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This paper investigates the limiting behavior of attractors for a two-dimensional incompressible non-Newtonian fluid under small
randomperturbations. Under certain conditions, the upper semicontinuity of the attractors for diminishing perturbations is shown.

1. Introduction

Fluid flows arise in numerous scientific and industrial
endeavors such as aeronautical sciences, meteorology, ther-
mohydraulics, petroleum industry, and plasma physics. The
equations describing the motion of the fluid flows are deter-
mined by its extra stress tensor. If the extra stress tensor of the
fluid depends linearly on its symmetric part of the velocity
gradient, the fluid is called Newtonian. Otherwise, the fluid
is called non-Newtonian [1]. For instance, gases, water, motor
oil, alcohols, and simple hydrocarbon compounds tend to be
Newtonian fluids and their motions can be described by the
Navier-Stokes equations. Molten plastics, polymer solutions,
and paints tend to be non-Newtonian fluids, which may be
described by the following system:

𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇) 𝑢 + ∇𝑝 = ∇ ⋅ 𝜏 (𝑒 (𝑢)) + 𝑔,

∇ ⋅ 𝑢 = 0,

(1)

where the vector function 𝑢(𝑥, 𝑡) is the velocity of the fluid,
𝑔 is the external force, the scalar function 𝑝 represents the
pressure, and 𝜏(𝑒(𝑢)) = (𝜏

𝑖𝑗
(𝑒(𝑢))) is the extra stress tensor of

the fluid.
Ladyzhenskaya [2] formulated a two-dimensional non-

Newtonian fluid model with the extra stress tensor:

𝜏
𝑖𝑗 (𝑒 (𝑢)) = 2𝜇

0
(𝜀 + |𝑒|

2
)
−𝛼/2

𝑒
𝑖𝑗
− 2𝜇
1
Δ𝑒
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, (2)

where

𝑒
𝑖𝑗

= 𝑒
𝑖𝑗 (𝑢) =

1

2
(

𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

) , |𝑒|
2
=

2

∑

𝑖,𝑗=1


𝑒
𝑖𝑗



2

, (3)

and 𝜇
0
, 𝜇
1
, 𝛼, and 𝜀 are parameters associated with the

fluid and generally depend on temperature and pressure.The
initial-boundary value problem of (1)-(2) on a 2D bounded
domain D (with regular boundary) can be formulated as
follows:

𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇) 𝑢 + ∇𝑝

= ∇ ⋅ (2𝜇
0
(𝜀 + |𝑒|

2
)
−𝛼/2

𝑒 − 2𝜇
1
Δ𝑒) + 𝑔,

(4)

∇ ⋅ 𝑢 = 0, 𝑥 ∈ D, (5)

𝑢 = 0, 𝜏
𝑖𝑗𝑙
𝑛
𝑗
𝑛
𝑙
= 0, 𝑥 ∈ 𝜕D, (6)

𝑢| 𝑡=0 = 𝑢
0
, (7)

where 𝜏
𝑖𝑗𝑙

= 2𝜇
1
(𝜕𝑒
𝑖𝑗
/𝜕𝑥
𝑙
) (𝑖, 𝑗, 𝑙 = 1, 2) and n = (𝑛

1
, 𝑛
2
)

denotes the exterior unit normal vector to the boundary 𝜕D.
The first condition in (6) is the usual no-slip condition, while
the second one expresses the fact that the first moments
of the traction vanish on the boundary. This is a direct
consequence of the principle of virtual work. We refer to
[1–7] for more physical background. Recent results on well
posedness, regularity, and long-term behavior of solutions for
(4)–(7) are in, for example, [1–5, 7–10].
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Attractors are an important concept in the study of
infinite dimensional dynamical systems.There are numerous
works on the autonomous and nonautonomous equations
concerning this subject; see, for example, Chepyzhov and
Vishik [11], Hale [12], Robinson [13], and Temam [14].
However, external forces or time-dependent influences in
some fluid and materials phenomenon lead to the presence
of stochastic terms in the above model equations (see, e.g.,
[15, 16]).

The fundamental theory of random dynamical systems
(RDS) was developed in 1990s by many people, including
Arnold [15], Crauel and Flandoli [17], Crauel et al. [18],
Flandoli and Schmalfuss [19], Caraballo, Langa, Robinson,
and their coauthors [20–24].

The motivation for the present paper is the desire to
understand the stability of attractors for the above two-
dimensional non-Newtonian fluid under vanishing small
random perturbations.

We investigate the relations between the random attractor
and its deterministic counterpart when the incompressible
non-Newtonian fluid is subject to a small random per-
turbation, whose strength is measured by a small positive
parameter 𝜖. Consider the problem (4)–(7) and the following
2D incompressible non-Newtonian fluid with an additive
noise:

d𝑢
𝜖
= { − (𝑢

𝜖
⋅ ∇) 𝑢
𝜖
− ∇𝑝

+∇ ⋅ [2𝜇
0
(𝜀 +

𝑒𝜖

2
)
−𝛼/2

𝑒
𝜖
− 2𝜇
1
Δ𝑒
𝜖
] + 𝑔} d𝑡

+ 𝜖𝜙d𝜔 (𝑡) ,

∇ ⋅ 𝑢
𝜖
= 0, 𝑥 ∈ D ⊂ R

2
,

(8)

where 𝑒
𝜖

= (𝑒
𝜖
)
𝑖𝑗

= (1/2)((𝜕(𝑢
𝜖
)
𝑖
/𝜕𝑥
𝑗
) + (𝜕(𝑢

𝜖
)
𝑗
/𝜕𝑥
𝑖
)),

𝜔(𝑡) is an independent two-sided Wiener processes, and
𝜙 is a function satisfying some conditions to be specified
below. Caraballo et al. [25–28] proved the stability of the
attractors for a class of evolution equations under small
random perturbations and the results were applied to various
physical equations. We note that (4) is regarded as the
modified Navier-Stokes equations as the gradient |∇𝑢| of the
velocity is relatively large [2]. Clearly, (4) reduces to Navier-
Stokes equations when 𝛼 = 𝜇

1
= 0.

The main result in the present paper is the stability of the
attractor in the sense that

lim
𝜖→0
+

dist
𝐻

(A
𝜖
,A
0
) = 0 with probability one, (9)

where dist
𝐻
(⋅, ⋅) is the Hausdorff semidistance on the metric

space 𝐻 (see notation in Section 2) and A
𝜖
and A

0
are the

attractors associated with (8) and (4)–(7), respectively. Given
a 𝛿 > 0, we prove that there exists an 𝜖

0
(depending on 𝜔, a

parameter event in a probability space (Ω,F,P)) sufficiently
small, such that the random attractors A

𝜖
are inside the 𝛿

neighborhood of the global attractor A
0
for all 𝜖 ∈ (0, 𝜖

0
)

with probability one.
The paper is organized as follows. In the next section, we

introduce some notations and recall some results from [8, 10].

Section 3 is devoted to prove the stability of solutions of the
perturbed random system to the unperturbed deterministic
system and then show the stability of the random attractor by
showing lim

𝜖→0
+dist
𝐻
(A
𝜖
(𝜔),A

0
) = 0 with probability one.

2. Global Existence
and Uniqueness of Solutions

In this section, we introduce some notations and recall some
results about non-Newtonian fluid dynamics. Define

V = {𝜑 = (𝜑
1
, 𝜑
2
) ∈ (C∞

0
(D))
2

, ∇ ⋅ 𝜑 = 0 in D, 𝜑 =

0 on 𝜕D},

𝐻 = closure of V in (𝐿
2
(D))
2 with norm ‖ ⋅ ‖ ≐

‖ ⋅ ‖
(𝐿
2
(D))
2 ,

𝑉 = closure of V in (𝐻
2
(D))
2 with norm ‖ ⋅ ‖

𝑉
≐

‖ ⋅ ‖
(𝐻
2
(D))
2 ,

𝐻

= dual space of 𝐻, 𝑉 = dual space of 𝑉,

where (⋅, ⋅) denotes the inner product in 𝐻 and ⟨⋅, ⋅⟩ stands
for the dual pairing between 𝑉 and 𝑉

. If we identify 𝐻 with
𝐻
, then 𝑉 → 𝐻 = 𝐻


→ 𝑉
 with continuous and compact

embeddings.
We also define the bilinear form

𝑎 (𝑢, V) =

2

∑

𝑖,𝑗,𝑘=1

∫
D

𝜕𝑒
𝑖𝑗 (𝑢)

𝜕𝑥
𝑘

𝜕𝑒
𝑖𝑗 (V)
𝜕𝑥
𝑘

d𝑥, 𝑢, V ∈ 𝑉. (10)

Lemma 1 (see [4]). There exist two positive constants 𝑐
1
and

𝑐
2
, which depend only on D, such that

𝑐
1‖𝑢‖
2

𝑉
≤ 𝑎 (𝑢, 𝑢) ≤ 𝑐

2‖𝑢‖
2

𝑉
, ∀𝑢 ∈ 𝑉. (11)

From the definition of 𝑎(⋅, ⋅) and Lemma 1 we see that
𝑎(⋅, ⋅) defines a positive definite symmetric bilinear form on
𝑉. As a consequence of the Lax-Milgram Lemma, we obtain
an operator 𝐴 ∈ L(𝑉, 𝑉


), via

⟨𝐴𝑢, V⟩ = 𝑎 (𝑢, V) , ∀𝑢, V ∈ 𝑉. (12)

Moreover, let 𝐷(𝐴) = {𝑢 ∈ 𝑉 : 𝐴𝑢 ∈ 𝐻}, and then 𝐷(𝐴) is a
Hilbert space. We have (see [8])

𝑐
1‖𝑢‖𝑉 ≤ ‖𝐴𝑢‖ . (13)

For brevity, we use 𝐻
1

0
(D) to denote (𝐻

1

0
(D))
2 in the sequel.

We also define a continuous trilinear form on 𝐻
1

0
(D) ×

𝐻
1

0
(D) × 𝐻

1

0
(D) as follows:

𝑏 (𝑢, V, 𝑤) =

2

∑

𝑖,𝑗=1

∫
D

𝑢
𝑖

𝜕V
𝑗

𝜕𝑥
𝑖

𝑤
𝑗
d𝑥, 𝑢, V, 𝑤 ∈ 𝐻

1

0
(D) . (14)

Since𝑉 ⊂ 𝐻
1

0
(D), 𝑏(⋅, ⋅, ⋅) is continuous on𝑉×𝑉×𝑉 and one

can check

𝑏 (𝑢, V, 𝑤) = −𝑏 (𝑢, 𝑤, V) , 𝑏 (𝑢, V, V) = 0, ∀𝑢, V, 𝑤 ∈ 𝑉.

(15)
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Now for any 𝑢 ∈ 𝑉,

⟨𝐵 (𝑢, 𝑢) , 𝑤⟩ = 𝑏 (𝑢, 𝑢, 𝑤) , ∀𝑤 ∈ 𝑉, (16)

defines a continuous functional𝐵(𝑢) from𝑉×𝑉 to𝑉
. Finally,

for 𝑢 ∈ 𝑉, we set 𝜇(𝑢) = 2𝜇
0
(𝜀 + |𝑒(𝑢)|

2
)
−𝛼/2 and define 𝑁(𝑢)

as

⟨𝑁 (𝑢) , V⟩ =

2

∑

𝑖,𝑗=1

∫
D

𝜇 (𝑢) 𝑒𝑖𝑗 (𝑢) 𝑒𝑖𝑗 (V) d𝑥, ∀V ∈ 𝑉. (17)

Then the functional 𝑁(𝑢) is continuous from 𝑉 to 𝑉
. When

𝑢 ∈ 𝐷(𝐴), 𝑁(𝑢) can be extended to 𝐻 via

⟨𝑁 (𝑢) , V⟩ = −∫
D

{∇ ⋅ [𝜇 (𝑢) 𝑒 (𝑢)]} ⋅ V d𝑥, ∀V ∈ 𝐻. (18)

Eliminating the pressure 𝑝 by a proper projection, we
have the weak version of problem (4)–(7) in the solenoidal
vector fields as follows (see [4, 9]):

𝜕𝑢

𝜕𝑡
+ 2𝜇
1
𝐴𝑢 + 𝐵 (𝑢, 𝑢) + 𝑁 (𝑢) = 𝑔,

𝑢| 𝑡=0 = 𝑢
0
.

(19)

Lemma 2 (see [8, 9]). Let 𝑔 ∈ 𝐻 (independent of time 𝑡).Then
the semigroup {𝑆(𝑡)}

𝑡≥0
associated with (19) possesses a global

attractorA
0
in 𝐻 satisfying

(1) (compactness)A
0
is compact in 𝐻;

(2) (invariance) 𝑆(𝑡)A
0
= A
0
, 𝑡 ≥ 0;

(3) (attractivity) for all B ⊂ 𝐻 bounded,
lim
𝑡→+∞

dist
𝐻
(𝑆(𝑡)B,A

0
) = 0.

Moreover, A
0
is compact in space 𝑉 and for any B𝑉 ⊂ 𝑉

bounded,

lim
𝑡→+∞

dist
𝑉
(𝑆 (𝑡)B

𝑉
,A
0
) = 0. (20)

In this paper, we use the concepts concerning the metric
dynamical system (MDS), random dynamical system (RDS),
random closed set, and global random attractor from [15].

We now take Ω = {𝜔 ∈ C(R; 𝐻), 𝜔(0) = 0} and endow
it with the compact open topology (see Appendices A.2 and
A.3 in [15]). Take P as the corresponding product measure of
two Wiener measures on the negative and the positive time
parts of Ω, and denoteF

0
by the Borel 𝜎-algebra on Ω. Let

𝜃
𝑡
𝜔 (𝑠) = 𝜔 (𝑠 + 𝑡) − 𝜔 (𝑡) , 𝑡, 𝑠 ∈ R. (21)

To obtain the uniqueness and existence of solutions for
the problem (8), we need the following assumption.

Assumption A. If 𝜇
0
, 𝜇
1
, 𝜀 > 0, 𝛼 ∈ (0, 1), 𝑔 ∈ 𝐻, and 𝜙 ∈

𝐷(𝐴), then there exists a positive number 𝛿 such that
⟨𝐵 (𝑢, 𝜙) , 𝑢⟩

 ≤ 𝛿‖𝑢‖
2
, ∀𝑢 ∈ 𝑉. (22)

Remark 3. Since ⟨𝐵(𝑢, 𝜙), 𝑢⟩ = ∑
2

𝑖,𝑗=1
∫
D
𝑢
𝑖
(𝜕𝜙
𝑗
/𝜕𝑥
𝑖
)𝑢
𝑗
d𝑥, we

see that the assumption (22) is satisfied provided that the
function 𝜙 is Lipschitz continuous on D.

Using the notations and operators introduced above, we
can put (8) into the following abstract form:

d𝑢
𝜖
= [−2𝜇

1
𝐴𝑢
𝜖
− 𝐵 (𝑢

𝜖
, 𝑢
𝜖
) − 𝑁 (𝑢

𝜖
) + 𝑔] d𝑡 + 𝜖𝜙d𝜔 (𝑡) ,

(23)

𝑢
𝜖| 𝑡=0 = 𝑢

0
. (24)

Let 𝜂 > 0 be a constant and denote 𝑧 by the solution of
the stationary solution of the Itô equation:

d𝑧 = −𝜂𝑧d𝑡 + d𝜔 (𝑡) . (25)

The solution is often called an Ornstein-Uhlenbeck process.
In fact,

𝑧 (𝑡) = ∫

𝑡

−∞

𝑒
−𝜂(𝑡−𝑠)d𝜔 (𝑠) . (26)

We now make the change

V
𝜖 (𝑡, 𝜔) = 𝑢

𝜖 (𝑡, 𝜔) − 𝜖𝜙𝑧 (𝑡, 𝜔) . (27)

Then V
𝜖
(𝑡, 𝜔) satisfies the following random abstract evolu-

tionary equation:

dV
𝜖

d𝑡
+ 2𝜇
1
𝐴V
𝜖
+ 𝐵 (𝑢

𝜖
, 𝑢
𝜖
) + 𝑁 (𝑢

𝜖
)

+ 𝜖𝜂𝜙𝑧 + 2𝜇
1
𝜖𝐴 (𝜙𝑧) = 𝑔.

(28)

Now (28) can be studied for each 𝜔 ∈ Ω.

Lemma 4 (see [10]). Let Assumption A hold. Then for P-a.s.
𝜔 ∈ Ω, the following results hold.

(1) For all 𝑡
0
∈ R and V

0
= V
𝜖
(0) ∈ 𝐻, there exists a unique

solution V
𝜖
∈ C([𝑡

0
, +∞);𝐻)∩𝐿

2

loc(𝑡0, +∞;𝑉) of (28)
with initial value V

0
.

(2) If V
0
∈ 𝑉, then the solution belongs toC([𝑡

0
, +∞); 𝑉)∩

𝐿
2

loc(𝑡0, +∞;𝐷(𝐴)).
(3) For every 𝜏 > 0, V

𝜖
(𝑡) ∈ C([𝑡

0
+ 𝜏, +∞); 𝑉) ∩ 𝐿

2

loc(𝑡0 +
𝜏, +∞;𝐷(𝐴)).

(4) Denote the solution by V
𝜖
(𝑡, 𝜔; 𝑡

0
, V
0
). Then the map

V
0
→ V
𝜖
(𝑡, 𝜔; 𝑡

0
, V
0
) is continuous for all 𝑡 ≥ 𝑡

0
.

By Lemma 4 we see that for each 𝜖 ∈ (0, 1] there is a
continuous mapping from 𝐻 into itself: V

0
→ V
𝜖
(𝑡, 𝜔; 𝑡

0
, V
0
),

where V
𝜖
(𝑡, 𝜔; 𝑡

0
, V
0
) is the solution of (28) with initial value

V
𝜖
(𝑡
0
) = V
0
. Thus for each 𝜖 ∈ (0, 1], we can define an RDS

𝜓
𝜖
(𝑡, 𝜔) associated with (23) and (24) in 𝐻 by setting

𝜓
𝜖 (𝑡, 𝜔) 𝑢0 = 𝑢

𝜖 (𝑡, 𝜔) = V
𝜖 (𝑡, 𝜔) + 𝜖𝜙𝑧 (𝑡, 𝜔)

= V
𝜖
(𝑡, 𝜔; 0, 𝑢

0
− 𝜖𝜙𝑧 (0, 𝜔)) + 𝜖𝜙𝑧 (𝑡, 𝜔) .

(29)

We end this section with the concept of random attractor
for 𝜓
𝜖
(𝑡, 𝜔) in space 𝐻.

Definition 5. Let the RDS {𝜓(𝑡, 𝜔)}
𝑡≥0,𝜔∈Ω

on (Ω,F,P,

(𝜃
𝑡
)
𝑡∈R) be defined by (29) with state space 𝐻, if 𝜔 → A(𝜔)

satisfies the following:
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(i) (randomcompactness)A(𝜔) is a randomcompact set
of 𝐻 for a.e. 𝜔 ∈ Ω,

(ii) (invariance) for a.e.𝜔 ∈ Ω and all 𝑡 ≥ 0, 𝑆(𝑡, 𝜔)A(𝜔) =

A(𝜃
𝑡
𝜔),

(iii) (attracting property) for any bounded subsetB of 𝐻
and a.e. 𝜔 ∈ Ω,

lim
𝑡→+∞

Dist
𝐻

(𝑆 (𝑡, 𝜃
−𝑡
𝜔)B,A (𝜔)) = 0. (30)

Then A(𝜔) is called a global random attractor for
{𝜓(𝑡, 𝜔)}

𝑡≥0, 𝜔∈Ω
in space 𝐻.

3. Stability of Attractors

We first prove the following lemma, which plays a key role
later on.

Lemma 6. The solution 𝑢
𝜖
(0, 𝜔; −𝑡

0
, 𝑢
0
) of (23) and (24)

converges in𝐻P-a.s. as 𝜖 → 0
+ to the solution 𝑢(𝑡

0
; 𝑢
0
) of the

unperturbed problem (19), uniformly on bounded sets of initial
conditions. That is, for P almost every 𝜔 ∈ Ω, 𝑡

0
∈ R
+
and

B ⊂ 𝐻 bounded, the following convergence holds:

lim
𝜖→0
+

𝑢𝜖 (0, 𝜔; −𝑡
0
, 𝑢
0
) − 𝑢 (𝑡

0
, 𝑢
0
)
 = 0. (31)

Proof. Let𝑤
𝜖
(𝑡, 𝜔) = 𝑢

𝜖
(𝑡, 𝜔)−𝑢(𝑡) be the difference between

the solutions of the perturbed and unperturbed equations
with the same initial condition 𝑢

0
at −𝑡
0
. It is clear that 𝑤

𝜖

satisfies

d𝑤
𝜖
+ [2𝜇
1
𝐴𝑤
𝜖
+ 𝐵 (𝑢

𝜖
, 𝑢
𝜖
) − 𝐵 (𝑢, 𝑢)

+𝑁 (𝑢
𝜖
) − 𝑁 (𝑢)] d𝑡 = 𝜖𝜙d𝜔 (𝑡) ,

𝑤
𝜖
(−𝑡
0
) = 0.

(32)

We now make the change of variables

𝑧
𝜖
= 𝑤
𝜖
− 𝜖𝜙𝜔 (𝑡) (33)

and thus formally obtain

d𝑧
𝜖

d𝑡
+ 2𝜇
1
𝐴𝑧
𝜖
+ 2𝜇
1
𝜖𝐴 (𝜙𝜔 (𝑡)) + 𝐵 (𝑢

𝜖
, 𝑢
𝜖
)

− 𝐵 (𝑢, 𝑢) + 𝑁 (𝑢
𝜖
) − 𝑁 (𝑢) = 0.

(34)

Taking the inner product of the above equation with 𝑧
𝜖
, we

get

1

2

d
d𝑡

𝑧𝜖

2
+ 2𝜇
1
(𝐴𝑧
𝜖
, 𝑧
𝜖
) + 2𝜇

1
𝜖 (𝜔 (𝑡) 𝐴𝜙, 𝑧

𝜖
)

+ ⟨𝐵 (𝑢
𝜖
, 𝑢
𝜖
) , 𝑧
𝜖
⟩ − ⟨𝐵 (𝑢, 𝑢) , 𝑧𝜖⟩ + ⟨𝑁 (𝑢

𝜖
) , 𝑧
𝜖
⟩

− ⟨𝑁 (𝑢) , 𝑧𝜖⟩ = 0.

(35)

Therefore

2𝜇
1
𝜖 (𝜔 (𝑡) 𝐴𝜙, 𝑧

𝜖
) ≤ 2𝜇

1
𝜖 |𝜔 (𝑡)|

𝐴𝜙

𝑧𝜖



≤ 2𝜇
2

1
𝜖
2
𝜔
2
(𝑡)

𝐴𝜙

2
+

𝑧𝜖

2

2
.

(36)

By the property of the operator 𝐵(⋅, ⋅), we imply that

𝐵 (𝑢
𝜖
, 𝑢
𝜖
) − 𝐵 (𝑢, 𝑢)

= 𝐵 (𝑤
𝜖
+ 𝑢, 𝑤

𝜖
+ 𝑢) − 𝐵 (𝑢, 𝑢)

= 𝐵 (𝑤
𝜖
, 𝑤
𝜖
) + 𝐵 (𝑤

𝜖
, 𝑢) + 𝐵 (𝑢, 𝑤

𝜖
)

= 𝐵 (𝑧
𝜖
+ 𝜖𝜙𝜔 (𝑡) , 𝑧𝜖 + 𝜖𝜙𝜔 (𝑡))

+ 𝐵 (𝑧
𝜖
+ 𝜖𝜙𝜔 (𝑡) , 𝑢) + 𝐵 (𝑢, 𝑧

𝜖
+ 𝜖𝜙𝜔 (𝑡)) .

(37)

Thus,

⟨𝐵 (𝑢
𝜖
, 𝑢
𝜖
) − 𝐵 (𝑢, 𝑢) , 𝑧𝜖⟩

= ⟨𝐵 (𝑧
𝜖
+ 𝜖𝜙𝜔 (𝑡) , 𝑧𝜖 + 𝜖𝜙𝜔 (𝑡)) , 𝑧𝜖⟩

+ ⟨𝐵 (𝑧
𝜖
+ 𝜖𝜙𝜔 (𝑡) , 𝑢) , 𝑧𝜖⟩ + ⟨𝐵 (𝑢, 𝑧

𝜖
+ 𝜖𝜙𝜔 (𝑡)) , 𝑧𝜖⟩

= ⟨𝐵 (𝑧
𝜖
, 𝑧
𝜖
+ 𝜖𝜙𝜔 (𝑡)) , 𝑧𝜖⟩ + ⟨𝐵 (𝜖𝜙𝜔 (𝑡) , 𝜖𝜙𝜔 (𝑡)) , 𝑧𝜖⟩

+ ⟨𝐵 (𝑧
𝜖
, 𝑢) , 𝑧

𝜖
⟩ + ⟨𝐵 (𝜖𝜙𝜔 (𝑡) , 𝑢) , 𝑧𝜖⟩

+ ⟨𝐵 (𝑢, 𝜖𝜙𝜔 (𝑡) , 𝑢) , 𝑧𝜖⟩ .

(38)

We now estimate the right hand side of (38) terms by terms.
First note that

⟨𝐵 (𝑧
𝜖
, 𝜖𝜙𝜔 (𝑡) , 𝑧𝜖)⟩ ≤ 𝜖 |𝜔 (𝑡)|

⟨𝐵 (𝑧
𝜖
, 𝜙) , 𝑧

𝜖
⟩


≤ 𝛿𝜖 |𝜔 (𝑡)|
𝑧𝜖


2
,

⟨𝐵 (𝜖𝜙𝜔 (𝑡) , 𝜖𝜙𝜔 (𝑡)) , 𝑧𝜖⟩

≤ 𝜖
2
𝜔
2
(𝑡) ⟨𝐵 (𝜙, 𝜙) , 𝑧

𝜖
⟩

≤ 𝜖
2
𝜔
4
(2)

𝜙
𝐿4(D)

∇𝜙
𝐿4(D)

𝑧𝜖


≤ 𝑐𝜖
2
𝜔
2
(𝑡)

𝜙

1/2∇𝜙


1/2𝜙


1/4Δ𝜙


3/4 𝑧𝜖



≤ 𝑐𝜖
2
𝜔
4
(𝑡)

∇𝜙

2Δ𝜙


2
+

𝑧𝜖

2

2
,

⟨𝐵 (𝑧
𝜖
, 𝑢) , 𝑧

𝜖
⟩ ≤ 𝑐

𝑧𝜖
 ‖∇𝑢‖

∇𝑧
𝜖



≤
3𝜇
1

4

𝑧𝜖

2

𝑉
+ 𝑐‖∇𝑢‖

2𝑧𝜖

2
,

⟨𝐵 (𝜖𝜙𝜔 (𝑡) , 𝑢) , 𝑧𝜖⟩

≤ 𝜖 |𝜔 (𝑡)|
⟨𝐵 (𝜙, 𝑢) , 𝑧

𝜖
⟩
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≤ 𝜖 |𝜔 (𝑡)|
𝜙

𝐿4(D)‖∇𝑢‖𝐿4(D)
𝑧𝜖



≤ 𝜖 |𝜔 (𝑡)|
𝜙


1/2∇𝜙


1/2

‖∇𝑢‖
1/2

‖Δ𝑢‖
1/2 𝑧𝜖



≤ 𝑐𝜖
2
|𝜔(𝑡)|
2 𝜙


∇𝜙

 ‖𝑢‖
2

𝑉
+

𝑧𝜖

2

2
,

⟨𝐵 (𝑢, 𝜖𝜙𝜔 (𝑡)) , 𝑧𝜖⟩

≤ 𝜖 |𝜔 (𝑡)|
⟨𝐵 (𝑢, 𝜙) , 𝑧

𝜖
⟩


≤ 𝜖 |𝜔 (𝑡)| ‖𝑢‖
1/2 

‖∇𝑢‖
1/2

∇𝜙

1/2Δ𝜙


1/2 𝑧𝜖



≤ 𝜖
2
|𝜔 (𝑡)|

2
‖𝑢‖ ‖𝑢‖

2

𝐻
1
(D)

𝜙
𝐻1(D)

𝐴𝜙
 +

𝑧𝜖

2

2
.

(39)

Then also note that

⟨𝑁 (𝑢
𝜖
) − 𝑁 (𝑢) , 𝑧𝜖⟩ = ⟨𝑁 (𝑢

𝜖
) − 𝑁 (𝑢) , 𝑢𝜖 − 𝑢 − 𝜖𝜙𝜔 (𝑡)⟩ .

(40)

By the nonnegativity of 𝑁(⋅) (see [4]), we conclude that

⟨𝑁 (𝑢
𝜖
) − 𝑁 (𝑢) , 𝑢𝜖 − 𝑢⟩ ≥ 0. (41)

Set 𝐹(𝑠) = 2𝜇
0
(𝜀 + |𝑠|

2
)
−𝛼/2

𝑠, where

𝑠 = (
𝑠
1

𝑠
2

𝑠
3

𝑠
4

) ∈ M
2 × 2

,

|𝑠|
2
=

4

∑

𝑖=1

𝑠
2

𝑖
, 𝑠
𝑖
∈ R, 𝑖 = 1, 2, 3, 4.

(42)

HereM
2 × 2

denotes the matrix of order 2 × 2.Then the first
order Fréchet derivative of 𝐹(𝑠) is

DF (𝑠)

= 2𝜇
0
(𝜀 + |𝑠|

2
)
−𝛼/2

×

(
(
(
(
(
(
(
(
(
(
(
(

(

1 −
𝛼𝑠
2

1

𝜀 + |𝑠|
2

−
𝛼𝑠
1
𝑠
2

𝜀 + |𝑠|
2

−
𝛼𝑠
1
𝑠
3

𝜀 + |𝑠|
2

−
𝛼𝑠
1
𝑠
4

𝜀 + |𝑠|
2

−
𝛼𝑠
1
𝑠
2

𝜀 + |𝑠|
2

1 −
𝛼𝑠
2

2

𝜀 + |𝑠|
2

−
𝛼𝑠
2
𝑠
3

𝜀 + |𝑠|
2

−
𝛼𝑠
2
𝑠
4

𝜀 + |𝑠|
2

−
𝛼𝑠
1
𝑠
3

𝜀 + |𝑠|
2

−
𝛼𝑠
2
𝑠
3

𝜀 + |𝑠|
2

1 −
𝛼𝑠
2

3

𝜀 + |𝑠|
2

−
𝛼𝑠
3
𝑠
4

𝜀 + |𝑠|
2

−
𝛼𝑠
1
𝑠
4

𝜀 + |𝑠|
2

−
𝛼𝑠
2
𝑠
4

𝜀 + |𝑠|
2

−
𝛼𝑠
3
𝑠
4

𝜀 + |𝑠|
2

1 −
𝛼𝑠
2

4

𝜀 + |𝑠|
2

)
)
)
)
)
)
)
)
)
)
)
)

)

.

(43)

Since 0 < 𝛼 < 1, we have


−
𝛼𝑠
𝑖
𝑠
𝑗

𝜀 + |𝑠|
2



<



𝑠
𝑖
𝑠
𝑗

𝜀 + |𝑠|
2



< 1, 𝑖, 𝑗 = 1, 2, 3, 4,

0 < 1 −
𝛼𝑠
2

𝑖

𝜀 + |𝑠|
2

< 1, 𝑖 = 1, 2, 3, 4.

(44)

Consequently,

‖DF (𝑠)‖ ≤ 8𝜇
0
(𝜀 + |𝑠|

2
)
−𝛼/2

≤ 8𝜇
0
𝜀
−𝛼/2

, ∀𝑠 ∈ M
2 × 2

.

(45)

Now for any 𝑎, 𝑏 ∈ R4,

𝐹 (𝑏) − 𝐹 (𝑎) = ∫

1

0

DF (𝑎 + 𝜏 (𝑏 − 𝑎)) (𝑏 − 𝑎) d𝜏. (46)

Taking 𝑎 = 𝑒(𝑢
𝜖
) = (𝑒

𝑖𝑗
(𝑢
𝜖
)), 𝑏 = 𝑒(𝑢) = (𝑒

𝑖𝑗
(𝑢)), applying

the integration by parts first, and then utilizing the above
inequality about 𝐹(𝑠), we have

⟨𝑁 (𝑢
𝜖
) − 𝑁 (𝑢) , 𝜖𝜙𝜔 (𝑡)⟩

=

2

∑

𝑖,𝑗=1

∫
D

[𝐹 (𝑒
𝑖𝑗
(𝑢
𝜖
)) − 𝐹 (𝑒

𝑖𝑗 (𝑢))] ⋅ 𝑒
𝑖𝑗
(𝜖𝜙𝜔 (𝑡)) d𝑥

≤ 𝑐𝜖 |𝜔 (𝑡)| (
∇ (𝑢
𝜖
− 𝑢)

)
∇𝜙



≤ 𝑐𝜖 |𝜔 (𝑡)|
∇ (𝑧
𝜖
+ 𝜖𝜙𝜔 (𝑡))


∇𝜙



≤
3𝜇
1

4

∇𝑧
𝜖


2
+ 𝑐𝜖
2
𝜔
2
(𝑡)

∇𝜙

2
.

(47)

Combining (35)–(40) and (47), we obtain

d
d𝑡

𝑧𝜖

2
≤ 𝐼 (𝑡) + 𝐺 (𝑡)

𝑧𝜖

2
, (48)

where

𝐼 (𝑡) = 𝑐𝜖 [𝜇
2

1
𝜖𝜔
2
(𝑡)

𝐴𝜙

2
+ 𝜖𝜔
4
(𝑡)

∇𝜙

2𝐴𝜙


2

+ 𝜖 |𝜔 (𝑡)|
𝜙


∇𝜙

 ‖𝑢‖
2

𝑉
+ 𝜖


𝜔
2
(𝑡)


‖𝑢‖

× ‖∇𝑢‖
∇𝜙


𝐴𝜙

 + 𝜖

𝜔
2
(𝑡)



𝐴𝜙

2
] ,

𝐺 (𝑡) = 2 + 𝜖𝛿 |𝜔 (𝑡)| + 𝑐‖∇𝑢‖
2
.

(49)

Then, by Gronwall inequality,

𝑧𝜖 (𝑡)

2
≤ 𝐼 (𝑡) + ∫

𝑡

−𝑡
0

𝐼 (𝑠) 𝐺 (𝑠) exp(∫

𝑡

𝑠

𝐺 (𝜏) d𝜏) d𝑠. (50)

By Lemma 2 we find that ‖𝑢(𝑡)‖2
𝑉
is uniformly bounded with

the initial values belonging to a bounded set (see [8] for
details). Obviously, ‖𝑢(𝑡)‖ ≤ ‖𝑢(𝑡)‖

𝑉
, ‖∇𝑢(𝑡)‖ ≤ ‖𝑢(𝑡)‖

𝑉
.

Thus, 𝐼(𝑡) → 0 as 𝜖 → 0
+ and by (50) we get ‖𝑧

𝜖
(𝑡)‖
2

→ 0

as 𝜖 → 0
+ for all 𝑡 ≥ −𝑡

0
. Therefore,

lim
𝜖→0
+

𝑤𝜖 (𝑡)

2
≤ lim
𝜖→0
+

2 (
𝑧𝜖


2
+ 𝜖
2 𝜙

 𝜔
2
(𝑡)) = 0. (51)

We complete the proof by taking 𝑡 = 0.

Remark 7. The RDS (see (29)) is defined using the trans-
formation (27) into a random equation with the Ornstein-
Uhlenbeck process. The estimates in Lemma 6 are obtained
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using a change of variable (33). It is just for the convenience
of computation. In fact, we can check that the functions given
by the two changes of variable satisfy the same equation (23).
Thus the solutions 𝑢

𝜖
of the stochastic system (23) given by

the two changes of variables are the same.

Lemma 8. Let Assumption A hold. Then for each 𝜖 ∈ (0, 1],
there exists a random attractor A

𝜖
(𝜔) for the RDS 𝜓

𝜖
(𝑡, 𝜔)

associated with (23) and (24), and in addition there exists a
compact setK such that P-a.s.

lim
𝜖→0
+

dist
𝐻

(A
𝜖 (𝜔) ,K) = 0. (52)

Proof. For each 𝜖 ∈ (0, 1], the existence of a random attractor
A
𝜖
(𝜔) for the RDS 𝜓

𝜖
(𝑡, 𝜔) associated with (23) and (24) can

be found in [10]. Also, the existence of a compact set K
and (52) can be established, with a similar way to Lemma
4.3 of [10] by showing that ‖𝑢(0)‖

𝑉
≤ 𝑟(𝜔) (the radius of

random absorbing set in 𝑉) and lim
𝜖→0
+𝑟(𝜔) ≤ 𝑟

𝑑
with

𝑟
𝑑
independent of 𝜔 ∈ Ω. The detailed proof is omitted

here.

By Lemmas 3.1 and 3.3 and Theorem 2 of [25] and
Theorem 1.1 of [8], we obtain the main result of this paper
as follows.

Theorem 9. Let Assumption A hold. Then for each 𝜖 ∈ (0, 1],
the random dynamical system generated by (23) and (24)
possesses a compact random attractorA

𝜖
and the deterministic

dynamical system generated by (19) has a global attractor A
0

in 𝐻. Moreover,

lim
𝜖→0
+

dist
𝐻

(A
𝜖 (𝜔) ,A0) = 0 (53)

with probability one.
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