝜇. From a physical
viewpoint, 𝜆[1/𝑇] is the expected number of storms that
arrives in a given period, 𝛾[1/𝑇] is the inverse of the expected
duration of storm activity, 𝛽[1/𝑇] is the expected number of
rain cells that arrives within the duration of storm activity,
𝜂[1/𝑇] is the inverse of the expected duration of the rain cells,
and 𝜇[𝐿/𝑇] is the average rain cell intensity. Parameters ][𝑇]
and 𝛼 [dimensionless] do not have a clear physical meaning,
but the expected value and variance of 𝜂 can be expressed
as 𝛼/] and 𝛼/]2. Therefore, the model has six parameters:
𝜆, 𝛾, 𝛽, ], 𝛼, and 𝜇; however, it is customary to use the
dimensionless ratios 𝜑 = 𝛾/𝜂 and 𝜅 = 𝛽/𝜂 as parameters
instead of 𝛾 and 𝛽. The estimation of the model parameters
is accomplished by matching statistics of the simulated and
observed rainfall time series. Some commonly used statistics
are the precipitation depthmean, variance, probability of zero
rainfall, and lag-s covariance at various time scales [8, 23].

2.3. The Hybrid Model (THM). The fundamental idea of
THM arose from the fact that the rainfall statistics that are
considered in the conventional approach of Poisson cluster
rainfall modeling do not contain enough information about
the variable characteristics of the rainfall process. Especially,
it is noteworthy that the rainfall statistics that are used in the
calibration process of the conventional approach are typically
calculated for the entire period of a rainfall time series,
overlooking the fact that they vary from year to year. See, for
example, Figure 3. Each plot in the figure shows the monthly
variation hourly rainfall statistics (mean, variance, lag-1
autocorrelation, and probability of zero rainfall) at the gauge

TX-4300 (star in Figure 1). Thirty-one years of continuous
hourly rainfall data (1976–2005) was used to generate the
plots. Small dots in each plot of Figure 3 represent the rainfall
statistics of a given month of a given year (e.g., hourly mean
rainfall of June, 1977). In contrast, hollow circles connected
with a solid line represent the rainfall statistics of a given
month over the entire recording period (e.g., hourly mean
rainfall of June between the years of 1976 and 2005). It can
be noted that the interannual variability of rainfall statistics
(vertical spread of dots in each plot of Figure 3) is significant.
The existing framework of Poisson cluster rainfall models
only uses the average long-term statistics (hollow circles in
Figure 3) that ignore the interannual variability. For this rea-
son, the rainfall time series that is generated by the conven-
tional approach cannot reflect the interannual variability of
the rainfall. Considering that hydrologically important events
such as floods and droughts are associated with marginal
statistics that are far from its long-term mean, it is critical
that stochastic rainfall models include an algorithm that
accounts for the interannual statistical variability. Kim et al.
[16, 21] proposed an algorithm to resolve this issue, which
introduces an additional process of modeling the interannual
variability of rainfall statistics to the conventional approach
of Poisson cluster rainfall simulation.

The modeling framework of the traditional approach
and THM approach is shown and compared in Figure 4.
While the traditional approach generates the rainfall time
series for a long period of time (e.g., 1000 months) based
on the long-term rainfall statistics (namely, rainfall statistics
corresponding to the entire period of the observed record),
THM generates the rainfall time series with a short period of
time (e.g., 1 month) based on the short-term rainfall statistics
(namely, rainfall statistics corresponding to one calendar
month).

THM firstly simulates the short-term rainfall statistics.
Here, short-term statistics refer to the statistics for the time
period of one calendar month. For example, if a rainfall
time series is to be generated for the month of January
for 100 times, THM first generates a 100-set of short-term
rainfall statistics. The simulated short-term rainfall statistics
aremean rainfall at 1 hourly accumulation level, variance, lag-
1 autocorrelation coefficient, and probability of zero rainfall
at 1, 3, 12, and 24 hourly accumulation levels (total of 13
statistics).

The sequence of generation of the 13 rainfall statistics is as
follows, which is also depicted in Figure 5.

(1) Randomly draw mean (MEAN1) and autocorrelation
coefficient (AC1) at hourly accumulation levels from
the predetermined normal and gamma distributions,
respectively. Figure 6 shows a sample histogram and
the fitted distributions at the gauge TX-4300 for the
month of June. From these distributions, hourlymean
and lag-1 autocorrelation coefficients are drawn.

(2) Based on the randomly drawnmean rainfall at hourly
accumulation levels (MEAN1), generate variance
(VAR1 = STDEV12) and probability of zero rainfall
(PROB1) at hourly accumulation levels using the
correlation between the variables identified through
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Figure 3:Monthly variation in hourly rainfall statistics at the gaugeTX-4300. Small dots in each plot represent rainfall statistics corresponding
to a given month of a given year. Hollow circles connected with a solid line represent the rainfall statistics for a given month over the entire
recording period.

linear regression analysis. Figure 7 shows this corre-
lation and the least square regression lines.

(3) Based on the generated VAR1 and PROB1, generate
the variance and probability of zero rainfall at 3,
12, and 24 hours of accumulation levels (VAR3,
VAR12, VAR24, PROB3, PROB12, and PROB24, resp.)
using the correlation between the variables identified
through linear regression analysis. Figure 8 shows this
correlation and the least square regression lines.

(4) Based on the generated AC1 in step (1), generate the
autocorrelation coefficients at 3, 12, and 24 hours of
accumulation levels (AC3, AC12, and AC24, resp.)
using the correlation between the variables identified
through linear regression analysis. Figure 6 shows this
correlation and the least square regression lines.

The second part of THM simulates the rainfall time series
using the Modified Bartlett-Lewis rectangular pulse model
[2] based on the simulated short-term rainfall statistics.
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Figure 4: Schematic of the traditional approach of Poisson cluster rainfall modeling (a) and the approach of this study (b).

MEAN1

VAR1 VAR3 VAR12 VAR24

AC1 AC3 AC12 AC24

PROB0-1 PROB0-3 PROB0-12 PROB0-24

Figure 5:The sequence of a short-term rainfall statistics generation.

Firstly, the 6 parameters of the MBLRPM corresponding to
each simulated month are estimated using isolated particle
swarm optimization (ISPSO, [24]). Then, 20 rainfall time
series with the length of one month are generated based
on the estimated parameters. Lastly, the rainfall time series
of which statistics is the closest to the short-term rainfall
statistics that were used in parameter estimation is selected.

For amore detailed description on themethodology of THM,
readers can refer to Kim et al. [16].

2.4. Comparison of the Two Models in Reproducing the
Distribution of the Observed Rainfall and the Corresponding
Watershed Responses. The performance of THM was tested
in its ability to reproduce the distribution of monthly max-
imum rainfall depths, monthly peak flows, and monthly
runoff volumes. For each of the chosen months of the 104
gauges, 100 months of synthetic rainfall time series were
generated using both THM and the traditional approach of
the MBLRP model. Accordingly, each of the gauges has three
different types of rainfall time series including the observed
ones. Then, the following values were calculated using all
three types of rainfall time series: monthly maximum rainfall
depths with the duration of 1, 3, 6, 12, and 24 hours; monthly
runoff depth; and monthly peak flow.The SCS curve number
method and SCS curvilinear unit hydrograph method [25]
were used to calculate the last two values. The watershed
characteristics assumed were a lag time of 2 hours, drainage
area of 7.5 km2, and a curve number of 50, 60, 70, 80, and 90.

As a result, each gauge was associated with 500 monthly
maximum rainfall depths based on THM (i.e., 5 rainfall
durations × 100 years of simulation—P1THM, P

3

THM, P
6

THM,
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Figure 6: Histograms and the fitted gamma and normal distribution of hourly mean (a) and lag-1 autocorrelation coefficients (b) at the gauge
TX-4300 for the month of June. From these distributions, MEAN1 and AC1 are randomly drawn.
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Figure 7: Relationship of MEAN1 to VAR1 (a) and PROB1 (b) and the least square regression lines at the gauge TX-4300 for the month of
June.
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Figure 8: Relationship between the rainfall statistics at 1, 3, and 12 hourly accumulation levels and the least square regression lines at the
gauge TX-4300 for the month of June.
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The two-sample Kolmogorov-Smirnov test (K-S test) was

used to compare the distributions of the variables calculated
from the observed rainfall time series and the ones calculated
from the synthetic rainfall time series. The test statistic of
the two-sample Kolmogorov-Smirnov test, which compares

the distributions of the data set 𝑋
1
and the data set 𝑋

2
, is as

follows:

max 𝐹1 (𝑋) − 𝐹2 (𝑋)
 , (1)

where 𝐹(𝑋) is the empirical cumulative density function of
the value 𝑋. The null hypothesis of the test is that the sets 𝑥

1

and 𝑥
2
are from the same continuous distribution.Therefore,

if the results of the test indicate that the null hypothesis is not
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rejected, one can say that set 𝑥
1
and set 𝑥

2
are from the same

continuous distribution with a given significance level that is
specified in the test. In this study, a significance level of 5%
was used.

In this study, a set of two tests should be performed
to tell if THM outperforms the traditional approach. For
example, if the test comparing P1Obs and P1THM indicates that
both variables are from the same continuous distributions
and the test comparing P1Obs and P1Trad indicates that they
are from the different distributions, the advantage of using
THM over the traditional approach to predict the maximum
precipitation depth at hourly duration is proved. This set of
tests was repeated for the 15 variables (P1, P3, P6, P12, P24, R50,
R60, R70, R80, R90, F50, F60, F70, F80, and F90) to see how the
performance of THM compares to the one of the traditional
approach based on long-term statistics.

2.5. Comparison of the Two Models in Reproducing the
Extreme Rainfall and the Peak Flow Values. The result of
the K-S test only tells the overall similarity or difference
between the two distributions. However, extreme events are
more highly associated with the upper tail of the distribution
than they are to the overall shape of the distribution. In other
words, there can be a case inwhich the simulated rainfall time
series cannot reproduce the extreme events even if the result
of the K-S test indicates the similarity of the distributions.
For this reason, the design rainfall and the corresponding
peak flow values at the virtual watershed with some given
recurrence intervals were calculated for each of the rainfall
time series andwere comparedwith each other. A generalized
extreme value distributionwas used tomodel the distribution
of the monthly peak rainfall and the monthly peak flow,
and the method of L-moment [26] was used to estimate the
parameters of the distribution. Then, the residual of each
model’s design precipitation was normalized as follows:

RPRI
model =

DPRI
model − DP

RI
observed

RPRI
observed

, (2)

RQRI
model =

DQRI
model − DQ

RI
observed

RQRI
observed

, (3)

where RP and RQ represent the normalized residual of the
design precipitation and the corresponding design flow at
the virtual watershed, respectively, DP and DQ represent the
estimated design precipitation and design flow, respectively,
and superscript and subscript attached to the letter DP and
DQ represent recurrence interval and the type of time series
on which the calculation is based (either the MBLRPM,
THM, or observed), respectively. A value of RP or RQ that is
close to 0means that the extreme precipitation or the extreme
flowwith a given recurrence interval produced by the rainfall
model is close to their observed counterpart. In addition,
a positive (or negative) value of RP or RQ means that the
extreme precipitation or extreme flowwith a given recurrence
interval produced by the rainfall model is greater (or smaller)
than their observed counterpart, and vice versa. For example,
a RQ50MBLRPM value of −0.1 means that the 50-year flow value
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Figure 9:The empirical cumulative density function of themonthly
peak rainfall depth made from the rainfall time series generated by
THM, the traditional approach of MBLRPM, and observation.

that is reproduced by the traditional MBLRPM model is
10% smaller than its observed counterpart. In this study,
this residual analysis was performed for all 104 gauges and
a histogram of the residuals was prepared. The centeredness
and peakedness near the value of 0 in the shape of this
histogram can be a good measure of the overall performance
of the model in terms of reproducing extreme rainfall and
flow values.

3. Results

3.1. Reproduction of Annual Maximum Rainfall Distribu-
tion and Extreme Rainfall Depth. Figure 9 compares the
cumulative density function (CDF) of the monthly peak
rainfall depth with a duration of 1 hour derived from the
simulated and the observed rainfall time series at the NCDC
rainfall gauge located in northern Texas (Latitude = 33.61,
Longitude = −99.38) for the month of November. It can be
noted that both the traditional method and THM reproduce
well the distribution of themonthly peak rainfall depth of the
observed rainfall time series.

To acquire more general conclusions, the K-S test was
performed for all 104 geographical locations and for all 5
rainfall durations. Figure 10 summarizes the results of the K-
S test analysis. The figure shows the proportions among the
104 gauges that THM and the traditional approach succeeded
in reproducing the distribution of the observed monthly
maximum rainfall depths with 1, 3, 6, 12, and 24 hours of
duration.

It is notable that THM and the traditional approach
succeeded in reproducing hourly maximum rainfall depth
only for 47 and 63% of the entire 104 stations, respectively.
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This seems to be particularly because the monthly maximum
rainfall with 1-hour duration is only a small portion of the
time series and the statistics used in the model calibration
(mean, variance, lag-1 autocorrelation, and probability of
zero rainfall) does not directly reflect this event. For this
reason, the reproduction of extreme values using Poisson
clustermodels has been the primary subject formany studies.
For example, Cowpertwait [18] described the limitation of
Poisson cluster rainfall models in which only a single set of
parameters can be applied to represent the characteristics of
both extreme and frequent rainfall events. In the meantime,
the effort to identify the patterns of the statistical properties,
in which both approaches have a high probability of failure
in reproducing 1-hour durationmaximum rainfall depth, was
successful; see Figure 11.

Each plot in the figure shows the relationship between
the hourly statistical values (e.g., mean and variance) and the
success index in reproducing the monthly maximum rainfall
depth with 1-hour duration. The density of circles in the first
column of the first plot increases with the decrease in mean
hourly rainfall. This suggests that both approaches are more
likely to fail in a relatively dry region. In a similar manner,
the second plot suggests that both approaches are more
likely to fail when the hourly variance of the rainfall time
series decreases. Considering the high correlation between
rainfall mean and variance (meaning that a dry region is
mostly associatedwith low rainfall depth variability), it can be
generalized that Poisson cluster models should be used with
caution when used to model extreme events in relatively dry
regions (e.g., mean rainfall less than 0.1mm/hr).

Secondly, THM outperformed the traditional approach
in reproducing the distribution of the monthly maximum
rainfall depths with a duration starting from 3 to 12 hours,
while it did not for the 1-hour duration rainfall. This is par-
ticularly because the extreme values were better represented
by the short-term rainfall statistics that were additionally
introduced by THM as the duration of the extreme rainfall
increased. In other words, THM, which incorporates more
statistical information about the interannual variability than
the traditional approach does, has more information on

the maximum rainfall depths, resulting in better perfor-
mance. An analysis that is similar to the previous one was
performed to identify the pattern of statistical properties
in which THM particularly outperforms the traditional
approach, but no notable pattern was observed.

Figure 12 shows the histograms of the normalized resid-
uals of the 1-hour design precipitation (2) for THM (a) and
the MBLRPM (b). It can be noted that the center of the
histogram corresponding to THM is nearer to the value of
0 for all three recurrence intervals of design precipitation,
while the one corresponding to the traditional approach is
biased toward the left. This means that the extreme rainfall
values generated by THM are closer to the observed ones,
while the traditional approach consistently underestimates
the observed extreme rainfall values. Table 1 shows the mean
and standard deviation of the RP values for 1-hour, 3-hour,
and 6-hour design precipitation values.

The mean of RPTHM values was consistently closer to 0
compared to RPMBLRPM for all three rainfall durations, which
means that the overall performance of THM in reproducing
the extreme rainfall values (namely, the upper tail part of
the distribution) of the observed rainfall time series. The
standard deviation of RPTHM values was consistently greater
than that of RPMBLRPM. This indicates that the traditional
MBLRPmodel has greater consistency, but it also means that
the traditional approach underestimates the extreme rainfall
values more consistently compared to THM.The last column
of Table 1 shows the proportion among all 104 gauge locations
that the model design precipitation value had less than 20%
discrepancy from the observed design precipitation. The
values are consistently greater for THM. This means that
THM has a greater probability of successfully reproducing
the extreme rainfall values than does the traditional MBLRP
model. It has been also noted that the performance of
both THM and the traditional approach was better for the
rainfall with the greater accumulation interval. This seems
to be because the conceptualization of the rainfall process of
MBLRPM is more appropriate for the greater accumulation
interval. In other words, the gradual increase of the rainfall
rate at a given point at hourly accumulation level which
occurs in reality cannot be modeled well using the current
MPLRPM and THM framework because they conceptualize
the arrival of the rainfall as an abrupt process using time-
intensity rectangles in time axis.

3.2. Reproduction ofAnnualMaximumPeak FlowDistribution
and Extreme Flow. Figure 13 shows the proportions, among
104 gauges, that THMand the traditional approach succeeded
in reproducing the distribution of the peak flow at the
virtual watershed with varying values of curve numbers
between 50 and 90. For all of the cases, THM slightly
outperformed the traditional approach.This result is encour-
aging in that the tested hypothetical watershed has 2 hours
of lag time and THM did not outperform the traditional
approach in reproducing a 2-hour duration maximum rain-
fall.The traditional approach notably outperformed theTHM
for the 1-hour duration and THM slightly outperformed



10 Journal of Applied Mathematics

Bo
th

 fa
ile

d

O
nl

y 
tr

ad
su

cc
ee

de
d

O
nl

y 
TH

M
su

cc
ee

de
d

Bo
th

su
cc

ee
de

d

0.3

0.25

0.2

0.15

0.1

0.05

0

M
ea

n 
ho

ur
ly

 ra
in

fa
ll 

(m
m

)

(a)

Bo
th

 fa
ile

d

O
nl

y 
tr

ad
su

cc
ee

de
d

O
nl

y 
TH

M
su

cc
ee

de
d

Bo
th

su
cc

ee
de

d

3.5

3

2.5

2

1.5

1

0.5

0

M
ea

n 
va

ria
nc

e (
m

m
2
)

(b)

Figure 11: Relationship between the hourly rainfall statistics and whether THM and traditional approaches succeeded in reproducing
maximum monthly rainfall depth with 1-hour duration.
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Figure 12:Histogramof the residual of the design precipitationwith duration of 1 hour (RP100, RP50, andRP30) for THM(a) and theMBLRPM
(b).
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Table 1: Performance comparison between THM and the traditional approach in reproducing design rainfall values.

Recurrence interval Type of statistic THM Traditional approach
1 hours 3 hours 6 hours 1 hour 3 hours 6 hours

100 years
Mean 0.058 0.022 −0.035 −0.157 −0.162 −0.189

Standard deviation 0.310 0.296 0.234 0.210 0.193 0.157
Within ±20% 0.640 0.710 0.730 0.522 0.522 0.441

50 years
Mean 0.097 0.046 −0.019 −0.127 −0.143 −0.168

Standard deviation 0.261 0.240 0.191 0.182 0.164 0.140
Within ±20% 0.670 0.790 0.800 0.610 0.596 0.515

30 years
Mean 0.129 0.065 −0.006 −0.101 −0.126 −0.150

Standard deviation 0.233 0.210 0.168 0.172 0.152 0.136
Within ±20% 0.700 0.810 0.860 0.684 0.684 0.610

CN50 CN60 CN70 CN80 CN90
THM 0.98 0.97 0.93 0.92 0.89
MBLRP

THM
MBLRP

0.94 0.92 0.90 0.83 0.84
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Success ratio in reproducing peak flow distribution

Figure 13: The proportions, among 104 gauges, that THM and the
traditional approach succeeded in reproducing the distribution of
the observed peak flows of the hypothetical watershed with curve
numbers of 50, 60, 70, 80, and 90.

the traditional approach for the three hour duration. See
Figure 10.

It is also noteworthy that the success ratio of peak flow
distribution reproduction was significantly greater than that
of the extreme rainfall depth distribution reproduction for
both models. The reason may be because the watershed
response is not only a function of peak flow depth but also
a function of the rainfall depth that occurs around the time
of a peak rainfall event, and Poisson cluster models are good
at reproducing the latter. Also, the amount of discrepancy
between the observed extreme rainfall and the model rainfall
decreased as the rainfall converted into runoff due to the
infiltration process (the so-called the “damping effect”).

An analysis was performed to identify the statistical
pattern at which THM outperforms the traditional approach.
Figure 14 shows the relationship between the hourly rainfall
mean and the success index of reproducing themonthly peak
flows at the virtual watershed with curve number 90. It can
be noted that the most gauge locations at which only THM
succeeded in reproducing peak flow values had a rainfall
mean of less than∼0.1mm/hr. A similar patternwas observed
for the analyses based on virtual watersheds with different
curve numbers.

Figure 15 shows the histograms of the RF values for the
virtual watershed with a curve number of 90. The plots in
the upper row show the ones corresponding to THM, and
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Figure 14: Relationship between the hourly rainfall mean and
whether THMand traditional approaches succeeded in reproducing
peak flow at the virtual watershed with curve number 90.

the plots in the lower row show the ones corresponding to the
traditional MBLRP model. It can be seen that the histograms
corresponding to THM are more centered near the value
of 0, meaning that the overall performance of reproducing
extreme peak flow values is better for THM compared to the
traditional MBLRP model. Table 2 summarizes the results of
this histogram analysis. It can be noted that the degree of
underestimation of extreme flow values for the traditional
MBLRP approach is significant, with the RQ value varying
between −0.34 and −0.47, which means that the extreme
flow reproduced by the traditional MBLRP model can be
smaller than the observed flow by 34% to 47%. This degree
of underestimation was significantly reduced by employing
THM, which varied between −0.12 and −0.23. The last
column of Table 2 shows the proportions among all 104 gauge
locations where the model design flow value had less than
30% residual from the observed design flow, and the values
were consistently greater for THM.Thismeans that THMhas
a greater probability of successfully reproducing extreme flow
values than the traditional MBLRP model does.

3.3. Reproduction of Runoff Depth Distribution. Figure 16
shows the proportions, among 104 gauges, that THM and
the traditional approach succeeded in reproducing the dis-
tribution of the monthly runoff depth at the hypothetical
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Table 2: Performance comparison between THM and the traditional approach in reproducing design flow values.

Recurrence interval Type of statistic THM Traditional approach
CN = 70 CN = 80 CN = 90 CN = 70 CN = 80 CN = 90

100 years
Mean −0.184 −0.178 −0.117 −0.468 −0.420 −0.344

Standard deviation 0.606 0.521 0.334 0.388 0.373 0.312
Within ±20% 0.370 0.460 0.680 0.257 0.324 0.397

50 years
Mean −0.225 −0.187 −0.123 −0.477 −0.429 −0.348

Standard deviation 0.518 0.530 0.335 0.388 0.368 0.314
Within ±20% 0.370 0.450 0.680 0.265 0.324 0.471

30 years
Mean −0.226 −0.191 −0.126 −0.481 −0.432 −0.349

Standard deviation 0.529 0.542 0.342 0.392 0.370 0.322
Within ±20% 0.340 0.450 0.660 0.257 0.324 0.463
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Figure 15: Histogram of the residual of design flow at the virtual watershed with curve number 90 (RF100, RF50 and RF30) for THM (a) and
the MBLRPM (b).

watershed with varying values of curve numbers between
50 and 90. For all cases, THM notably outperformed the
traditional approach. As opposed to maximum rainfall
depths and peak flow values, runoff volume is more closely
related to the rainfall statistics, and THM,which incorporates
more rainfall statistics than the traditional approach, had

an improved performance in reproducing the distribution of
runoff volumes.

An analysis was performed to identify the statistical
pattern at which THM outperforms the traditional approach
in reproducing runoff volume. Similar to the analysis of
peak flow reproduction, it was observed that the most gauge
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Figure 16: The proportions, among 104 gauges, that THM and the
traditional approach succeeded in reproducing the distribution of
the observed runoff depths of the hypothetical watershed with curve
numbers of 50, 60, 70, 80, and 90.

locations at which only THM succeeded in reproducing peak
flow values had a rainfall mean of less than ∼0.1mm/hr.

Overall, this result indicates the advantage of using THM
for continuous rainfall simulation in which not only the
extreme values, but also the overall runoff value is considered
important. In the meantime, it should be noted that the
results regarding watershed response analysis were obtained
using the SCS curve number method, which may yield inac-
curate result in continuous watershed modeling.The analysis
based on fully distributed hydrologic models such as the ones
used in the Distributed Model Intercomparison Project—
phase 1 (DMIP1) (http://www.nws.noaa.gov/oh/hrl/dmip/)
might be able to provide more physically-based results pro-
vided with sufficient information onmeteorological forcings,
soil types, land use, topography, and initial conditions of
any interested domain. However, the distributed continuous
models were not adopted in this study because it is not only
infeasible to obtain all relevant information but also compu-
tationally intensive to run the models for many locations.

4. Conclusion

In this study, the performance of a Poisson cluster stochastic
rainfall generator that is capable of accounting for the inter-
annual variability of rainfall statistics was validated over the
various geographic locations across the contiguous United
States. The results of the present study confirmed that the
traditional approach using only a few number of “long-term”
rainfall statistics calculated for the entire period of record
cannot sufficiently represent the rainfall characteristics of
a given calendar month varying from one year to another.
Such an identified problem was resolved by using the newly
suggested approach. The latter additionally included the
process of simulating “short-term” rainfall statistics that
varies from one year to another and combined the process
into the traditional approach of Poisson cluster rainfall
modeling.The suggested novel approach (TheHybridModel,
THM) generally outperformed the conventional approach of
the Poisson cluster rainfall simulation when modeling the
characteristics of extreme precipitation, extreme flood, and

runoff volume, while it did not outperform the traditional
modeling approach in reproducing extreme rainfall depths
on a fine time scale (e.g., 1 hour). The present study is
especially meaningful in that it extended the applicability
of THM by validating it over various geographic locations
across the contiguous United States, in addition to what was
investigated by Kim et al. [16, 21].
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