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A simplememristive circuitmodel is revisited and the stability analysis is to be given. Furthermore, we resort to Poincaré section and
Poincaré map technique and present rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoe
theory.

1. Introduction

Since Hewlett-Packard Laboratory published a paper [1]
named “The Missing Memristor Found” announcing the
invention of the memristor which had been postulated
by Chua in 1971 [2], recent discovery of the memristor
has sparked a new wave of enthusiasm and optimism in
revolutionizing circuit design, marking a new era for the
advancement of neuromorphic and analogue applications.
Manymemristivemodels have been proposed by researchers,
such as Bernoulli model [3], cube model [4], and piecewise
linear model [5]. In particular, many chaotic memristive
circuits have been studied. For example, Messias et al. studied
chaotic cube model and piecewise linear model by Hopf
bifurcation method [6], Bao et al. found the transient chaos
and stable chaos in the memristive Chua’s circuit [7], Corinto
et al. found the heteroclinic bifurcation in the memristive
vibrate network [8], and [9] discussed the dynamical behavior
in the chaotic memristive circuit. However, the chaoticity
in these papers was shown only by numerically computing
Lyapunov exponents.

Based on the application of memristor, Muthuswamy and
Chua reported that the chaotic attractor does exist for an
autonomous circuit that has only three circuit elements in
[10]. Furthermore, this simple circuit has only one locally
active element: the memristor. The dynamical model for this

simple memristive circuit by Muthuswamy and Chua is as
follows:

�̇� = 𝑦,

̇𝑦 = −𝑥 − 𝛽 (𝑧

2
− 1) 𝑦,

�̇� = −𝑦 − 𝛼𝑧 + 𝑦𝑧.

(1)

The parameter values are 𝛼 ∈ R and 𝛽 ∈ R − {0}. The
state variables in terms of circuit variables are 𝑥(𝑡) and 𝑦(𝑡)
and 𝑧(𝑡) is the internal state of the memristive system. Note
that we can calculate a Lyapunov exponent only in finite
amount of time, and this implies that the Lyapunov exponent
calculated is just an (probably bad in some situations)
approximation of the true Lyapunov exponent.Therefore, the
rigorous arguments on existence of chaotic attractor in the
memristive system remain to be given.

In this paper, first we review a simple memristive circuit
dynamical model by Muthuswamy and Chua. Then we give
the stability analysis of the system by means of center
manifold theory. Finally, we present rigorous verification
of existence of horseshoe chaos by virtue of topological
horseshoes theory.

2. The Stability Analysis

It is easy to see that𝑂(0, 0, 0) is an equilibriumpoint of system
(1) for any 𝛼 ∈ R, 𝛽 ∈ R − {0}. In this section, we will study
the stability of this equilibrium point.
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Considering the linearized system of (1) in the equilib-
rium point 𝑂(0, 0, 0), we obtain the associated coefficient
matrix:

(

0 1 0

−1 𝛽 0

0 0 −𝛼

) . (2)

The eigenvalues of thematrix are particularly easy to compute
and are given by

−𝛼,

1

6

𝛽 ±

1

2

√

1

9

𝛽

2
−

4

3

.

(3)

Obviously, if 𝛼𝛽 ̸= 0, 𝑂 is a hyperbolic fixed point. Thus, the
system has the trivial stability that is to say if 𝛼 > 0 and 𝛽 < 0,
𝑂 is asymptotically stable, otherwise, is unstable.

We should focus on the situation when the equilibrium
point 𝑂 is degenerated; that is, 𝛼 = 0. In this situation,
the orbit structure near 𝑂 of system (1) is not determined
by linearized system and is generally difficult to handle. In
this section, we present a sufficient condition under which
equilibrium 𝑂 is unstable by the famous center manifold
theorem [11].

Theorem 1. The equilibrium𝑂(0, 0, 0) is unstable if 𝛼 = 0 and
𝛽 < −2

√
3.

Proof. Let 𝜆
1,2
= (1/6)𝛽 ± (1/2)

√
(1/9)𝛽

2
− 4/3; then, 𝜆

1
+

𝜆

2
= 𝛽/3, 𝜆

1
𝜆

2
= 1/3, and 𝜆

1
, 𝜆

2
∈ R. The eigenvectors,

respectively, corresponding to eigenvalues 0, 𝜆
1
, and 𝜆

2
are

(0, 0, 1)

𝑇
, (1, 𝜆

1
, −1)

𝑇

, (1, 𝜆

2
, −1)

𝑇

.
(4)

Let 𝐴 = (

0 1 1

0 𝜆
1
𝜆
2

1 −1 −1

). We obtain coordinate transformation

(

𝑢

V
𝑤
) = 𝐴

−1
(

𝑥

𝑦

𝑧
) which transforms system (1) into

(

�̇�

V̇
�̇�

) = (

0 0 0

0 𝜆

1
0

0 0 𝜆

2

)(

𝑢

V
𝑤

) + (

𝑓

1

𝑓

2

𝑓

3

) , (5)

where 𝑓
1
= 𝜆

1
𝑢V + 𝜆

2
𝑢V − 𝜆

2
V2 − (𝛽/3)V𝑤 − 𝜆

2
𝑤

2, 𝑓
2
=

𝑐

1
[(𝛽/3)𝑢

3
− 2𝜆

1
𝑢V2 − (2𝛽/3)𝑢V𝑤 − 2𝜆

2
𝑢𝑤

2
+ 𝜆

1
V3 + (𝜆

2
−

2𝜆

1
)V2𝑤 + (𝜆

1
− 2𝜆

2
)V𝑤2 + 𝜆

2
𝑤

2
], with 𝑐

1
= −𝛽/(𝜆

1
−

𝜆

2
) ̸= 0. Thus, from the famous center manifold theory,

the stability of 𝑂(0, 0, 0) can be determined by ordinary
differential equations on a center manifold, which can be
expressed as the following series formulas:

V = ℎ
1
(𝑢) = 𝑎

1
𝑢

2
+ 𝑎

2
𝑢

3
+ 𝑎

3
𝑢

4
+ O (𝑢

4
) ,

𝑤 = ℎ

2
(𝑢) = 𝑏

1
𝑢

2
+ 𝑏

2
𝑢

3
+ 𝑏

3
𝑢

4
+ O (𝑢

4
) .

(6)

By the invariance of center manifold under the flow of
system (5) and themethod of undetermined coefficients, after
detailed derivation, we obtain

𝑎

1
= 𝑏

1
= 𝑎

3
= 𝑏

3
= 0, −𝜆

1
𝑎

2
+

𝑐

1
𝛽

3

= 0,

−𝜆

2
𝑏

2
−

𝑐

1
𝛽

3

= 0.

(7)

This implies that

V = ℎ
1
(𝑢) =

𝑐

1
𝛽

3𝜆

1

𝑢

3
+ O (𝑢

5
) ,

𝑤 = ℎ

2
(𝑢) = −

𝑐

1
𝛽

3𝜆

2

𝑢

3
+ O (𝑢

5
) .

(8)

Finally, substituting (8) into the first row equation of (5), we
obtain the equation reduced to the center manifold

�̇� = (−

𝑐

1
𝛽

2

9𝜆

1

−

𝑐

2

1
𝛽

3

27

−

𝑐

2

1
𝛽

2

9𝜆

2

)𝑢

6
+ O (𝑢

6
) . (9)

Since −𝑐
1
𝛽

2
/9𝜆

1
− 𝑐

2

1
𝛽

3
/27 − 𝑐

2

1
𝛽

2
/9𝜆

2
= −4𝑐

2

1
𝛽

3
/27 >

16𝑐

2

1
/9 > 0, 𝑢 = 0 is an unstable equilibrium point of (9).

Thus,𝑂 is unstable by center manifold theory.This completes
the proof.

3. Chaos Attractor and Horseshoe Chaos

As we known, stability can only show the local dynamic
behaviors near equilibriumpoint. To indicate the global char-
acters of the system (1), chaos attractor and horseshoe chaos
will be shown by means of computer-assisted calculation and
topological horseshoe theory.

In [10], it has been numerically observed that system (1)
can exhibit chaos by the calculated Lyapunov exponents for
some parameters. However, note that the Lyapunov exponent
we calculated is just an approximation of the true Lyapunov
exponent. Therefore, we have to be cautious about the state-
ments (especially about the chaos) based on the calculated
Lyapunov exponents. To confirm the chaos indicated by
calculated positive Lyapunov exponents, we should make use
of more rigorous mathematical tools.

The topological horseshoe theory, based on the geometric
relationship of map restricted to some subsets of interest in
state space, provides a powerful tool inmany rigorous studies
of chaos, such as verifying existence of chaos, estimating
topological entropy, and revealing mechanism of chaotic
attractors. In the following subsections, we first recall a
theorem on topological horseshoes and then present rigorous
verification of chaoticity of system (1) with 𝛼 = 0.6 and
𝛽 = 1.5.

3.1. A Horseshoe Theorem. Let 𝑋 be a metric space, 𝐷 a
compact subset of 𝑋, and 𝑓 : 𝐷 → 𝑋 a map satisfying the
assumption that there exist 𝑚 mutually disjoint compact
subsets 𝐷

1
, 𝐷

2
, . . . , 𝐷

𝑚
of 𝐷 such that the restriction of 𝑓 to

each𝐷
𝑖
, that is, 𝑓 | 𝐷

𝑖
, is continuous.

Definition 2 (see [12]). Let 𝛾 be a compact connected subset
of 𝐷, such that, for each 1 ≤ 𝑖 ≤ 𝑚, 𝛾

𝑖
= 𝛾 ∩ 𝐷

𝑖
is nonempty;

then, 𝛾 is called a connection with respect to 𝐷
1
, . . . , 𝐷

𝑚−1

and𝐷
𝑚
.

Let 𝐹 be a family of connection 𝛾𝑠 with respect to
𝐷

1
, . . . , 𝐷

𝑚−1
and𝐷

𝑚
satisfying the following property:

𝛾 ∈ 𝐹 ⇒ 𝑓 (𝑟

𝑖
) ∈ 𝐹. (10)
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Then 𝐹 is said to be a 𝑓-connected family with respect to
𝐷

1
, . . . , 𝐷

𝑚−1
and𝐷

𝑚
.

Lemma 3 (topological horseshoe lemma; see [12]). Suppose
that there exists a 𝑓-connected family 𝐹 with respect to
𝐷

1
, . . . , 𝐷

𝑚−1
and 𝐷

𝑚
. Then there exists a compact invariant

set 𝐾 ⊂ 𝐷, such that 𝑓 | 𝐾 is semiconjugate to 𝑚-shift
dynamics; therefore, its topological entropy satisfies ent (𝑓) ≥
log𝑚.

Remark 4. The 𝑚-shift dynamics is also called Bernoulli
𝑚-shift map defined on metric series space Σ

𝑚
which is

all collection of all bi-infinite sequences 𝑠 = (. . . , 𝑠

−𝑛
, . . . ,

𝑠

−1
, 𝑠

0
, 𝑠

1
, . . . , 𝑠

𝑛
, . . .) with 𝑠

𝑖
∈ {0, 1, . . . , 𝑚 − 1}. The distance

between 𝑠, 𝑠 ∈ Σ
𝑚
is defined as 𝑑(𝑠, 𝑠) = ∑∞

−∞
(1/2

|𝑖|
) ⋅ (|𝑠

𝑖
−

𝑠

𝑖
|/(1 + |𝑠

𝑖
− 𝑠

𝑖
|)). Then, the𝑚-shift map is defined as

𝜎 : Σ

𝑚
→ Σ

𝑚
, 𝜎 (𝑠)

𝑖
= 𝑠

𝑖+1
. (11)

It is well known that Σ
𝑚
is a Cantor set, which is compact,

totally disconnected, and perfect. As a dynamical system
defined on Σ

𝑚
, 𝜎 has a countable infinity of periodic orbits

that consist of orbits of all periods, an uncountable infinity of
aperiodic orbits, and a dense orbit. A direct consequence of
these three properties is that the dynamics generated by the
shiftmap is sensitive to initial conditions.Mathematically, the
topological entropy ent (𝑓) measures its complexity, which
roughly means the exponential growth rate of the number
of distinguishable orbits as time advances. When 𝑚 > 1,
ent (𝑓) > 0 implies that the system is chaotic.

For more details of the above symbolic dynamics and
horseshoe lemma, we refer the reader to [11–13].

3.2. Horseshoe in the Simple Memristive Circuit. A number of
chaotic attractors have been found when we use the global
computer-assisted searching in memristive dynamical model
(1). Now we will consider a typical parameters set: 𝛼 = 0.6

and 𝛽 = 1.5; that is, the following system is as follows:

�̇� = 𝑦,

̇𝑦 = −

𝑥

3

+

1

2

𝑦 −

1

2

𝑧

2
𝑦,

�̇� = −𝑦 − 0.6𝑧 + 𝑦𝑧.

(12)

A chaotic attractor of system (12) obtained by computer
simulation is illustrated in the following Figure 1.

To find horseshoe, an efficient way is to construct an
appropriate cross-section on which one can define a Poincaré
map. After many attempts, we choose cross-section 𝑀 as
follows (see Figure 1):

𝑀 = {(𝑥, 𝑦, 𝑧) ∈ R
3
: 𝑥 ≤ 0.01, 𝑦 = 0, 𝑧 ≥ −0.5} (13)

and define the second return Poincaré Map 𝑃 : 𝑀 → 𝑀

with the following rule: for each 𝑝 ∈ 𝑀, 𝑃(𝑝) is the second
return intersection point with𝑀 under the flow with initial

−4

−2

0

2

−2

−1

0

1

2
−3

−2

−1

0

1

x
y

z

M

Figure 1: A chaotic attractor of (12) and cross-section𝑀.

condition 𝑝. Note that, for simplicity, in the following paper,
we omit the 𝑦-coordinate 0 for all points and sectors in plane
𝑀 and consider 𝑃 as a two-dimensional mapping with two
variables 𝑥 and 𝑧.

Now, in plane𝑀, we take the two quadrangles𝐻
1
and𝐻

2

with their four vertices being

(−1.7011, 0.3815) , (−1.35, 0.323626373626374) ,

(−1.7011, 0.3065) , (−1.35, 0, 0.248626373626374) ,

(14)

(−1.307, 0.316538461538462) , (−0.6, 0.2) ,

(−1.307, 0.241538461538462) , (−0.6, 0.125) ,

(15)

respectively.
𝐻

1
, 𝐻
2
and their images 𝐷

1
= 𝑃(𝐻

1
), 𝐷
2
= 𝑃(𝐻

2
) are

shown in Figures 2(a) and 2(b).

Theorem 5. For the second return Poincaré Map 𝑃 : 𝑀 →

𝑀, there exists a compact invariant set Λ ⊂ 𝐻
1
∪𝐻

2
such that

𝑃 | Λ is semiconjugate to the 2-shift map and the topological
entropy ent (𝑃) ≥ log 2.

Remark 6. By calculation, we know that the linearized system
of (12) possesses three eigenvalues −0.6, −(1/4)±√(13/48)𝑖 at
the equilibrium point (0, 0, 0). This implies that the equilib-
rium point is a Saddle-Focus. Therefore, it seems that we can
apply the famous Si’lnikov criteria to verify the chaoticity of
system (12). However, as we all know, it is extremely difficult
to verify another nonignorable condition of chaos in sense of
Si’lnikov criteria; that is, system (12) possesses a homoclinic
orbit connecting (0, 0, 0) to itself.

Remark 7. The chaoticity of systems (1) with other proper
parameters should be able to be verified by the similar
methods bymeans of topological horseshoe theory. However,
we need to try many times to find applicable cross-section,
Poincaré map, and two disjoint compact subsets for every
different parameter, which is the hardest task in this paper.
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Figure 2:𝐻
1
,𝐻
2
and their images𝐷

1
and𝐷

2
under 𝑃.

H1

H2

H3

r1

r2

r

H
1
1

H
2
1

H
1
2

H
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Figure 3: The illustration of the connection with respect to𝐻
1
and

𝐻

2
.

Proof. Let 𝐻
3
be the quadrilateral formed by the four end-

points of line segments 𝐻2
1
, 𝐻1
2
, and 𝐻 = 𝐻

1
∪ 𝐻

2
∪ 𝐻

3
as

shown in Figure 3. To prove this theorem, the key is to find a
proper 𝑃-connected family 𝐹.

By Figure 2(a), it is obvious that 𝐷
1
= 𝑃(𝐻

1
) goes across

𝐻 with 𝑃(𝐻1
1
) and 𝑃(𝐻2

1
) being outside of 𝐻. In addition to

this,

𝑃 (𝐻

1
) ∩ 𝜕𝐻

𝑖
⊂ (𝐻

1

𝑖
∪ 𝐻

2

𝑖
) , 𝑖 = 1, 2. (16)

After the similar analysis to Figure 2(b), we know that 𝐷
2
=

𝑃(𝐻

2
) goes across𝐻 with 𝑃(𝐻1

2
) and 𝑃(𝐻2

2
) being outside of

𝐻. Moreover, we have

𝑃 (𝐻

2
) ∩ 𝜕𝐻

𝑖
⊂ (𝐻

1

𝑖
∪ 𝐻

2

𝑖
) , 𝑖 = 1, 2. (17)

Now, let 𝐹 be a family of connection 𝛾𝑠 such that, for each
𝛾 ∈ 𝐹, 𝛾 is a path crossing 𝐻 with 𝛾 ∩ 𝐻𝑗

𝑖
̸= 0 (𝑖, 𝑗 = 1, 2)

as shown in Figure 3. Let 𝛾
𝑖
= 𝛾 ∩ 𝐻

𝑖
. According to above

discussions, it is obvious that 𝑃(𝛾
𝑖
) ∈ 𝐹 (𝑖 = 1, 2). Therefore,

𝐹 is a 𝑃-connected family with respect to 𝐻
1
and 𝐻

2
. By

topological horseshoe lemma (see Lemma 3), there exists a
compact invariant set Λ ⊂ 𝐻

1
∪ 𝐻

2
, such that 𝑃 | Λ

is semiconjugate to 2-shift map and its topological entropy
satisfies ent(𝑃) ≥ log 2. Theorem 5 holds.

4. Conclusion

In this paper, we revisit this simple memristive circuit
proposed by Muthuswamy and Chua. The stability study
is shown by use of center manifold theory and we obtain
a sufficient condition under which the equilibrium point
is unstable. Furthermore, we present rigorous computer-
assisted chaoticity verification bymeans of topological horse-
shoe theory.
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