
Research Article
Applying Data Clustering Feature to Speed Up
Ant Colony Optimization

Chao-Yang Pang,1 Ben-Qiong Hu,2 Jie Zhang,3 Wei Hu,4 and Zheng-Chao Shan5

1 College of Computer Science, Sichuan Normal University, Chengdu 610101, China
2 College of Management Science, Chengdu University of Technology, Chengdu 610059, China
3Department of Control Engineering, Chengdu University of Information Technology, Chengdu 610225, China
4North Sichuan Preschool Educators College, Guangyuan 628000, China
5The Personnel Department of Sichuan Normal University, Chengdu 610068, China

Correspondence should be addressed to Ben-Qiong Hu; hbq402@126.com

Received 23 January 2014; Accepted 4 April 2014; Published 5 May 2014

Academic Editor: Zhiwu Liao

Copyright © 2014 Chao-Yang Pang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Ant colony optimization (ACO) is often used to solve optimization problems, such as traveling salesman problem (TSP). When it
is applied to TSP, its runtime is proportional to the squared size of problem 𝑁 so as to look less efficient. The following statistical
feature is observed during the authors’ long-term gene data analysis using ACO: when the data size𝑁 becomes big, local clustering
appears frequently. That is, some data cluster tightly in a small area and form a class, and the correlation between different classes
is weak. And this feature makes the idea of divide and rule feasible for the estimate of solution of TSP. In this paper an improved
ACO algorithm is presented, which firstly divided all data into local clusters and calculated small TSP routes and then assembled a
big TSP route with them. Simulation shows that the presented method improves the running speed of ACO by 200 factors under
the condition that data set holds feature of local clustering.

1. Introduction

1.1. Introduction of Ant Colony Optimization (ACO). In 1991,
ant colony optimization (ACO) was presented firstly by
Colorni et al. [1] and applied to solve TSP firstly by Dorigo
et al. [1–3]. Dorigo et al. created a new research topic which
is studied by many scholars now.

ACO is essentially a system based on agents that simulate
the natural behavior of ants, in which real ants are able to find
the shortest route from a food source to their nest, without
using visual cues by exploiting pheromone information [2].
Pheromone is deposited when ants are walking on a route. It
provides heuristic information for other ants to choose their
routes. The more dense the pheromone trail of a route is, the
more possibly the route is selected by ants. At last, nearly all
ants select the route that has the most dense pheromone trail,
and it is the shortest route potentially.

ACO has been applied to solve optimization prob-
lems widely and successfully, such as TSP [1–4], quadratic

assignment problem [5], image processing [6], data mining
[7], classification or clustering analysis [8], and biology [9].
The application of ACO leads the theoretic study of ACO.
Gutijahr firstly analyzes the convergence property of ACO
[10]. Stutzle and Dorigo prove the important conclusion that
if the running time of ACO is long enough, ACO can find
optimal solution possibly [11]. The other interesting property
is revealed currently by Birattari et al. that the sequence of
solutions of some algorithms does not depend on the scale of
problem instance [12].

ACO is especially well suited for solving difficult opti-
mization problems, where traditional optimization methods
are less efficient. However, ACO is not very efficient in solving
large problems because running time is too long and the
quality of solution is still low. To solve the twomain problems,
the configuration of the parameters is discussed [2, 3]. To
further improve ACO,many approaches have been proposed.
Among these approaches, parallel computation and other
methods are used to accelerate ACO [13]. In this study,

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 545391, 8 pages
http://dx.doi.org/10.1155/2014/545391

http://dx.doi.org/10.1155/2014/545391

2 Abstract and Applied Analysis

we design a novel clustering algorithm named special local
clustering algorithm (SLC), which is applied to classify and
find the solution for TSP problem. Moreover, a colony of
ants acts on each class to get a local TSP path. And we use
the convergence of route length as termination criterion of
ACO. The experimental results indicated that the improved
ACO speeds up and its quality becomes higher for testing
problems. It is more robust than comparative approaches.

1.2. Clustering Correlates to the Running Time of ACO. One
of study focuses of ACO is to cut down running time. The
running time of ACO is 𝑂(𝑡max𝑀𝑁

2
), and 𝑀 = [𝑁/1.5] in

general, where 𝑡max, 𝑀, and 𝑁 denote the iteration number,
number of ants, and number of cities, respectively [4]. The
running time is proportional to 𝑁

2. Cutting down the num-
ber of cities 𝑁 is the key to reduce running time. Therefore,
classifying all cities into different classes and letting ACO
act on each class will reduce running time heavily. Hu and
Huang used this method to improve the running speed of
ACO [14], which is named ACO-K-Means. It is faster than
ACO by factors of 5–15 approximately. Simulations show that
ACO-K-Means algorithm is valid only to the set of cities that
has evident clustering feature and invalid to more general sit-
uation. ACO-K-Means implies that using clustering method
to improve the running speed of ACO is possible.

1.3. Introduction of Local Clustering Algorithm. Clustering
is classifying objects of a set (named training set) into
different clusters (or groups), so that the data in each class
(ideally) share some common traits. One of the most popular
clustering algorithms is K-Means clustering algorithm [15,
16]. K-Means clustering algorithm assigns each point to the
cluster whose center (i.e., centroid) is nearest to it and then
updates the centroid. Repeat this process until termination
criterion is satisfied [16].

During the 𝑡th iteration of K-Means algorithm, the 𝑖th
class has distortion that is defined as the average distance
of each point and the class centroid, which is denoted by
𝐷
(𝑡)

𝑖
(1 ≤ 𝑖 ≤ 𝑚), where 𝑚 is the number of classes.

Pang proves that for each 𝑖 the distortion sequence {𝐷
(𝑡)

𝑖
}

is convergent if the 𝑖th class is separated from other classes
evidently [16]. That is, distortion sequence is convergent
locally. According to this property, an algorithm named local
clustering algorithm (LC) is presented [17], and its essential
idea is introduced as below.

Step 1. K-Means is applied to a given training set to generate
classes.

Step 2. The class whose distortion 𝐷
(𝑡)

𝑖
is convergent first is

deleted from training set. Then, update training set such that
it is comprised of residual points. Go to Step 1.

Repeat the process of Steps 1 and 2 until all data is
classified.

LC algorithm is faster than K-Means algorithm by factors
of 4–13 approximately.

Suppose that the 𝑖th class is 𝑅
(𝑡)

𝑖
during the 𝑡th iteration

of K-Means algorithm. Set 𝑅
(𝑡)

𝑖
has entropy 𝐻(𝑅

(𝑡)

𝑖
), where

𝐻(𝑅
(𝑡)

𝑖
) = −∑

𝑎∈𝑅
(𝑡)

𝑖

𝑝(𝑎)log
2
𝑝(𝑎) and 𝑝(𝑎) is the probabi-

lity of data 𝑎. It is proved that entropy sequence {𝐻(𝑅
(0)

𝑖
),

𝐻(𝑅
(1)

𝑖
), . . . , 𝐻(𝑅

(𝑡)

𝑖
), . . .} is convergent [16]. That is, the con-

vergent criterion of K-Means algorithm can be replaced by
the convergence of entropy sequence [18]. The K-Means with
convergent criterion of entropy convergence is fast by factors
of 2 at least [18, 19].

2. Improve Local Clustering Algorithm to
Generate Compact Class

2.1. Compact Set and the Method of Generation. For any
subset of Euclidean space 𝑅

𝑛, every sequence in this subset
has a convergent subsequence, the limit point of which
belongs to the set. This subset is called compact set. The
conception of compact set (or compactness) is a topology
conception. To understand it easily, compactness can be
described visually as the phenomenon where many points
cluster tightly in a small region, while noncompact set is the
set of which most of points cluster loosely in a big region.

K-Means clustering, LC, or other algorithms aim to
partition a training set into classes. Some classes are compact
and some are not. The most common situation is that a class
contains a compact subset and some loose points, and points
of the compact subset are around the center of the class. That
is, the central part of class is compact possibly. To extract
compact subset from a class, the following 3𝛿-principle is
introduced.

For Gauss distribution, suppose that 𝛿 denotes the devi-
ation of random data. It is the 3𝛿-principle that there is
more than 99% probability that a random point falls into
the central region of data set whose radius is 3𝛿 [16]. The
central region contains more than 99% points.Thus, if radius
3𝛿 is small enough and the number of points is big enough,
the central region is compact. If the central region with
radius 3𝛿 is not compact, shortening the radius of central
region to 3𝛿/4, 3𝛿/16, and so on will make it compact. For
Gauss distribution which is comprised of enough points,
the compact central region always exists. In general, for a
class generated by clustering algorithm, all distances of points
from class centroid comprise a similar gauss distribution.
Therefore, the central region of a class is compact possibly.

Suppose that the 𝑖th class is 𝑅(𝑡)
𝑖

at the 𝑡th iteration of 𝐾-
Means or LC algorithm. With the increase of iteration, class
sequence {𝑅

(0)

𝑖
, 𝑅
(1)

𝑖
, . . . , 𝑅

(𝑡)

𝑖
, 𝑅
(𝑡+1)

𝑖
, . . .} (1 ≤ 𝑖 ≤ 𝑚) appears,

where𝑚 denotes the number of classes. Let

𝐷
(𝑡)

𝑖
=

1

󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑡)

𝑖

󵄨󵄨󵄨󵄨󵄨

∑

𝑥∈𝑅
(𝑡)

𝑖

𝑑 (𝑥, 𝑐
(𝑡)

𝑖
) , (1)

where |𝑅
(𝑡)

𝑖
| denotes the number of elements in 𝑅

(𝑡)

𝑖
and

𝑑(𝑥, 𝑐
(𝑡)

𝑖
) denotes distance.

Consider

𝛿
(𝑡)

𝑖
=

1

󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑡)

𝑖

󵄨󵄨󵄨󵄨󵄨

∑

𝑥∈𝑅
(𝑡)

𝑖

󵄨󵄨󵄨󵄨󵄨
𝑑 (𝑥, 𝑐

(𝑡)

𝑖
) − 𝐷

𝑡

𝑖

󵄨󵄨󵄨󵄨󵄨
. (2)

Abstract and Applied Analysis 3

Clearly, 𝐷(𝑡)
𝑖

is the distortion of class 𝑅
(𝑡)

𝑖
and 𝛿

(𝑡)

𝑖
is the

approximation of deviation of𝐷(𝑡)
𝑖
.

Consider

𝐾
(𝑡)

𝑖
= {𝑥 | 𝑑 (𝑥, 𝑐

(𝑡)

𝑖
) ≤

1

4𝑝
(𝐷
(𝑡)

𝑖
+ 3𝛿
(𝑡)

𝑖
) ,

𝑥 ∈ 𝑅
(𝑡)

𝑖
(𝑝 ≥ 0) } .

(3)

𝐾
(𝑡)

𝑖
is the central region of class 𝑅

(𝑡)

𝑖
. Parameter 𝑝 is

used to shorten the radius of central region 𝐾
(𝑡)

𝑖
and makes

it compact. Figure 1 illustrates the 3𝛿-principle and compact
subset 𝐾(𝑡)

𝑖
.

2.2. Subroutine 1: Local Clustering Algorithm with 3𝛿-Prin-
ciple. The local clustering algorithmwith 3𝛿-principle is used
to classify points into classes and to extract compact central
region of classes. Its essential idea is described as below.

Firstly, apply LC algorithm to cluster data. And apply
the criterion of entropy convergence (i.e., |𝐻(𝑅

(𝑡)

𝑖
) −

𝐻(𝑅
(𝑡+1)

𝑖+1
)|/𝐻(𝑅

(𝑡)

𝑖
) → 0) to mark the stable class 𝑅(𝑡)

𝑖
.

Secondly, extract compact central region 𝐾
(𝑡)

𝑖
from class

𝑅
(𝑡)

𝑖
and preserve it as a genuine class. Remove 𝑅

(𝑡)

𝑖
from

training set and update it. Repeat the above two steps until
all compact central regions are extracted. The details are
described in Algorithm 1.

2.3. Special LC Algorithm to Generate Compact Classes (SLC).
Note that above subroutine 1 is not a partition of training
set. Subroutine 1 extracts only compact central regions of all
classes and the residual points are unclassified. The residual
points comprise a new training set. And it is possible that
some of residual points cluster together tightly and comprise
some small compact subsets again.These small compact sub-
sets are new classes. To obtain these new classes and classify
all points, SLC algorithm is described in Algorithm 2.

2.4. The Clustering for Mixture Distribution (SLC-Mixture).
The clustering algorithm SLC presented above generates
spherical classes only. However, for a general distribution,
some classes are of spherical shape, some classes are of chain
shape in which points cluster closely around a curve (or a
line), and some classes contain isolated points. This common
distribution is called mixture distribution. For a large-scale
TSP, the distribution of cities is mixture distribution in
general. The clustering method for mixture distribution is
proposed as below.

2.4.1. The Simple Maker to Distinguish Spherical Class from
Chain-Shaped Class. The position of city on a map is two-
dimensional point. A given class can be divided into 8 areas
along the 4 directions of the north-south and west-east and
two diagonal lines through the centroid of the class. If the
class is spherical, the percentage of points in each area is close
to 1/8 and is the same approximately. If the class is chain-
shaped class (or part of chain-shaped class), it is impossible
that the percentage of every area is close to 1/8 at the same

3

2

1

0

−1

−2

−3
3210−1−2−3

Gaussian distribution

D(t)
i + 3𝛿(t)i

1

4p
((D(t)

i + 3𝛿(t)i

Figure 1: The illustration of compact central region of a class. In a
class𝑅(𝑡)

𝑖
, most of points cluster around their centroid and few points

are far away from the centroid. Subset 𝐾(𝑡)
𝑖

(i.e., the shadow part) is
the central region of class 𝑅

(𝑡)

𝑖
. Compact set is the set where many

points cluster in a small region tightly. Increasing parameter 𝑝 will
shorten radius and make 𝐾

(𝑡)

𝑖
compact.

time. Therefore, the percentage of points in each area is the
maker of spherical class. Figure 2 illustrates the marker.

2.4.2. Applying SLC to Process Mixture Distribution (SLC-
Mixture). At first, apply SLC to classify all data of training
set. Secondly, apply themarker presented above to distinguish
spherical classes and extract them from the training set.Then
all residual points comprise a new set named residual set.The
residual set contains only chain-shaped classes and isolated
points.Thirdly, apply themethod presented in [20] to classify
all residual points of residual set into different chain-shaped
classes ormarked as isolated points.Themethod presented in
[20] is named chain-shaped clustering algorithm.

The clustering method presented in this section is called
SLC-Mixture algorithm, which processes the mixture distri-
bution of spherical classes, chain-shaped classes, and isolated
points.

3. Apply SLC to ACO

3.1.The Termination Criterion of ACO. Suppose ACO acts on
a compact class and let 𝐿

𝑡
denote the minimum route length

that is generated at the 𝑡th iteration of computation. There is
sequence {𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑡
, 𝐿
𝑡+1

, . . .} and it is convergent under
ideal condition.The convergent criterion |𝐿

𝑡
−𝐿
𝑡+1

|/𝐿
𝑡
≤ 𝜀 is

proposed as the termination criterion of ACO in this paper.
In the following discussion, ACO refers to the algorithm

whose termination criterion is (|𝐿
𝑡
− 𝐿
𝑡+1

|/𝐿
𝑡
) ≤ 𝜀.

3.2. Apply SLC to Improve the Running Speed of ACO (ACO-
SLC). In this section, the clustering algorithm SLC will be

4 Abstract and Applied Analysis

Input parameters:
𝑇: Training Set
𝑚: The number of classes
𝜀: The stop threshold for clustering.
𝐶
(0)

= {𝑐
0

𝑖
(1 ≤ 𝑖 ≤ 𝑚)}: Initial centroids set.

𝑝: A parameter to adjust the size of compact subs-ets𝐾(𝑡)
𝑖
(𝑝 ≥ 0).

Output:
𝜑(𝑇) = {𝐾

(𝑡)

1
, 𝐾
(𝑡)

2
, . . . , 𝐾

(𝑡)

𝑖
, . . . , 𝐾

(𝑡)

𝑚
} (i.e., the set of co-mpact subset, see Figure 1)

𝜎 (𝑇) = {𝐵
(𝑡)

1
, 𝐵
(𝑡)

2
, . . . , 𝐵

(𝑡)

𝑖
, . . . , 𝐵

(𝑡)

𝑚
}, where 𝐵

(𝑡)

𝑖
= 𝑅
(𝑡)

𝑖
− 𝐾
(𝑡)

𝑖
, and it is comprised by dispersive points

(1 ≤ 𝑖 ≤ 𝑚, see Figure 1)
Void Subroutine 1 (𝑇,𝑚, 𝜀, 𝐶

(0)
, 𝑝, 𝜑(𝑇), 𝜎(𝑇))

{

Step 1. Initialization: Let iteration number 𝑡 = 0. Let 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑚. Let 𝜑 (𝑇) = 𝜙 and 𝜎 (𝑇) = 𝜙, where 𝜙

denotes empty set. According to initial centroids set 𝐶(0), generate initial partition of training set
𝜑
0
= {𝑅
0

𝑖
| 𝑅
0

𝑖
⊂ 𝑇, 1 ≤ 𝑖 ≤ 𝑚}.

Step 2. While (𝐶𝑜𝑢𝑛𝑡𝑒𝑟 > 0) {

Step 2.1. Generate new centroids set 𝐶(𝑡+1) = {𝑐
(𝑡+1)

𝑖
| 1 ≤ 𝑖 ≤ 𝑚} and new partition 𝜑

(𝑡+1)
= {𝑅
(𝑡+1)

𝑖
| 1 ≤ 𝑖 ≤ 𝑚}

/∗ Note: Check whether entropy sequence𝐻
(0)

𝑖
, 𝐻
(1)

𝑖
, . . . , 𝐻

(𝑡)

𝑖
, 𝐻
(𝑡+1)

𝑖
, . . . is convergent. If it is convergent,

let the convergent marker StableMarker (𝑅(𝑡+1)
𝑖

) = 𝑇𝑟𝑢𝑒
∗/

Step 2.2. For (𝑖 = 1; 𝑖 ≤ 𝐶𝑜𝑢𝑛𝑡𝑒𝑟; 𝑖 + +){

Estimate the entropy of class 𝑅(𝑡+1)
𝑖

, that is,𝐻(𝑅
(𝑡+1)

𝑖
) = log

2

󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑡+1)

𝑖

󵄨󵄨󵄨󵄨󵄨
.

If (
󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑅
(𝑡)

𝑖
) − 𝐻(𝑅

(𝑡+1)

𝑖
)
󵄨󵄨󵄨󵄨󵄨

𝐻 (𝑅
(𝑡)

𝑖
)

< 𝜀) {StableMarker (𝑅(𝑡+1)
𝑖

) = 𝑇𝑟𝑢𝑒; }

Else {StableMarker (𝑅(𝑡+1)
𝑖

) = 𝐹𝑎𝑙𝑠𝑒}

}

/∗ Note: Extract the data around the centroid of class as a genuine class ∗/
Step 2.3. For (𝑖 = 1; 𝑖 ≤ 𝐶𝑜𝑢𝑛𝑡𝑒𝑟; 𝑖 + +){

If (StableMarker (𝑅(𝑡+1)
𝑖

) = 𝑇𝑟𝑢𝑒) {

Calculate compact central region𝐾
(𝑡)

𝑖
according to formula (3)

Calculate 𝐵
(𝑡)

𝑖
:𝐵(𝑡)
𝑖

= 𝑅
(𝑡+1)

𝑖
− 𝐾
(𝑡)

𝑖

Let 𝜑 (𝑇) = 𝜑(𝑇) ∪ 𝐾
(𝑡)

𝑖

Let 𝜎 (𝑇) = 𝜎 (𝑇) ∪ 𝐵
(𝑡)

𝑖

Update Training Set: 𝑇 = 𝑇 − 𝑅
(𝑡)

𝑖

Update centroids set: 𝐶(𝑡+1) = 𝐶
(𝑡+1)

− {𝑐
(𝑡+1)

𝑖
}

𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 − 1

}

}

𝑡 = 𝑡 + 1

}

}

Algorithm 1

applied to improve the running speed of ACO.Themethod is
named ACO-SLC and it is described as below.

Input parameter:
𝑇: set of cities.
Output: the shortest TSP route obtained by the algo-
rithm.

ACO-SLC Algorithm.

Step 1. Apply SLC algorithm to partition set 𝑇. The classes
are 𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑖
, . . ., and 𝐵Num, and their centroids are

𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑖
, . . ., and 𝑏Num, respectively.

Step 2. Construct graph 𝐺
󸀠: centroids 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑖
, . . ., and

𝑏Num are regarded as virtual cities, respectively, and the virtual
cities are regarded as the vertices of graph 𝐺

󸀠. For a pair of
classes 𝐵

𝑖
and 𝐵

𝑗
, if there exist two cities that belong to 𝐵

𝑖
and

𝐵
𝑗
, respectively, and they join each other, use an edge to join

the two corresponding vertices 𝑏
𝑖
and 𝑏
𝑗
. The weight of edge

is the minimum distance between two classes; that is,

𝑑 (𝐵
𝑖
, 𝐵
𝑗
) = min {𝑑 (𝑥

𝑖
, 𝑥
𝑗
) | 𝑥
𝑖
∈ 𝐵
𝑖
, 𝑥
𝑗
∈ 𝐵
𝑗
} . (4)

Step 3. Calculate a TSP route of graph 𝐺
󸀠 to generate the

traveling order of all classes: let ACO algorithm act on graph
𝐺
󸀠 to find a TSP route denoted by 𝑏

𝑗1
, 𝑏
𝑗2
, . . . 𝑏
𝑗Num, where

Abstract and Applied Analysis 5

Input parameters:
𝑇
0
: Training Set

𝑚
0
: The initial number of classes.

𝜀: The stop threshold for clustering.
Output:
Num:The final number of classes.
CLS: The partition of 𝑇

0
, in which each class is com-pact.

SLC Algorithm:
Step 1. Initialization: Let 𝑇 = 𝑇

0
, 𝑚 = 𝑚

0
, CLS = 𝜙, and 𝑝 = 0.

Step 2. For (𝑖 = 0; 𝑖 < [log
2
𝑚]; 𝑖 + +) /∗Note: [log

2
𝑚] denotes the integer ∗/

{ Step 2.1. Generate initial centroids set 𝐶
0
= {𝑐
(0)

𝑖
| 1 ≤ 𝑖 ≤ 𝑚}.

Step 2.2. Call Subroutine1 (𝑇,𝑚, 𝐶
(0)

, 𝜀, 𝑝, 𝜑 (𝑇) , 𝜎 (𝑇))

Step 2.3. CLS = CLS ∪ 𝜑 (𝑇);
Step 2.4. 𝑇 = 𝜎 (𝑇);
/∗ Note: Increase 𝑝 to get smaller compact class ∗/
Step 2.5. 𝑚 = [

𝑚

2
]; 𝑝 = 𝑝 + 1

}

Step 3. Every residual point 𝑥 in the last set 𝜎 (𝑇) is regarded as a class {𝑥}. And let CLS = CLS ∪ {𝑥}.
Let Num denote the number of classes contained in CLS. The two outputs are CLS and Num.

Algorithm 2

𝑗
1
, 𝑗
2
, . . . 𝑗Num, is a permutation of sequence 1, 2, . . .Num.The

pair of classes 𝐵
𝑗𝑖
and 𝐵

𝑗(𝑖+1)
is called neighbor class.

Step 4. Choose an edge as the bridge to join a pair of neighbor
classes, and this edge is named bridge edge. Assume that the
two neighbor classes are 𝐵

𝑗1
and 𝐵

𝑗2
. If there exists an edge

such that

𝑑 (𝑥
𝑢
, 𝑥V) = min {𝑑 (𝑎, 𝑏) | 𝑎 ∈ 𝐵

𝑗1
, 𝑏 ∈ 𝐵

𝑗2
} , (5)

edge (𝑥
𝑢
, 𝑥V) is the bridge edge, 𝑥𝑢 and 𝑥V are called border

cities, where vertices 𝑎 and 𝑏 should be not used to join other
neighbor classes.

Step 5. Calculate a local TSP route for every class 𝐵
𝑖
(1 ≤ 𝑖 ≤

Num): add a new edge to join the two border cities in the class
and mark the edge as necessary edge of the local TSP route.
This edge is named pseudoedge. Let the ACO algorithm with
convergence criterion (|𝐿

𝑡
− 𝐿
𝑡+1

|/𝐿
𝑡
) ≤ 𝜀 act on the class to

generate a local TSP route.

Step 6. Construct a TSP route: walk along the traveling order
obtained at Step 3; for every pair of neighbor classes, delete
the pseudoedge of each class such that the local route is not
close.Then let the local route of each class and the bridge edge
between these two classes be joined.

Figure 3 illustrates the processing ofACO-SLCalgorithm.

3.3. Using the Method of Little-Window and Removing Cross-
Edge to Improve ACO-SLC (ACO-SLC-LWCR). Clustering
may cause the error of solution although it improves the
running speed of ACO heavily. If all classes are compact
and separated clearly, the quality of solution of ACO-SLC
should be very good. However, in fact, the border between
two neighbor classes is fuzzy. The fuzzy border will cause the

inaccuracy of solution, and much longer route will appear.
And recognizing the longer part and removing it will generate
better solution possibly. It is well known that the shortest
route is always at the surface of a convex hull.Thus, the longer
part should be at the inner of a convex hull and two longer
edges intersect. In other words, intersection of two edges is
a marker of longer part of a route possibly. According to the
marker, removing longer edges is called removing cross-edge
or removing intersection edges, which is similar to the method
in [4]. (Notice: in [4], before executing ACO, the long and
crossed edges are removed to improve the running speed of
ACO, not to improve the solution quality.)

Figure 4 illustrates the method of removing cross-edge.
In addition, a simple method named little-window strat-

egy is proposed to improve the running speed of ACO in
[21]. Construct a set 𝑆

𝑖
that is comprised by 𝑤 accessible and

short edges which join the 𝑖th city, where 𝑤 is a preassigned
constant. The ant which has arrived at 𝑖th city will select an
edge from window set 𝑆

𝑖
only to arrive at its next city and not

select an edge from all neighbor edges of this vertex. So, this
method improves the running speed of ACO.

The ACO-SLC with little-window strategy and cross-
edges removing is called ACO-SLC-LWCR.

3.4. The ACO-SLC for Mixture Distribution (ACO-SLC-
Mixture). ACO-SLC is suitable for the spherical shape dis-
tribution only, and the low quality of solution will appear
possibly when ACO-SLC is applied to process mixture
distribution. To process mixture distribution, the follow-
ing method named ACO-SLC-Mixture is proposed in this
paper.

Firstly, apply SLC-Mixture at Section 2.4.2 to partition
the set of cities into spherical classes, chain-shaped classes,
or isolated points. Secondly, apply ACO-SL-C-LWCR to each
class and generate a TSP route.

6 Abstract and Applied Analysis

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b)

Figure 2: The illustration of distinguishing spherical class from chain-shaped class. A given class is divided into 8 parts along the 8 lines
through the centroid of the class. If the class is spherical, the percentage of each part is close to threshold 𝜀 = 1/8. If the class is chain-shaped
class (or part of chain-shaped class), there are 2–4 parts whose percentage is far less than 1/8. Therefore, the percentage of each part is the
marker of spherical class. 𝜀 = 0.058 in this paper because some classes are elliptical.

A: (Step 1)

D: (Step 6) C: (Step 5)

B: (Steps 2–4)

Figure 3: The schematic diagram of ACO-SLC. Firstly, classify all
points into compact classes. Secondly, the centroid of each class is
regarded as a virtual city; calculate a virtual TSP route. Then along
the virtual route, join all classes. Thirdly, let ACO act on each class
to get a local TSP route. Fourthly, join all local TSP routes along the
virtual route to form the last route.

4. Simulation

In this section, five related algorithms ACO, ACO-K-Means,
ACO-SLC, ACO-SLC-LWCR, and ACO-SLC-Mixture are
tested and compared. In the following simulation, ACO refers
to ant-cycle presented by Colorni et al., which is very typical
[1].

A A

B

C

D

C

BD

Figure 4: The schematic diagram of ACO-SLC. Firstly, classify all
points into compact classes. Secondly, the centroid of each class is
regarded as a virtual city. And calculate a virtual TSP route. Then
along the virtual route, join all classes. Thirdly, let ACO act on each
class to get a local TSP route. Fourthly, join all local TSP routes along
the virtual route to form the last route. The illustration of removing
cross-edges from TSP route: at the left figure, AB and CD intersect
each other.There is a principle that the shortest route is at the surface
of a convex hull. Thus, edges AB and CD are the longer part of route
and should be removed. Removing these two edges will generate
shorter route (see right figure).

All test data in this paper is downloaded from
http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/tsp/. All algorithms in this paper run on personal
computer (CPU: 1.80GHz; memory: 480M; software:
Matlab). The parameters are listed as below. Initialize
pheromone trails 𝜏

𝑖𝑗
(0) = 1, iteration number 1000,

𝜀 = 0.001, 𝛼 = 1, 𝛽 = 10, 𝜌 = 0.4, 𝑄 = 300, and
𝑚 = [𝑁/1.5]. Two performance items are tested. One
item is the running time, which is defined as Ratio = Time
(ACO)/Time (Algorithm). The bigger the ratio is, the faster

Abstract and Applied Analysis 7

The ratio of running speed
Ratio = Time (ACO)/Time (Algorithm)

Solution error (%)
Error = (Solution−Optimum)/Optimum

ACO

ACO

ACO-K

ACO-K-Means

ACO-SLC

ACO-SLC
ACO-SLC-LWCR

ACO-SLC ACA-SLC

ACA-SLC-Mixture

-Means -LWCR -Mixture

Pr107 1.00

1.00

1.00

1.00

1.00

1.00

1.00

11.86 575.15 577.43 539.69

Ch130 13.38 754.98 765.72 465.26

Pr136 7.12 466.42 465.56 437.81

D198 5.05 415.32 390.08 257.72

Pr226 8.00 1347.06 1152.37 1346.84

Lin318 15.24 1298.11 1671.64 1630.29

P654 109.52 10735.77 10191.92 9419.74

25

20

15

10

5

0
Pr107 Ch130 Pr136 D198 Pr226 Lin318 P654

Figure 5: The performance comparison with five algorithms. The figure shows that ACO-SLC algorithm, ACO-SLC, ACO-SLC-LWCR, and
ACO-SLC-Mixture are faster than ACO by 415 ∼ 10736, 390 ∼ 10192, and 257–9419 of factors, respectively! However, some solutions of
ACO-K-Means and ACO-SLC have low quality. ACO-SLC-Mixture can process mixture distribution and its inaccuracy ratio is less than
ACO in most cases and is bigger than ACO by 2% at most. It should be noted that under the condition where the data set holds feature of
local clustering significantly, the quality of solution is good.

the algorithm is. In addition, the advantage of the ratio is
that the subtle infection of other processes to runtime is
evaded as possible, and it is more accurate than raw mea-
sured runtime because the value caused by other processes
gives little contribution to the ratio. The other item is the
quality of solution, which is defined as the percentage
of error Error = (Solution-Optimum)/Optimum, where
Optimum denotes the best solution known currently. The
smaller the error is, the better the quality of solution is.

The performances of the five algorithms are listed in
Figure 5. It shows that ACO-SLC, ACO-SLC-LWCR, and
ACO-SLC-Mixture are faster than ACO by 415 ∼ 10736,
390 ∼ 101–92, and 257–9419 of factors, respectively! How-
ever, some solutions of ACO-K-Means and ACO-SLC have
low quality.The inaccuracy ratio of ACO-SLC-Mixture is less
than ACO in most cases and is bigger than ACO by 2% at
most.

TheDefect of ACO-SLC. (1) From Figure 5, it should be noted
that only under the condition that the data set holds feature of
local clustering significantly, the quality of solution is good.
(2) The simulations of this paper show that the quality of
ACO-SLC solution depends on the quality of clustering and
clustering quality of SLC is sensitive to the initial centroids
just like K-Mean algorithm. This is the main defect of ACO-
SLC.

5. Conclusion

Time Complexity of ACO. ACO is the algorithm that is
inspired by the foraging behavior of ant colonies and has been
applied to solve many optimization problems. The typical
application of ACO is the application at traveling salesman
problem (TSP). The running time of ACO is 𝑂(𝑡max𝑀𝑁

2
),

where 𝑡max, 𝑀, and 𝑁 denote the iteration number, number

of ants, and number of cities, respectively. Parameter 𝑚 is an
experiential value and is set to [𝑁/1.5] in general. Parameter
𝑁 is the key factor of running time because running time is
proportional to its square. Parameter 𝑡max and𝑁 are available,
and decreasing parameter 𝑡max and𝑁 will cut down running
time.

Focus of ACO Study. ACO can generate solution with high
quality in general. But its shortage is that running time is
too long. Cutting down running time is one of study focuses
of ACO, and one way is to decrease parameters 𝑡max and 𝑁,
especially 𝑁.

Basic Idea for this Study Focus. For this study focus, the
following basic idea is presented in this paper.

Firstly, all cities are classified into compact classes, where
compact class is the class where all cities in this class cluster
tightly in a small region. Secondly, let ACO act on every class
to get a local TSP route.Thirdly, all local TSP routes are joined
to form solution. Fourthly, the inaccuracy of solution caused
by clustering is eliminated.

Realization of Basic Idea. The realization of above idea is
based on a novel clustering algorithm presented in this paper,
which is named special local clustering algorithm (SLC). The
running time of SLC is far less than the time of ACO. SLC
generates compact classes, while current popular clustering
algorithm such asK-Means does not generate compact classes
in general. The compactness of class makes the length of TSP
route 𝐿

𝑡
at every iteration convergent; the convergence of 𝐿

𝑡

(i.e., (|𝐿
𝑡
− 𝐿
𝑡+1

|/𝐿
𝑡
) → 0) is proposed as the termination

criterion of ACO in this paper. Thus, parameter 𝑡max is cut
down to improve the running speed of ACO. In addition,
every class has small size; ACO acting on small class makes
parameter 𝑁 cut down, and running speed is improved.

8 Abstract and Applied Analysis

According to this analysis, ACO-SLC algorithm is presented
in this paper. Simulation shows that ACO-SLC is faster than
ACO by 415 ∼ 10736 of factors!

Elimination of the Solution Inaccuracy Caused by Clustering.
Although the running speed is improved in this paper, the
inaccuracy of solution is heavy. Two factors causing the
inaccuracy are found in this paper. One is the cross-edges
(see Section 3.3) and the other factor is the unmatching
between ACO-SLC and mixture distribution (see Section
3.4). According to these two factors, ACO-SLC-LWCR and
ACO-SLC-Mixture are presented in this paper, which is the
improvement of ACO-SLC. Simulation shows that ACO-
SLC-LWCR and ACO-SLC-Mixture are faster than ACO by
390 ∼ 101–92 and 257–9419 of factors, respectively!The inac-
curacy ratio of ACO-SLC-Mixture is less than ACO in most
cases and is bigger than ACO by 2% at most.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thework is supported byAeronautical Science Foundation of
China (no. 2012ZD11) and partially by the Education Depart-
ment of Sichuan Province (no. 12zA134 and no. 09zz028).

References

[1] A. Colorni,M.Dorigo, andV.Maniezzo, “Distributed optimiza-
tion by ant colonies,” in Proceedings of the 1st European Confer-
ence on Artificial Life, pp. 134–142, Paris, France, 1991.

[2] M. Dorigo and L. M. Gambardella, “Ant colony system: a coop-
erative learning approach to the traveling salesman problem,”
IEEETransactions on Evolutionary Computation, vol. 1, no. 1, pp.
53–66, 1997.

[3] M.Dorigo, V.Maniezzo, andA. Colorni, “Ant system: optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics B: Cybernetics, vol. 26, no. 1, pp.
29–41, 1996.

[4] H. B. Duan, Ant Colony Algorithms: Theory and Applications,
Science Publisher, Beijin, China, 2005.

[5] V. Maniezzo and A. Colorni, “The ant system applied to the
quadratic assignment problem,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 11, no. 5, pp. 769–778, 1999.

[6] S. Meshoul andM. Batouche, “Ant colony system with extremal
dynamics for point matching and pose estimation,” in Proceed-
ing of the 16th International Conference on Pattern Recognition,
pp. 823–826, Quebec, Canada, 2002.

[7] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining
with an ant colony optimization algorithm,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 4, pp. 321–332, 2002.

[8] X. Li, X. H. Luo, and J. H. Zhang, “Codebook design by a
hybridization of ant colony with improved LBG algorithm,” in
Proceedings of the International Conference on Neural Networks
and Signal Processing (ICNNSP ’03), pp. 469–472, Nanjing,
China, December 2003.

[9] P.Meksangsouy andN.Chaiyaratana, “DNA fragment assembly
using an ant colony system algorithm,” in Proceedings of the

Congress on Evolutionary Computation, pp. 1756–1763, Can-
berra, Australia, 2003.

[10] W. J. Gutjahr, “Graph-based ant system and its convergence,”
Future Generation Computer Systems, vol. 16, no. 8, pp. 873–888,
2000.

[11] T. Stutzle and M. Dorigo, “A short convergence proof for a class
of ant colony optimization algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 4, pp. 358–365, 2002.

[12] M. Birattari, P. Pellegrini, and M. Dorigo, “On the invariance
of ant colony optimization,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 732–742, 2007.

[13] B. Bullnheimer, G. Kotsis, and C. Strauß, “Parallelization strate-
gies for the ant system,” in High Performance and Algorithms
and Software in Nonlinear Optimization, vol. 24 of Applied
Optimization, pp. 87–100, 1998.

[14] X.-B. Hu and X.-Y. Huang, “Solving TSP with characteristic of
clustering by ant colony algorithm,” Journal of System Simu-
lation, vol. 16, no. 12, pp. 55–58, 2004.

[15] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector
quantization design,” IEEE transactions on communications
systems, vol. 28, no. 1, pp. 84–95, 1980.

[16] C. Y. Pang, Quantization and image compression [Ph.D. thesis],
University of Electronic Science and Technology of China,
Chengdu, China, 2002.

[17] P. Chaoyang, S. Shixin, P. Ye, and G. Haiying, “A fast codebook
training algorithm using local clustering,” Journal of Electronics
and Information Technology, vol. 9, pp. 1282–1286, 2002.

[18] C.-Y. Pang and S.-X. Sun, “Codebook training algorithm by the
convergence of entropy sequence for vector quantization,” Sys-
tems Engineering and Electronics, vol. 24, no. 1, pp. 83–85, 2002.

[19] X. Li, X. H. Luo, and J. H. Zhang, “Modeling of vector quanti-
zation image coding in an Ant colony system,” Chinese Journal
of Electronics, vol. 13, no. 2, pp. 305–307, 2004.

[20] X. Huang, J. Wang, and Y. Zhang, “Adaptive K near neighbor
clustering algorithm for data with non-spherical-shape distri-
bution,” Computer Engineering, vol. 29, pp. 21–22, 2003.

[21] Y. Xiao and B. Li, “Ant colony algorithm based on little window,”
Computer Engineering, vol. 29, pp. 143–145, 2003.

