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Fractional diffusion equation in fractalmedia is an integropartial differential equation parametrized by fractal Hausdorff dimension
and anomalous diffusion exponent. In this paper, the similarity solution of the fractional diffusion equation was considered.
Through the invariants of the group of scaling transformations we derived the integro-ordinary differential equation for the
similarity variable. Then by virtue of Mellin transform, the probability density function 𝑝(𝑟, 𝑡), which is just the fundamental
solution of the fractional diffusion equation, was expressed in terms of Fox functions.

1. Introduction

Standard diffusion in 𝑑-dimensional space, where 𝑑 is a pos-
itive integer, is a process described by Gaussian distribution.
A main feature of the process is the linear relation between
the mean square displacement and time; namely, ⟨𝑟2(𝑡)⟩ ∝

𝑡. Some anomalous diffusion phenomena that take place in
impure media, biological tissues, and porous media can be
simulated by the diffusion model in fractals [1–6]. In recent
years, the fractal theory has been developed rapidly, and it
was found to be closely related to the anomalous diffusion
phenomena [3–12].

In fractal media, the geometric obstacles existing on all
length scales slow down the particle motion in a random
walk. The mean square displacement behaves as [2]

𝑅
2
≡ ⟨𝑟
2
(𝑡)⟩ ∝ 𝑡

2/𝑑
𝑤 , (1)

where 𝑑
𝑤
(> 2) is the anomalous diffusion exponent. The

numerical simulation found that on a large class of fractal
structures the general form of the probability density func-
tion 𝑝(𝑟, 𝑡) that the walker is at distance 𝑟 at time 𝑡 from
its starting point at time 𝑡 = 0 obeys asymptotically a non-
Gaussian shape of the form [2, 3]

𝑝 (𝑟, 𝑡) ∼ 𝑡
−𝑑
𝑓
/𝑑
𝑤 exp [−const. × (

𝑟

𝑅
)

𝑢

] ,
𝑟

𝑅
≫ 1, (2)

where 𝑢 = 𝑑
𝑤
/(𝑑
𝑤

− 1) and 𝑑
𝑓
is the fractal Hausdorff

dimension.
In order to simulate the diffusion phenomena in fractal

media, some scholars have introduced fractional diffusion
equations [4, 5, 11–13]. In this paper, we consider the frac-
tional diffusion equation [5, 13]:

𝜕
𝛾
𝑝 (𝑟, 𝑡)

𝜕𝑡𝛾
=

1

𝑟𝑑𝑠−1

𝜕

𝜕𝑟
(𝑟
𝑑
𝑠
−1 𝜕𝑝

𝜕𝑟
) , 𝑟 > 0, 𝑡 > 0, (3)

where 𝛾 = 2/𝑑
𝑤
, 𝑑
𝑠
= 2𝑑
𝑓
/𝑑
𝑤
is the spectral dimension of

the fractal, and the fractional time derivative on the left hand
side of (3) is defined as the convolution integral [14–20]:

𝜕
𝛾
𝑝 (𝑟, 𝑡)

𝜕𝑡𝛾
=

𝜕

𝜕𝑡
∫

𝑡

0

(𝑡 − 𝜏)
−𝛾

Γ (1 − 𝛾)
𝑝 (𝑟, 𝜏) 𝑑𝜏, 0 < 𝛾 < 1, (4)

where Γ(⋅) is Euler’s gamma function. In the limit case, 𝑑
𝑤

→

2 and 𝑑
𝑓

→ 𝑑, (3) reduces to the standard 𝑑-dimensional
diffusion equation.

The fractional calculus has been applied to many fields in
science and engineering, such as viscoelasticity, anomalous
diffusion, biology, chemistry, and control theory [5, 11–13,
15, 19–22]. Researches on the fractional differential equations
attract much attention [15, 23–28]. For linear fractional
differential equations, the integral transforms, including the
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Laplace, Fourier, and Mellin transforms, are usually used to
obtain analytic solutions.

In this paper using the similarity method [29] we solve
(3) with the following initial and boundary conditions and
the conservation condition:

𝑝 (𝑟, 0) = 0, 𝑟 > 0,

𝑝 (∞, 𝑡) = 0, 𝑡 > 0,

𝜔 (𝑑
𝑓
)∫

∞

0

𝑝 (𝑟, 𝑡) 𝑟
𝑑
𝑓
−1
𝑑𝑟 = 1,

(5)

where 𝜔(𝑑
𝑓
) is a constant, which is defined as

𝜔 (𝑑
𝑓
) =

2𝜋
𝑑
𝑓
/2

Γ (𝑑
𝑓
/2)

. (6)

We note that the probability density function 𝑝(𝑟, 𝑡) is
just the fundamental solution of the fractional diffusion
equation. The similarity method was used by Gorenflo et al.
[30], Wyss [31], and Buckwar and Luchko [32] for solving
problems of time fractional partial differential equations in
one-dimensional case.

2. Derivation of Similarity Solution

First we determine a symmetric group of scaling transforma-
tions

𝑇
𝛼
: 𝑟 = 𝛼𝑟, 𝑡 = 𝛼

ℎ
𝑡, 𝑝 = 𝛼

𝑙
𝑝, (7)

where 𝛼 > 0 is a parameter and ℎ, 𝑙 are constants to be deter-
mined. Applying the group of scaling transformations (7), the
fractional derivative is converted as follows:

𝜕
𝛾
𝑝 (𝑟, 𝑡)

𝜕𝑡𝛾
= 𝛼
𝑙 𝜕

𝜕𝑡
∫

𝑡

0

(𝑡 − 𝜏)
−𝛾

Γ (1 − 𝛾)
𝑝 (𝑟, 𝛼

−ℎ
𝜏) 𝑑𝜏

= 𝛼
𝑙−ℎ𝛾 𝜕

𝜕𝑡
∫

𝑡

0

(𝑡 − 𝜏

)
−𝛾

Γ (1 − 𝛾)
𝑝 (𝑟, 𝜏


) 𝑑𝜏


= 𝛼
𝑙−ℎ𝛾

𝜕
𝛾
𝑝 (𝑟, 𝑡)

𝜕𝑡
𝛾

,

(8)

where 𝜏


= 𝛼
−ℎ
𝜏. Hence the problem (3)–(5) is invariant

under the group (7) if and only if

ℎ =
2

𝛾
, 𝑙 = −𝑑

𝑓
. (9)

So the symmetric group of scaling transformations is deter-
mined:

𝑇
𝛼
: 𝑟 = 𝛼𝑟, 𝑡 = 𝛼

2/𝛾
𝑡, 𝑝 = 𝛼

−𝑑
𝑓𝑝. (10)

Eliminating the parameter 𝛼 leads to two invariants:

𝑟𝑡
−𝛾/2

= 𝑟𝑡
−𝛾/2

, 𝑟
𝑑
𝑓𝑝 = 𝑟

𝑑
𝑓𝑝. (11)

Wedenote the two invariants of the group of the scaling trans-
formation 𝑇

𝛼
as

𝜂 = 𝑟𝑡
−𝛾/2

, 𝐹 = 𝑟
𝑑
𝑓𝑝. (12)

Next we use the transformation

𝑝 (𝑟, 𝑡) = 𝑟
−𝑑
𝑓𝐹 (𝜂) , 𝜂 = 𝑟𝑡

−𝛾/2 (13)

to determine the equations for the similarity solution of the
problem (3)–(5). Calculating derivative we have

𝜕𝑝

𝜕𝑟
= −𝑑
𝑓
𝑟
−𝑑
𝑓
−1
𝐹 (𝜂) + 𝑟

−𝑑
𝑓𝑡
−𝛾/2

𝐹

(𝜂) , (14)

1

𝑟𝑑𝑠−1

𝜕

𝜕𝑟
(𝑟
𝑑
𝑠
−1 𝜕𝑝

𝜕𝑟
) = 𝑟
−𝑑
𝑓𝑡
−𝛾
𝐹

(𝜂) + Δ

1
𝑟
−𝑑
𝑓
−1
𝑡
−𝛾/2

𝐹

(𝜂)

+ Δ
2
𝑟
−𝑑
𝑓
−2
𝐹 (𝜂) ,

(15)
where

Δ
1
= 𝑑
𝑠
− 1 − 2𝑑

𝑓
, Δ
2
= 𝑑
𝑓
(𝑑
𝑓
− 𝑑
𝑠
+ 2) . (16)

For the left hand side of (3), we introduce the new integral
variable

𝜉 = 𝑟𝜏
−𝛾/2

, (17)

we obtain 𝑝(𝑟, 𝜏) = 𝑟
−𝑑
𝑓𝐹(𝜉), and

𝜕
𝛾
𝑝 (𝑟, 𝑡)

𝜕𝑡𝛾
=

𝜕

𝜕𝑡
∫

𝑡

0

(𝑡 − 𝜏)
−𝛾

Γ (1 − 𝛾)
𝑝 (𝑟, 𝜏) 𝑑𝜏

= −𝑟
2/𝛾−𝑑

𝑓
−1
𝑡
−𝛾/2−1 𝑑

𝑑𝜂
∫

+∞

𝜂

[(𝜂/𝜉)
−2/𝛾

− 1]
−𝛾

Γ (1 − 𝛾)

× 𝐹 (𝜉) 𝜉
1−2/𝛾

𝑑𝜉.

(18)
Letting

𝑔 (𝑤) =

{{

{{

{

(𝑤
−2/𝛾

− 1)
−𝛾

Γ (1 − 𝛾)
, 0 < 𝑤 < 1,

0, 𝑤 > 1,

(19)

we rewrite (18) as
𝜕
𝛾
𝑝 (𝑟, 𝑡)

𝜕𝑡𝛾
= −𝑟
2/𝛾−𝑑

𝑓
−1
𝑡
−2/𝛾−1 𝑑

𝑑𝜂
∫

+∞

0

𝑔(
𝜂

𝜉
)𝐹 (𝜉) 𝜉

1−2/𝛾
𝑑𝜉.

(20)
From (15) and (20), we obtain the integro-ordinary differ-

ential equation for the similarity variables:

−
𝑑

𝑑𝜂
∫

+∞

0

𝑔(
𝜂

𝜉
)𝐹 (𝜉) 𝜉

−2/𝛾+1
𝑑𝜉

= 𝜂
−2/𝛾+1

𝐹

(𝜂) + Δ

1
𝜂
−2/𝛾

𝐹

(𝜂) + Δ

2
𝜂
−2/𝛾−1

𝐹 (𝜂) .

(21)
The conditions (5) are converted to

𝐹 (+∞) = 0, 𝜔 (𝑑
𝑓
)∫

+∞

0

𝐹 (𝜂) 𝜂
−1
𝑑𝜂 = 1. (22)

Considering the integration in (21), we use Mellin trans-
forms for the new problem (21) and (22). The Mellin trans-
form of function 𝑓(𝑥) is defined as [33]

𝑓 (𝑠) = M [𝑓 (𝑥) , 𝑠] = ∫

+∞

0

𝑓 (𝑥) 𝑥
𝑠−1

𝑑𝑥. (23)

ApplyingMellin transformwith respect to 𝜂 to both sides
of (21), we get

(𝑠 − 1) 𝑔 (𝑠 − 1) 𝐹(𝑠 −
2

𝛾
+ 1)
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= ((𝑠 −
2

𝛾
)(𝑠 −

2

𝛾
− 1) − Δ

1
(𝑠 −

2

𝛾
− 1) + Δ

2
)

× 𝐹(𝑠 −
2

𝛾
− 1) .

(24)

Calculating integrations we obtain Mellin transform of the
function 𝑔(𝑤):

𝑔 (𝑠) =
Γ (𝛾 + 𝛾𝑠/2)

𝑠Γ (𝛾𝑠/2)
. (25)

Inserting (25) into (24) and then replacing 𝑠 by 𝑠 + 2/𝛾 + 1 we
obtain the difference equation for the function 𝐹(𝑠):

Γ (𝛾 (𝑠/2 + 1/𝛾 + 1))

Γ (𝛾 (𝑠/2 + 1/𝛾))
𝐹 (𝑠 + 2) = (𝑠

2
+ 𝑠 − Δ

1
𝑠 + Δ
2
) 𝐹 (𝑠) .

(26)

In order to solve the difference equation, we introduce 𝑠 =
2𝑞 and 𝐹(2𝑞) = 𝑇(𝑞), and rewrite (26) into

𝑇 (𝑞 + 1)

𝑇 (𝑞)
= 4(𝑞 +

𝑑
𝑓

2
)(𝑞 + 1 +

𝑑
𝑓
− 𝑑
𝑠

2
)

Γ (𝛾𝑞 + 1)

Γ (𝛾𝑞 + 𝛾 + 1)
.

(27)

A particular solution of (27) is

𝑇 (𝑞) = 𝐶
4
𝑞
Γ (𝑞 + 𝑑

𝑓
/2) Γ (𝑞 + 1 + (𝑑

𝑓
− 𝑑
𝑠
) /2)

Γ (𝛾𝑞 + 1)
, (28)

where 𝐶 is an arbitrary constant. For the solution of (27), we
can multiply 𝑇(𝑞) by any function 𝑌(𝑞) which satisfies 𝑌(𝑞 +

1)/𝑌(𝑞) = 1.
We notice that 𝐹(𝑠) is a Mellin transform defined only in

some strip 0 ≤ 𝜎
1
< Re(𝑠) < 𝜎

2
from the conditions (22). So

(26) is valid only in the overlap of the two strips 𝜎
1
< Re(𝑠) <

𝜎
2
and 𝜎

1
< Re(𝑠 + 2) < 𝜎

2
, and there is no such overlap

unless 𝜎
1
+ 2 < 𝜎

2
. Thus 𝑌(𝑞) cannot have poles; otherwise,

it would have a row of poles separated exactly by one unit. In
addition, 𝑌(𝑞) cannot grow faster than |𝑞| as Im(𝑞) → ∞

in the inversion strip; otherwise the inversion integral would
diverge. Thus 𝑌(𝑞) is a bounded entire function and equals a
constant by Liouville’s theorem.

Therefore, 𝑇(𝑞) has only the form of (28) and we have

𝐹 (𝑠) = 𝑇(
𝑠

2
)

= 𝐶
2
𝑠
Γ (𝑑
𝑓
/2 + 𝑠/2) Γ (1 + (𝑑

𝑓
− 𝑑
𝑠
) /2 + 𝑠/2)

Γ (1 + 𝛾𝑠/2)
.

(29)

It follows from (22) that 𝐹(0) = 1/𝜔(𝑑
𝑓
). Thus we have

𝐶 =
1

𝜔 (𝑑
𝑓
) Γ (𝑑

𝑓
/2) Γ (1 + (𝑑

𝑓
− 𝑑
𝑠
) /2)

. (30)

The inverse Mellin transform of (29) is

𝐹 (𝜂)

=
𝐶

2𝜋𝑖
∫

𝑐+𝑖∞

𝑐−𝑖∞

2
𝑠
Γ (𝑑
𝑓
/2 + 𝑠/2) Γ (1 + (𝑑

𝑓
− 𝑑
𝑠
) /2 + 𝑠/2)

Γ (1 + 𝛾𝑠/2)

× 𝜂
−𝑠
𝑑𝑠.

(31)

Replacing 𝑠 by −𝑠 and using the definition of Fox functions
we obtain [34, 35]

𝐹 (𝜂) = 𝐶𝐻
2,0

1,2
(

𝜂

2



(1,𝛾/2)

(𝑑𝑓/2,1/2),(1+(𝑑𝑓−𝑑𝑠)/2,1/2)
) . (32)

Inserting the expressions into (13) and using properties of Fox
functions, we obtain the probability density function in terms
of the Fox function:

𝑝 (𝑟, 𝑡) =
𝑑
𝑤
2
−𝑑
𝑓𝑡
−𝑑
𝑓
/𝑑
𝑤

𝜔 (𝑑
𝑓
) Γ (𝑑

𝑓
/2) Γ (1 + 𝑑

𝑓
/2 − 𝑑

𝑓
/𝑑
𝑤
)

× 𝐻
2,0

1,2
(

𝑟
𝑑
𝑤

2𝑑𝑤𝑡



(1−𝑑
𝑓
/𝑑
𝑤
,1)

(0,𝑑𝑤/2),(1−𝑑𝑓/𝑑𝑤 ,𝑑𝑤/2)

) .

(33)

For a large class of fractal structures, the spectral dimen-
sion [2] satisfies 𝑑

𝑠
< 2; that is, 𝑑

𝑓
< 𝑑
𝑤
. So the Fox function

in (33) can be expanded into a series by using residue theorem
on the simple poles:

𝑃
𝑎
={

2𝑘

𝑑
𝑤

| 𝑘=0, 1, . . .}∪{
2

𝑑
𝑤

(1 −
𝑑
𝑓

𝑑
𝑤

+ 𝑘) | 𝑘=0, 1, . . .} .

(34)

The series representation for the probability density is calcu-
lated to be

𝑝 (𝑟, 𝑡)

=
2
1−𝑑
𝑓𝑡
−𝑑
𝑓
/𝑑
𝑤

𝜔 (𝑑
𝑓
) Γ (𝑑

𝑓
/2) Γ (1 + 𝑑

𝑓
/2 − 𝑑

𝑓
/𝑑
𝑤
)

×

∞

∑

𝑘=0

(−1)
𝑘

𝑘!
× [

Γ (1 − 𝑑
𝑓
/𝑑
𝑤
− 𝑘)

Γ (1 − 𝑑
𝑓
/𝑑
𝑤
− 2𝑘/𝑑

𝑤
)
(

𝑟
𝑑
𝑤

2𝑑𝑤𝑡
)

2𝑘/𝑑
𝑤

+
Γ (𝑑
𝑓
/𝑑
𝑤
− 1 − 𝑘)

Γ (1 − 𝑑
𝑓
/𝑑
𝑤
− 2/𝑑

𝑤
(1 − 𝑑

𝑓
/𝑑
𝑤
+ 𝑘))

× (
𝑟
𝑑
𝑤

2𝑑𝑤𝑡
)

2/𝑑
𝑤
(1−𝑑
𝑓
/𝑑
𝑤
+𝑘)

] .

(35)
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Figure 1: Curves of 𝑝(𝑟, 0.25) versus 𝑟 for 𝑑
𝑓

= 1 and for 𝑑
𝑤

= 2

(solid line), 𝑑
𝑤

= 2.5 (dot line), 𝑑
𝑤

= 3 (dash line), and 𝑑
𝑤

= 3.5

(dot-dash line).
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Figure 2: Curves of 𝑝(𝑟, 0.5) versus 𝑟 for 𝑑
𝑓

= 1 and for 𝑑
𝑤

= 2

(solid line), 𝑑
𝑤

= 2.5 (dot line), 𝑑
𝑤

= 3 (dash line), and 𝑑
𝑤

= 3.5

(dot-dash line).

3. Discussions and Conclusions

In the limit case, 𝑑
𝑤

→ 2 and 𝑑
𝑓

→ 𝑑, (3) reduces to the 𝑑-
dimensional standard diffusion equation, and the probability
density (35) is simplified to the Gaussian distribution:

𝑝 (𝑟, 𝑡) =
1

(4𝜋𝑡)
𝑑/2

exp(−
𝑟
2

4𝑡
) . (36)

In Figures 1 and 2, we plot the curves of 𝑝(𝑟, 0.25) versus
𝑟 and 𝑝(𝑟, 0.5) versus 𝑟, respectively, for 𝑑

𝑓
= 1 and different

values of 𝑑
𝑤
. In Figures 3 and 4, we plot the curves of

𝑝(𝑟, 0.25) versus 𝑟 and𝑝(𝑟, 0.5) versus 𝑟, respectively, for 𝑑
𝑓
=

1.5 and different values of 𝑑
𝑤
. The figures display that, as the

anomalous diffusion exponent 𝑑
𝑤
increases, the peak value

of the probability density function 𝑝(𝑟, 𝑡) at 𝑟 = 0 decreases.
In addition, as the fractal Hausdorff dimension 𝑑

𝑓
increases

from 1 to 1.5, the peak value of 𝑝(𝑟, 𝑡) at 𝑟 = 0 decreases.
Compared with the similarity method for classic partial

differential equations, the similarity method for fractional
diffusion equation involves the similarity integral variable
𝜉 = 𝑟𝜏

−𝛾/2, and the reduction equation is an integro-ordinary
differential equation for the similarity solution.The obtained
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Figure 3: Curves of 𝑝(𝑟, 0.25) versus 𝑟 for 𝑑
𝑓
= 1.5 and for 𝑑

𝑤
= 2

(solid line), 𝑑
𝑤

= 2.5 (dot line), 𝑑
𝑤

= 3 (dash line), and 𝑑
𝑤

= 3.5

(dot-dash line).
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Figure 4: Curves of 𝑝(𝑟, 0.5) versus 𝑟 for 𝑑
𝑓
= 1.5 and for 𝑑

𝑤
= 2

(solid line), 𝑑
𝑤

= 2.5 (dot line), 𝑑
𝑤

= 3 (dash line), and 𝑑
𝑤

= 3.5

(dot-dash line).

probability density 𝑝(𝑟, 𝑡) is just the fundamental solution of
the fractional diffusion equation.
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