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By using the method of upper and lower solutions and fixed point theorems, the existence of solutions for a Riemann-Liouville
fractional boundary value problem with the nonlinear term depending on fractional derivative of lower order is obtained under
the classical Nagumo conditions. Also, some results concerning Riemann-Liouville fractional derivative at extreme points are
established with weaker hypotheses, which improve some works in Al-Refai (2012). As applications, an example is presented to
illustrate our main results.

1. Introduction

Fractional calculus, which is a powerful tool for the descrip-
tion of memory and hereditary properties of materials and
processes, has attracted the attention ofmany researchers and
has been successfully applied in various fields, such as eco-
nomics, engineering, and physical sciences. For the develop-
ment of the theory of fractional calculus, we refer the readers
to the monographs [1, 2] and references therein.

Recently, some papers have dealt with the existence of
the solutions for fractional boundary value problems mainly
by means of fixed point theorems [3–5], Leray-Schauder
continuation principle [6], critical point theory [7, 8], and the
method of upper and lower solutions [9–12].Therein, various
kinds of boundary value problems for nonlinear fractional
differential equations have been studied, and some excellent
results have been established.We are particularly interested in
the case where the nonlinear term depends explicitly on the
fractional derivative of lower order. Specifically, Su andZhang
in [13] deal with a boundary value problem of a fractional
differential equation with the nonlinear term dependent on
a fractional derivative of lower order on the semi-infinite
interval:
𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝛼−1

0+
𝑢 (𝑡)) = 0, 𝑡 ∈ [0, +∞) ,

𝑢 (0) = 0, 𝐷
𝛼−1

0+
𝑢 (∞) = 𝑢

∞
, 𝑢
∞
∈ R,

(1)

where 1 < 𝛼 ≤ 2, 𝑓 ∈ 𝐶([0, +∞) × R2,R), and 𝐷𝛼
0+

and
𝐷
𝛼−1

0+
are the standard Riemann-Liouville fractional deriva-

tives.The existence results for solutions are obtained by using
Schauder’s fixed point theorem on an unbounded domain.
And in [14] Agarwal et al. investigate the existence of pos-
itive solutions for the singular Riemann-Liouville fractional
Dirichlet boundary value problem:

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝜇

0+
𝑢 (𝑡)) = 0,

𝑢 (0) = 𝑢 (1) = 0,

(2)

where 1 < 𝛼 < 2, 0 < 𝜇 ≤ 𝛼 − 1, and 𝑓(𝑡, 𝑥, 𝑦) > 0 satisfying
the Carathéodory conditions and being singular at 𝑥 = 0.The
proofs are based on a fixed point theorem on a cone,
regularization, and sequential techniques.

It is well known that the method of upper and lower solu-
tions is a powerful tool for proving the existence and multi-
plicity results of solutions for nonlinear differential equations.
Using this method and monotone iterative technique, the
authors in [10–12] investigate some nonlinear fractional dif-
ferential equations with nonlinear boundary conditions and
establish some fractional comparison principles and further
obtain the existence results of solutions, including extremal
solutions, yet, mainly focus on the case of order 𝛿 ∈ (0, 1).
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Nagumo conditions play an important role in the bound-
ary value problems with nonlinear term involved in the
derivative, since as it is known, for instance, for second order
differential equations, the existence of upper and lower solu-
tions, by itself, is not sufficient to ensure the existence of solu-
tions. The studies dealing with the Nagumo conditions are
well established by applying the method of upper and lower
solutions combined with fixed point theorem or topological
degree theory for the case of integer order (see [15–17]). To the
best of our knowledge, nowork has been done concerning the
existence of solutions for fractional boundary value problem
with nonlinear terms involving fractional derivative under
Nagumo conditions.

Inspirited by the papers mentioned above, in this paper,
under Nagumo conditions we aim to apply the method of
upper and lower solutions combined with fixed point the-
orems to discuss the existence of solutions for the follow-
ing Riemann-Liouville fractional boundary value problem
(FBVP for short):

𝐷
𝑞

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞−1

0+
𝑢 (𝑡)) = 0, 𝑡 ∈ [0, 1] ,

𝑢 (0) = 0, 𝐷
𝑞−1

0+
𝑢 (1) = 𝜂,

(3)

where 𝑓 : [0, 1] × R2 → R is continuous and 𝐷𝑞
0+

is the
Riemann-Liouville fractional derivative of order 1 < 𝑞 < 2,
𝜂 ∈ R. Our results extend some classical results for second
order differential equations to the case of fractional order 1 <
𝑞 < 2.

This paper is organized as follows. In Section 2, some
notations, definitions, and lemmas are presented. We estab-
lish some results concerning the Riemann-Liouville frac-
tional derivatives at extreme points under weaker conditions
than those in [18]. In Section 3, sufficient conditions are given
for the existence of at least one solution for FBVP (3). In
Section 4, an explicit example is given to illustrate our main
results.

2. Preliminaries

In this section, we introduce some definitions and lemmas,
which are used throughout this paper.

A function 𝑓 : [0, 1] → R is Hölder continuous, if there
exist nonnegative constant 𝐾 and exponent 𝜆 ∈ (0, 1), such
that

𝑓 (𝑡1) − 𝑓 (𝑡2)
 ≤ 𝐾

𝑡1 − 𝑡2


𝜆

, 𝑡
1
, 𝑡
2
∈ [0, 1] . (4)

A function 𝑓 : [0, 1] → R is, especially, Lipschitz continu-
ous, if the above inequality holds for 𝜆 = 1.

Definition 1 (see [1, 2]). The Riemann-Liouville fractional
integral of order 𝛿 > 0 of a function 𝑓 : [0,∞) → R is
given by

𝐼
𝛿

0+
𝑓 (𝑡) =

1

Γ (𝛿)
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛿

𝑑𝑠, (5)

where Γ(⋅) is the gamma function, provided that the right side
is pointwise defined on [0,∞).

Definition 2 (see [1, 2]). The Riemann-Liouville fractional
derivative of order 𝛿 > 0 of a function 𝑓 : [0,∞) → R is
given by

𝐷
𝛿

0+
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛿)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
𝛿+1−𝑛

𝑑𝑠,

𝑛 − 1 < 𝛿 < 𝑛,

(6)

provided that the right side is pointwise defined on [0,∞).

Lemma 3 (see [2]). Suppose that 𝐷𝛿
0+
𝑢(𝑡) exists and is inte-

grable on [0, 1], 𝛿 ≥ 𝑝 ≥ 0; then

𝐼
𝑝

0+
𝐷
𝛿

0+
𝑢 (𝑡) = 𝐷

𝛿−𝑝

0+
𝑢 (𝑡) −

𝑛

∑

𝑖=1

𝐷
𝛿−𝑖

0+
𝑢(𝑡)
|𝑡=0

Γ (𝑝 + 1 − 𝑖)
𝑡
𝑝−𝑖

,

𝑡 ∈ [0, 1] , 𝑛 = [𝛿] + 1.

(7)

Property 1 (see [1, 2]). Let 𝛿 ≥ 𝑝 > 0.The following properties
are well known:

(1) 𝐼𝛿
0+
: {𝐶[0,1]→𝐶[0,1],
𝐿(0,1)→𝐿(0,1),

(2) 𝐷𝑝
0+
𝐼
𝛿

0+
𝑢(𝑡) = 𝐼

𝛿−𝑝

0+
𝑢(𝑡), 𝑡 ∈ [0, 1], 𝑢(𝑡) ∈ 𝐿(0, 1),

(3) lim
𝛿→0

𝐼
𝛿

0+
𝑢(𝑡) = 𝑢(𝑡), ∀𝑡 ∈ (0, 1], 𝑢(𝑡) ∈ 𝐶[0, 1],

(4) 𝐷𝛿+1
0+
𝑢(𝑡) = 𝐷

1

𝐷
𝛿

0+
𝑢(𝑡), where 𝐷1 = 𝑑/𝑑𝑡, provided

that𝐷𝛿+1
0+
𝑢(𝑡) exists.

Lemma 4. Suppose that 𝑢(𝑡) ∈ 𝐶[0, 1] and that 𝐷𝑞
0+
𝑢(𝑡) ∈

𝐿(0, 1), 𝑞 ∈ (1, 2), then lim
𝛿→𝑞

−𝐷
𝛿

0+
𝑢(𝑡) = 𝐷

𝑞

0+
𝑢(𝑡), 𝑡 ∈ (0, 1].

Proof. For all 𝛿 ∈ (1, 𝑞], 𝑞 ∈ (1, 2), we let

𝑓 (𝑡) := 𝐷
𝑞

0+
𝑢 (𝑡) , 𝐹 (𝑡) := 𝐷

𝑞−1

0+
𝑢 (𝑡) ∈ 𝐶 [0, 1] . (8)

By Lemma 3, (8), and 𝑢(𝑡) ∈ 𝐶[0, 1], one gets

𝑢 (𝑡) = 𝐼
𝑞

0+
𝑓 (𝑡) +

𝐹 (0)

Γ (𝑞)
𝑡
𝑞−1

, (9)

𝐼
𝑞−𝛿

0+
𝐹 (𝑡) = 𝐷

𝛿−1

0+
𝑢 (𝑡) ∈ 𝐶 [0, 1] . (10)

Together with Property 1(3) and the continuity of 𝐹, taking
the limit 𝛿 → 𝑞, we obtain

𝐹 (𝑡) = lim
𝛿→𝑞

𝐷
𝛿−1

0+
𝑢 (𝑡) , ∀𝑡 ∈ (0, 1] . (11)

Moreover,

𝐹 (0) = lim
𝑡→0
+

𝐹 (𝑡) , 𝐷
𝛿−1

0+
𝑢(𝑡)
|𝑡=0

= lim
𝑡→0
+

𝐷
𝛿−1

0+
𝑢 (𝑡) . (12)

From (11), (12), and the uniform convergence of 𝐷𝛿−1
0+
𝑢(𝑡), it

follows that

𝐹 (0) = lim
𝛿→𝑞

𝐷
𝛿−1

0+
𝑢(𝑡)
|𝑡=0

. (13)
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Using (9) and Property 1(1)-(2) we obtain that 𝑔
𝛿
(𝑡) :=

𝐷
𝛿

0+
𝑢(𝑡) exists and belongs to 𝐿(0, 1), satisfying

𝑢 (𝑡) = 𝐼
𝛿

0+
𝑔
𝛿
(𝑡) +

𝐷
𝛿−1

0+
𝑢(𝑡)
|𝑡=0

Γ (𝛿)
𝑡
𝛿−1

, 𝑡 ∈ [0, 1] . (14)

To the end, it suffices to show that lim
𝛿→𝑞

𝑔
𝛿
(𝑡) = 𝑓(𝑡),

𝑡 ∈ (0, 1]. Obviously, it follows from (9) and (14) that

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
𝑓 (𝑠) −

(𝑡 − 𝑠)
𝛿−1

Γ (𝛿)
𝑔
𝛿
(𝑠) +

𝐹 (0)

Γ (𝑞 − 1)
𝑠
𝑞−2

−
𝐷
𝛿−1

0+
𝑢(𝑡)
|𝑡=0

Γ (𝛿 − 1)
𝑠
𝛿−2

𝑑𝑠 = 0.

(15)

For the homogeneous Abel integral equation (15), we observe
that the integrand belongs to 𝐿(0, 1). Then by Lemma 2.5 in
[1]

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
𝑓 (𝑠) −

(𝑡 − 𝑠)
𝛿−1

Γ (𝛿)
𝑔
𝛿
(𝑠) +

𝐹 (0)

Γ (𝑞 − 1)
𝑠
𝑞−2

−
𝐷
𝛿−1

0+
𝑢(𝑡)
|𝑡=0

Γ (𝛿 − 1)
𝑠
𝛿−2

≡ 0.

(16)

Taking the limit 𝛿 → 𝑞 in (16), together with (13) we have

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
[𝑓 (𝑠) − lim

𝛿→𝑞

𝑔
𝛿
(𝑠)] ≡ 0, 𝑠 ∈ (0, 1] . (17)

Hence lim
𝛿→𝑞

𝑔
𝛿
(𝑡) = 𝑓(𝑡), 𝑡 ∈ (0, 1]. The proof is complete.

Remark 5. In fact, if it holds that 𝑢(𝑡) ∈ 𝐶[0, 1] and that
𝐷
𝑞

0+
𝑢(𝑡) ∈ 𝐶[0, 1], 𝑞 ∈ (1, 2), then by Lemma 3, Property 1(1),

(3), and Γ(0) = ∞, it directly follows that lim
𝛿→𝑞

−𝐷
𝛿

0+
𝑢(𝑡) =

𝐷
𝑞

0+
𝑢(𝑡), ∀𝑡 ∈ (0, 1]. With the above arguments in Lemma 4,

we easily get the following result.

Lemma 6. Suppose that 𝑢(𝑡) ∈ 𝐶[0, 1] and𝐷𝑞
0+
𝑢(𝑡) ∈ 𝐶[0, 1],

𝑞 ∈ (0, 1), then lim
𝛿→𝑞

−𝐷
𝛿

0+
𝑢(𝑡) = 𝐷

𝑞

0+
𝑢(𝑡), 𝑡 ∈ [0, 1].

Lemma 7. If 𝑔(𝑡) ∈ 𝐶[0, 1], then the following fractional
boundary value problem

𝐷
𝑞

0+
𝑢 (𝑡) + 𝑔 (𝑡) = 0, 0 < 𝑡 < 1, 1 < 𝑞 < 2,

𝑢 (0) = 0, 𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=1

= 𝜂,

(18)

has a unique solution:

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠 +
𝜂

Γ (𝑞)
𝑡
𝑞−1

, (19)

where

𝐺 (𝑡, 𝑠) =
1

Γ (𝑞)
{
𝑡
𝑞−1

− (𝑡 − 𝑠)
𝑞−1

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝑞−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.
(20)

The proof is standard; we omit it here.

Remark 8. Obviously, 𝐺(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and 𝐺(𝑡, 𝑠) ≤
𝑡
𝑞−1

/Γ(𝑞), (𝑡, 𝑠) ∈ [0, 1] × [0, 1].

In [18], Al-Refai obtained the following interesting result
concerning the Riemann-Liouville fractional derivative at
extreme points, where there is a little mistake. Now we state
it correctly without proof.

Theorem 9 (see [18]). Let 𝑢(𝑡) ∈ 𝐶
2

[0, 1] attain its global
minimum at 𝑡

0
∈ (0, 1); then

𝐷
𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≥
(1 − 𝛿)

Γ (2 − 𝛿)
𝑡
−𝛿

0
𝑢 (𝑡
0
) , ∀1 < 𝛿 < 2. (21)

Remark 10. In the sense of Riemann-Liouville fractional
derivative of order 1 < 𝛿 < 2, in general the assumption that
𝑢 ∈ 𝐶

2

[0, 1] is difficult to meet due to the fact that the funda-
mental solution of certain corresponding homogeneous dif-
ferential equations possesses a singularity at 𝑡 = 0. Hence, we
hope to weaken the conditions of the above theorem.

In the following, we give some lemmas, wherein some
ideas in the proofs come from [18, 19], with weaker hypothe-
ses.

Lemma 11. Assume that 𝑢(𝑡) ∈ 𝐶[0, 1] ∩ 𝐶1(0, 1] satisfies the
following conditions:

(i) 𝐷𝛿
0+
𝑢(𝑡) exist, 𝑡 ∈ [0, 1], for 𝛿 ∈ (1, 2);

(ii) there exists constant 𝜃 > 0, such that 𝑡𝜃𝑢(𝑡) is Hölder
continuous with exponent 𝜎 > 𝛿 − 1;

(iii) 𝑢(𝑡) attains its global minimum at 𝑡
0
∈ (0, 1).

Then,

𝐷
𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≥
(1 − 𝛿)

Γ (2 − 𝛿)
𝑡
−𝛿

0
𝑢 (𝑡
0
) , ∀1 < 𝛿 < 2. (22)

Moreover, if 𝑢(𝑡
0
) ≤ 0, then𝐷𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≥ 0.

Proof. Let 𝑓(𝑡) := 𝑢(𝑡) − 𝑢(𝑡
0
), 𝑡 ∈ [0, 1]. Obviously, 𝑓(𝑡) ∈

𝐶[0, 1] ∩𝐶
1

(0, 1], satisfying the conditions (i)–(iii). It follows
that

𝑓


(𝑡) = 𝑢


(𝑡) , 𝑓 (𝑡) ≥ 0, 𝑡 ∈ [0, 1] ,

𝑓 (𝑡
0
) = 𝑓


(𝑡
0
) = 0,

(23)

𝐷
𝛿

0+
𝑓 (𝑡) = 𝐷

𝛿

0+
𝑢 (𝑡) −

1 − 𝛿

Γ (2 − 𝛿)
𝑡
−𝛿

𝑢 (𝑡
0
) , 𝑡 ∈ [0, 1] .

(24)

Since 𝑓 ∈ 𝐶[0, 1] ∩ 𝐶
1

(0, 1], we know that 𝑓(𝑡) = 𝑓(0) +

∫
𝑡

0

𝑓


(𝑠)𝑑𝑠, 𝑡 ∈ (0, 1]. Then for 1 < 𝛿 < 2, it follows from
proofs of Lemma 2.1 in [1] that

𝐻(𝑡) := 𝐷
𝛿−1

0+
𝑓 (𝑡)

=
𝑓 (0)

Γ (2 − 𝛿)
𝑡
1−𝛿

+
1

Γ (2 − 𝛿)
∫

𝑡

0

𝑓


(𝑠)

(𝑡 − 𝑠)
𝛿−1

𝑑𝑠,

𝑡 ∈ (0, 1] .

(25)
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At this point, we choose enough small constant 𝑟, such
that 0 < 𝑟 < 1 − 𝑡

0
. Since 𝐷𝛿

0+
𝑓(𝑡) exists, 𝐷𝛿

0+
𝑓(𝑡)
|𝑡=𝑡
0

=

𝐻


(𝑡
0
) = lim

𝑟→0
+((𝐻(𝑡

0
+ 𝑟) − 𝐻(𝑡

0
))/𝑟). We consider

𝐻(𝑡
0
+ 𝑟) − 𝐻 (𝑡

0
)

=
1

Γ (2 − 𝛿)
{∫

𝑡
0

0

[(𝑡
0
+ 𝑟 − 𝑠)

1−𝛿

− (𝑡
0
− 𝑠)
1−𝛿

] 𝑓


(𝑠) 𝑑𝑠

+∫

𝑡
0

+𝑟

𝑡
0

(𝑡
0
+ 𝑟 − 𝑠)

1−𝛿

𝑓


(𝑠) 𝑑𝑠}

+
𝑓 (0)

Γ (2 − 𝛿)
[(𝑡
0
+ 𝑟)
1−𝛿

− 𝑡
1−𝛿

0
] .

(26)

It obviously follows from 𝑓 ∈ 𝐶
1

[𝑡
0
, 1] that the second inte-

gration in (26) converges, and then the first integration in
(26) also converges. For the latter, applying the integration by
parts, together with (23), we have

∫

𝑡
0

0

[(𝑡
0
+ 𝑟 − 𝑠)

1−𝛿

− (𝑡
0
− 𝑠)
1−𝛿

] 𝑓


(𝑠) 𝑑𝑠

= lim
𝑠→ 𝑡
−

0

[(𝑡
0
+ 𝑟 − 𝑠)

1−𝛿

− (𝑡
0
− 𝑠)
1−𝛿

] 𝑓 (𝑠)

− lim
𝑠→0
+

[(𝑡
0
+ 𝑟 − 𝑠)

1−𝛿

− (𝑡
0
− 𝑠)
1−𝛿

] 𝑓 (𝑠)

+ (1 − 𝛿) ∫

𝑡
0

0

[(𝑡
0
+ 𝑟 − 𝑠)

−𝛿

− (𝑡
0
− 𝑠)
−𝛿

] 𝑓 (𝑠) 𝑑𝑠

= 𝑟
1−𝛿

𝑓 (𝑡
0
) − lim
𝑠→ 𝑡
−

0

𝑓 (𝑠)

(𝑡
0
− 𝑠)
𝛿−1

− [(𝑡
0
+ 𝑟)
1−𝛿

− 𝑡
1−𝛿

0
] 𝑓 (0)

+ (1 − 𝛿) ∫

𝑡
0

0

[(𝑡
0
+ 𝑟 − 𝑠)

−𝛿

− (𝑡
0
− 𝑠)
−𝛿

] 𝑓 (𝑠) 𝑑𝑠

= lim
𝑠→ 𝑡
−

0

𝑓 (𝑡
0
) − 𝑓 (𝑠)

𝑡
0
− 𝑠

(𝑡
0
− 𝑠)
2−𝛿

+ (1 − 𝛿) ∫

𝑡
0

0

[(𝑡
0
+ 𝑟 − 𝑠)

−𝛿

− (𝑡
0
− 𝑠)
−𝛿

] 𝑓 (𝑠) 𝑑𝑠

− [(𝑡
0
+ 𝑟)
1−𝛿

− 𝑡
1−𝛿

0
] 𝑓 (0)

= (1 − 𝛿) ∫

𝑡
0

0

[(𝑡
0
+ 𝑟 − 𝑠)

−𝛿

− (𝑡
0
− 𝑠)
−𝛿

] 𝑓 (𝑠) 𝑑𝑠

− [(𝑡
0
+ 𝑟)
1−𝛿

− 𝑡
1−𝛿

0
] 𝑓 (0)

≥ − [(𝑡
0
+ 𝑟)
1−𝛿

− 𝑡
1−𝛿

0
] 𝑓 (0) ,

(27)

due to the fact 𝛿 ∈ (1, 2),𝑓(𝑡) ≥ 0, and (𝑡
0
+𝑟−𝑠)

−𝛿

< (𝑡
0
−𝑠)
−𝛿.

Hence (26) yields that

𝐻(𝑡
0
+ 𝑟) − 𝐻 (𝑡

0
) ≥

1

Γ (2 − 𝛿)
∫

𝑡
0

+𝑟

𝑡
0

(𝑡
0
+ 𝑟 − 𝑠)

1−𝛿

𝑓


(𝑠) 𝑑𝑠.

(28)

From the Hölder continuity of 𝑡𝜃𝑓(𝑡) on [0, 1] for some
𝜃 > 0, it follows that there exists constant𝐾 > 0, such that


𝑡
𝜃

𝑓


(𝑡)

=

𝑡
𝜃

𝑓


(𝑡) − 𝑡
𝜃

0
𝑓


(𝑡
0
)

≤ 𝐾(𝑡 − 𝑡

0
)
𝜎

,

𝑡 ∈ [𝑡
0
, 1] , 𝜎 > 𝛿 − 1.

(29)

For 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑟] ⊂ [𝑡

0
, 1], we have |𝑓(𝑡)| ≤ 𝐾𝑡−𝜃(𝑡 − 𝑡

0
)
𝜎

≤

𝐾𝑡
−𝜃

0
𝑟
𝜎. Thus,

𝐻(𝑡
0
+ 𝑟) − 𝐻 (𝑡

0
) ≥

−𝐾𝑡
−𝜃

0
𝑟
𝜎

Γ (2 − 𝛿)
∫

𝑡
0

+𝑟

𝑡
0

(𝑡
0
+ 𝑟 − 𝑠)

1−𝛿

𝑑𝑠

=
−𝐾𝑡
−𝜃

0

Γ (3 − 𝛿)
𝑟
2+𝜎−𝛿

.

(30)

Dividing by 𝑟 on both sides of (30) and taking the limit 𝑟 →
0, one gets

𝐷
𝛿

0+
𝑓(𝑡)
|𝑡=𝑡
0

= lim
𝑟→0
+

𝐻(𝑡
0
+ 𝑟) − 𝐻 (𝑡

0
)

𝑟

≥ lim
𝑟→0
+

−𝐾𝑡
𝛿−2

0

Γ (3 − 𝛿)
𝑟
1+𝜎−𝛿

= 0.

(31)

Together with (24), we obtain

𝐷
𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≥
1 − 𝛿

Γ (2 − 𝛿)
𝑡
−𝛿

0
𝑢 (𝑡
0
) , 𝑡

0
∈ (0, 1) . (32)

The proof is complete.

Remark 12. Lemma 11 is an essential improvement of Theo-
rem 9 and crucial for our main theorems. By applying the
above results on −𝑢(𝑡), analogous results for Riemann-
Liouville fractional derivatives at global maximum points are
derived. It is worth mentioning that the weaker requirement
𝜎 > 𝛿 − 1 in (ii) seems to be unsatisfactory as well, since in
general the exponent 𝜎 may be guaranteed only up to 𝛿 − 1.
To solve the difficulty, the ideas of reducing the order and
approach method are employed in our main theorems.

Spontaneously for the case 0 < 𝛿 < 1, Lakshmikantham
andVatsala in [19] established the following result concerning
Riemann-Liouville fractional derivative.

Theorem 13 (see [19]). Let 𝑢(𝑡) : R
+
→ R be locally Hölder

continuous such that for any 𝑡
0
∈ (0,∞), we have

𝑢 (𝑡
0
) = 0, 𝑢 (𝑡) ≤ 0, for 0 ≤ 𝑡 ≤ 𝑡

0
. (33)

Then it follows that

𝐷
𝛿

0+
𝑢 (𝑡
0
) ≥ 0, 0 < 𝛿 < 1. (34)



Abstract and Applied Analysis 5

Remark 14. As the literature [20] points out, in general, the
function 𝑢(𝑡) containing term 𝑡

𝛿−1

, 𝛿 ∈ (0, 1) is not locally
Hölder continuous of any order. For this reason, in [20, 21] the
authors attempt to weaken the locally Hölder continuity to
𝐶
1−𝛿

continuity on 𝑢(𝑡); nevertheless, their arguments seem
to be flawed as well. Similarl to the proof of Lemma 11, we get
the following lemma.

Lemma 15. Assume that 𝑢(𝑡) ∈ 𝐶(0, 1] satisfies the following
conditions:

(i) 𝐷𝛿
0+
𝑢(𝑡) exist, 𝑡 ∈ [0, 1], for 𝛿 ∈ (0, 1);

(ii) there exists constant 𝜃 ≥ 0, such that 𝑡𝜃𝑢(𝑡) is Hölder
continuous with exponent 𝜎 > 𝛿;

(iii) 𝑢(𝑡) attains its global minimum at 𝑡
0
∈ (0, 1].

Then,

𝐷
𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≤
𝑡
−𝛿

0

Γ (1 − 𝛿)
𝑢 (𝑡
0
) , ∀0 < 𝛿 < 1. (35)

Moreover, if 𝑢(𝑡
0
) ≤ 0, then𝐷𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≤ 0.

Remark 16. Note that in the case 𝛿 ∈ (0, 1), we allow 𝑢(𝑡) to
attain the minimum at the endpoint 𝑡

0
= 1. In fact, analogous

result for Lemma 15 at global maximum points is the
generalization of Theorem 13.

Recently, some results, for instance, Lemma 2.13 in
[22] and Property 4 [23] concerning Hölder continuity for
Riemann-Liouville fractional integral operator have been
obtained. Therein Bourdin in [23] has proved that fractional
integral operator 𝐼𝛿

0+
, 𝛿 ∈ (0, 1)maps 𝐿

𝑝
functions to Hölder

continuous functions, the exponent of which depends on 𝛿
and 𝑝. In the following, we give some other results about
Hölder continuity.

Lemma 17. Let 0 < 𝛿 < 1, 𝑓(𝑡) ∈ 𝐶[0, 1]. Then 𝐼𝛿
0+
𝑓(𝑡) is

Hölder continuous with exponent 𝛿 on [0, 1].

Proof. Similar to the proof of Property 4 [23], Lemma 17 is
easily obtained. So we omit the proof.

Lemma 18 (see [24]). Suppose that 0 < 𝑎 ≤ 𝑡
1
≤ 𝑡
2
≤ 𝜉,

0 < 𝜃 < 1; then,

(𝑡
1
+ 𝑡
2
)
𝜃

≤ 𝑡
𝜃

1
+ 𝑡
𝜃

2
. (36)

Remark 19. Obviously, Lemma 18 is valid under the assump-
tions 0 ≤ 𝑡

1
≤ 𝑡
2
≤ 𝜉, 0 < 𝜃 < 1.

Lemma 20. Let 𝑓(𝑡) be Hölder continuous with exponent 𝛿 ∈
(0, 1] on [0, 1]. Then 𝑡𝜃𝑓(𝑡), 𝜃 > 0 is Hölder continuous with
exponentmin{𝛿, 𝜃} on [0, 1].

Proof. From the Hölder continuity of 𝑓 on [0, 1], it obviously
follows that there exist some 𝐿

1
, 𝐿
2
> 0, such that |𝑓(𝑡)| ≤ 𝐿

1

and
𝑓 (𝑡1) − 𝑓 (𝑡2)

 ≤ 𝐿2
𝑡1 − 𝑡2



𝛿

, ∀𝑡
1
, 𝑡
2
∈ [0, 1] . (37)

Without loss of generality, let 𝑡
1
> 𝑡
2
. Then,


𝑡
𝜃

1
𝑓 (𝑡
1
) − 𝑡
𝜃

2
𝑓 (𝑡
2
)


=

𝑡
𝜃

1
𝑓 (𝑡
1
) − 𝑡
𝜃

1
𝑓 (𝑡
2
) + 𝑡
𝜃

1
𝑓 (𝑡
2
) − 𝑡
𝜃

2
𝑓 (𝑡
2
)


≤ 𝑡
𝜃

1

𝑓 (𝑡1) − 𝑓 (𝑡2)
 +

𝑓 (𝑡2)



𝑡
𝜃

1
− 𝑡
𝜃

2



≤ 𝐿
2
(𝑡
1
− 𝑡
2
)
𝛿

+ 𝐿
1
(𝑡
𝜃

1
− 𝑡
𝜃

2
) .

(38)

If 0 < 𝜃 < 1, using Lemma 18 we have


𝑡
𝜃

1
𝑓 (𝑡
1
) − 𝑡
𝜃

2
𝑓 (𝑡
2
)

≤ 𝐿
3
(𝑡
1
− 𝑡
2
)
min{𝛿,𝜃}

,

for some 𝐿
3
> 0.

(39)

If 𝜃 ≥ 1, using the mean value theorem we have


𝑡
𝜃

1
𝑓 (𝑡
1
) − 𝑡
𝜃

2
𝑓 (𝑡
2
)

≤ 𝐿
4
(𝑡
1
− 𝑡
2
)
𝛿

,

for some 𝐿
4
> 0.

(40)

The proof is complete.

Combining Lemmas 17 and 20, we have the following
corollary.

Corollary 21. Let 0 < 𝛿 < 1, 𝑓(𝑡) ∈ 𝐶[0, 1]. Then 𝑡𝜃𝐼𝛿
0+
𝑓(𝑡),

𝜃 > 0 is Hölder continuous with exponentmin{𝜃, 𝛿} on [0, 1].

Nowwe introduce the upper and lower solutions of FBVP
(3).

Definition 22. A function 𝛼(𝑡) ∈ 𝐶[0, 1] ∩ 𝐶1(0, 1], satisfying
𝐷
𝑞

0+
𝛼(𝑡) ∈ 𝐿(0, 1) with 𝑡𝜃𝛼(𝑡) ∈ 𝐻𝑞−1

0
[0, 1], ∀𝜃 ≥ 1, is called

a lower solution of FBVP (3), if it satisfies

𝐷
𝑞

0+
𝛼 (𝑡) + 𝑓 (𝑡, 𝛼 (𝑡) , 𝐷

𝑞−1

0+
𝛼 (𝑡)) ≥ 0,

𝑡 ∈ [0, 1] , 1 < 𝑞 < 2,

(41)

𝛼 (0) = 0, 𝐷
𝑞−1

0+
𝛼(𝑡)
|𝑡=1

≤ 𝜂. (42)

Analogously, a function 𝛽(𝑡) ∈ 𝐶[0, 1] ∩ 𝐶
1

(0, 1], satisfying
𝐷
𝑞

0+
𝛽(𝑡) ∈ 𝐿(0, 1) with 𝑡𝜃𝛽(𝑡) ∈ 𝐻𝑞−1

0
[0, 1], ∀𝜃 ≥ 1, is called

an upper solution of FBVP (3), if it satisfies (41)-(42) with
reversed inequalities.

Definition 23. Given a pair of functions 𝛼(𝑡), 𝛽(𝑡) satisfying
𝛼(𝑡) ≤ 𝛽(𝑡). A function 𝑓 : [0, 1] × R2 → R is said to satisfy
the Nagumo condition with respect to 𝛼(𝑡) and 𝛽(𝑡), if there
exists a functionΦ ∈ 𝐶([0,∞), (0,∞)) such that

𝑓 (𝑡, 𝑢, V)
 ≤ Φ (|V|) , (43)

for all (𝑡, 𝑢, V) ∈ [0, 1] × [𝛼(𝑡), 𝛽(𝑡)] ×R, and

∫

+∞

0

𝑠

Φ (𝑠)
𝑑𝑠 = +∞. (44)
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3. Main Results

In this section, we will apply the method of upper and lower
solutions combined with fixed point theorem to consider the
existence of solutions of FBVP (3).

Denote by 𝐻
𝛿

0
[0, 1] the set consisting of the Hölder

continuous functions 𝑢(𝑡) with exponent 𝛿 ∈ (0, 1] on [0, 1]
and 𝑢(0) = 0.

In this paper, we consider the Banach space 𝐸 defined by

𝐸 = {𝑢 (𝑡) ∈ 𝐶 [0, 1] : 𝐷
𝑞−1

0+
𝑢 (𝑡) ∈ 𝐶 [0, 1]} , (45)

with the norm ‖𝑢(𝑡)‖ = max
0≤𝑡≤1

|𝑢(𝑡)| +max
0≤𝑡≤1

|𝐷
𝑞−1

0+
𝑢(𝑡)|.

In fact, by Lemmas 3 and 17 it is derived that 𝐸 ⊂ 𝐻𝑞−1
0
[0, 1].

The main results in this paper are the following.

Theorem 24. Assume that the following conditions hold:
(H
1
) FBVP (3) has a pair of upper and lower solutions
𝛽(𝑡), 𝛼(𝑡), respectively, with

𝛼 (𝑡) ≤ 𝛽 (𝑡) , 𝑡 ∈ [0, 1] ; (46)

(H
2
) 𝑓(𝑡, 𝑢, V) ∈ 𝐶([0, 1] × R2,R) is nonincreasing with
respect to the third variable;

(H
3
) 𝑓 satisfies the Nagumo condition with respect to 𝛼(𝑡)
and 𝛽(𝑡).

Then FBVP (3) has at least one solution 𝑢(𝑡) ∈ 𝐶[0, 1] with
𝐷
𝑞−1

0+
𝑢(𝑡) ∈ 𝐶[0, 1], such that

𝛼 (𝑡) ≤ 𝑢 (𝑡) ≤ 𝛽 (𝑡) , 𝑡 ∈ [0, 1] . (47)

Proof. From the assumptions (H
1
) and (H

3
), we know

𝜆 := max
0≤𝑡≤1

𝐼
2−𝑞

0+
𝛽 (𝑡) − min

0≤𝑡≤1

𝐼
2−𝑞

0+
𝛼 (𝑡) ≥ 0, (48)

due to themonotonicity of Riemann-Liouville fractional inte-
gral operator 𝐼2−𝑞

0+
. And choose constant 𝐶 > 𝜆, such that

∫

𝐶

𝜆

𝑠

Φ (𝑠)
𝑑𝑠 > 𝜆. (49)

It is easy to obtain that 𝛼(𝑡), 𝛽(𝑡) ∈ 𝐸. We let

𝐿 ≥ max {max
0≤𝑡≤1


𝐷
𝑞−1

0+
𝛽 (𝑡)


,max
0≤𝑡≤1


𝐷
𝑞−1

0+
𝛼 (𝑡)


, 𝐶,

𝜂
} , (50)

and consider the following modified fractional boundary
value problem:

𝐷
𝑞

0+
𝑢 (𝑡) + 𝐹 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞−1

0+
𝑢 (𝑡)) = 0, 𝑡 ∈ [0, 1] , (51)

𝑢 (0) = 0, 𝐷
𝑞−1

0+
𝑢 (1) = 𝜂, (52)

where

𝐹 (𝑡, 𝑢, V) =
{{

{{

{

𝑓
1
(𝑡, 𝛼 (𝑡) , V) , 𝑢 < 𝛼 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑓
1
(𝑡, 𝑢, V) , 𝛼 (𝑡) ≤ 𝑢 ≤ 𝛽 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑓
1
(𝑡, 𝛽 (𝑡) , V) , 𝑢 > 𝛽 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑓
1
(𝑡, 𝑢, V) =

{{

{{

{

𝑓 (𝑡, 𝑢, −𝐿) , V < −𝐿, 𝑡 ∈ [0, 1] ,
𝑓 (𝑡, 𝑢, V) , −𝐿 ≤ V ≤ 𝐿, 𝑡 ∈ [0, 1] ,
𝑓 (𝑡, 𝑢, 𝐿) , V > 𝐿, 𝑡 ∈ [0, 1] .

(53)

Obviously, 𝐹(𝑡, 𝑢, V) ∈ 𝐶([0, 1] × R2,R) is
bounded; that is, there exists positive constant 𝑀 ≥

max
0≤𝑡≤1,𝛼(𝑡)≤𝑢≤𝛽(𝑡),−𝐿≤V≤𝐿|𝑓(𝑡, 𝑢, V)|, such that

|𝐹 (𝑡, 𝑢, V)| ≤ 𝑀, (𝑡, 𝑢, V) ∈ [0, 1] ×R
2

. (54)

To the end, it is sufficient to show that themodified FBVP
(51)-(52) has at least one solution 𝑢(𝑡), satisfying

𝛼 (𝑡) ≤ 𝑢 (𝑡) ≤ 𝛽 (𝑡) ,

𝐷
𝑞−1

0+
𝑢 (𝑡)


≤ 𝐿, 𝑡 ∈ [0, 1] . (55)

We divide the proof into three steps.

Step 1. FBVP (51)-(52) has at least one solution 𝑢(𝑡) ∈ 𝐶[0, 1]
with𝐷𝑞−1

0+
𝑢(𝑡) ∈ 𝐶[0, 1].

Firstly, we define the operator 𝑇 : 𝐸 → 𝐸 by

𝑇𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑢 (𝑠) , 𝐷
𝑞−1

0+
𝑢 (𝑠)) 𝑑𝑠 +

𝜂

Γ (𝑞)
𝑡
𝑞−1

,

𝑡 ∈ [0, 1] .

(56)

From the continuity of𝐺(𝑡, 𝑠) and𝐹, it is not difficult to verify
that the operator 𝑇 : 𝐸 → 𝐸 is well defined and continuous.

By Lemma 7 we can see that the fixed points of𝑇 coincide
with the solutions of FBVP (51)-(52). In the following, we
prove that 𝑇 has a fixed point in 𝐸.

Secondly, since𝐷𝑞−1
0+
𝑇𝑢(𝑡) = ∫

1

𝑡

𝐹(𝑠, 𝑢(𝑠),𝐷𝑞−1
0+
𝑢(𝑠))𝑑𝑠+𝜂,

𝐹 is bounded by𝑀, and 𝐺(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]), together
with (56) we easily obtain that 𝑇Ω is uniformly bounded
(here,Ω is a bounded subset of 𝐸).

For ∀𝑢 ∈ Ω, 𝑡
1
, 𝑡
2
∈ [0, 1], without loss of generality, let

𝑡
1
> 𝑡
2
. We have

𝑇𝑢 (𝑡1) − 𝑇𝑢 (𝑡2)


≤ ∫

1

0

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)



𝐹 (𝑠, 𝑢 (𝑠) , 𝐷

𝑞−1

0+
𝑢 (𝑠))


𝑑𝑠

+

𝜂


Γ (𝑞)


𝑡
𝑞−1

1
− 𝑡
𝑞−1

2



≤
𝑀 +

𝜂


Γ (𝑞)
(𝑡
𝑞−1

1
− 𝑡
𝑞−1

2
) +

𝑀

Γ (𝑞 + 1)
(𝑡
𝑞

1
− 𝑡
𝑞

2
)

→ 0, 𝑡
1
→ 𝑡
2
,


𝐷
𝑞−1

0+
𝑇𝑢(𝑡)
|𝑡=𝑡
1

− 𝐷
𝑞−1

0+
𝑇𝑢(𝑡)
|𝑡=𝑡
2


≤ 𝑀 (𝑡

1
− 𝑡
2
)

→ 0, 𝑡
1
→ 𝑡
2
.

(57)

That is,𝑇Ω is equicontinuous. According to theAscoli-Arzela
theorem, we know that 𝑇 : 𝐸 → 𝐸 is completely continuous.

By the Schauder fixed point theorem, we can easily obtain
that 𝑇 has at least one fixed point 𝑢(𝑡) ∈ 𝐶[0, 1] with
𝐷
𝑞−1

0+
𝑢(𝑡) ∈ 𝐶[0, 1].

Step 2. The function 𝑢(𝑡) ∈ 𝐸 satisfies 𝛼(𝑡) ≤ 𝑢(𝑡) ≤ 𝛽(𝑡),
𝑡 ∈ [0, 1].
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Suppose that 𝑢(𝑡) ≥ 𝛼(𝑡) on [0, 1] is not true; then𝑤(𝑡) :=
𝑢(𝑡) − 𝛼(𝑡) has a negative minimum at some 𝑡

0
∈ [0, 1]; that

is, 𝑤(𝑡
0
) = min{𝑢(𝑡) − 𝛼(𝑡) | 𝑡 ∈ [0, 1]} < 0.

If 𝑡
0
= 0, then 𝑢(0) < 𝛼(0). From (42) and (52) we have

the contradiction 𝛼(0) = 𝑢(0) = 0.
If 𝑡
0
∈ (0, 1), that is, 𝑢(𝑡

0
) < 𝛼(𝑡

0
). Obviously, 𝑤(𝑡) ∈

𝐶[0, 1], 𝐷𝑞
0+
𝑤(𝑡) = 𝐷

𝑞

0+
𝑢(𝑡) − 𝐷

𝑞

0+
𝛼(𝑡) ∈ 𝐿(0, 1), which

deduces 𝐷𝑞−1
0+
𝑤(𝑡) ∈ 𝐶[0, 1]. Choosing enough small 𝑝 ∈

(0, 𝑞−1), by Lemma4weobtain that𝐷𝑞−𝑝
0+

𝑤(𝑡) exists, 𝑡 ∈ [0, 1]
and

lim
𝑝→0

𝐷
𝑞−𝑝

0+
𝑤 (𝑡) = 𝐷

𝑞

0+
𝑤 (𝑡) , 𝑡 ∈ (0, 1] . (58)

Now, denote 𝐹(⋅, 𝑢(⋅), 𝐷𝑞−1
0+
𝑢(⋅)), for brevity, by 𝐹. From

(56) it follows that

𝑢 (𝑡) =

∫
1

0

𝐹 (𝑠) 𝑑𝑠 + 𝜂

Γ (𝑞)
𝑡
𝑞−1

− 𝐼
𝑞

0+
𝐹 (𝑡) ∈ 𝐶 [0, 1] . (59)

Choosing 𝜃 = 3 − 𝑞 > 1 in Lemma 11, then

𝑡
𝜃

𝑢


(𝑡) = 𝑡
3−𝑞

𝑢


(𝑡) =

∫
1

0

𝐹 (𝑠) 𝑑𝑠 + 𝜂

Γ (𝑞 − 1)
𝑡 − 𝑡
3−𝑞

𝐼
𝑞−1

0+
𝐹 (𝑡) .

(60)

Obviously, the first term on the right side of (60) is Lipschitz
continuous in 𝑡 ∈ [0, 1]. For the second term on the right
side of (60), by the continuity of𝐹 and Corollary 21 we obtain
𝑡
3−𝑞

𝐼
𝑞−1

0+
𝐹(𝑡) ∈ 𝐻

𝑞−1

0
[0, 1]. Thus, it is deduced that 𝑡3−𝑞𝑢(𝑡) ∈

𝐻
𝑞−1

0
[0, 1].

On account of 𝛼(𝑡) ∈ 𝐶[0, 1] ∩ 𝐶
1

(0, 1] and 𝑡3−𝑞𝛼(𝑡) ∈
𝐻
𝑞−1

0
[0, 1], we have 𝑤(𝑡) ∈ 𝐶[0, 1] ∩ 𝐶1(0, 1] and 𝑡3−𝑞𝑤(𝑡) is

Hölder continuous with exponent 𝑞 − 1 > 𝑞 − 𝑝 − 1. At this
point, by Lemma 11 we obtain

𝐷
𝑞−𝑝

0+
𝑤(𝑡)
|𝑡=𝑡
0

≥
1 − 𝑞 + 𝑝

Γ (2 − 𝑞 + 𝑝)
𝑡
𝑝−𝑞

0
𝑤 (𝑡
0
) , 1 < 𝑞 − 𝑝 < 2.

(61)

Taking the limit 𝑝 → 0 in (61), it follows by (58) and𝑤(𝑡
0
) <

0 that

𝐷
𝑞

0+
𝑤(𝑡)
|𝑡=𝑡
0

≥
1 − 𝑞

Γ (2 − 𝑞)
𝑡
−𝑞

0
𝑤 (𝑡
0
) > 0. (62)

On the other hand, firstly we claim that it holds that
𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
0

< 𝐷
𝑞−1

0+
𝛼(𝑡)
|𝑡=𝑡
0

. It obviously follows that 𝑤(𝑡) ∈
𝐸. Then by Lemma 6 we know

lim
𝑝→0

𝐷
𝑞−1−𝑝

0+
𝑤 (𝑡) = 𝐷

𝑞−1

0+
𝑤 (𝑡) , 𝑡 ∈ [0, 1] . (63)

Analogouslywith above arguments for (62), by Lemma 15 and
(63) it is not hard to obtain that

𝐷
𝑞−1

0+
𝑤(𝑡)
|𝑡=𝑡
0

≤
𝑡
1−𝑞

0

Γ (2 − 𝑞)
𝑤 (𝑡
0
) < 0, 0 < 𝑞 − 1 < 1.

(64)

That is, 𝐷𝑞−1
0+
𝑢(𝑡)
|𝑡=𝑡
0

< 𝐷
𝑞−1

0+
𝛼(𝑡)
|𝑡=𝑡
0

. The claim is proved.
Again together with (H

1
), (H
2
), and −𝐿 ≤ 𝐷𝑞−1

0+
𝛼(𝑡)
|𝑡=𝑡
0

≤ 𝐿,
for 𝑢(𝑡

0
) < 𝛼(𝑡

0
), we have the following two cases.

Case 1. When −𝐿 ≤ 𝐷𝑞−1
0+
𝑢(𝑡)
|𝑡=𝑡
0

≤ 𝐿,

𝐷
𝑞

0+
𝑤(𝑡)
|𝑡=𝑡
0

= 𝐷
𝑞

0+
𝑢 (𝑡)
|𝑡=𝑡
0

− 𝐷
𝑞

0+
𝛼(𝑡)
|𝑡=𝑡
0

≤ − 𝐹 (𝑡
0
, 𝑢 (𝑡
0
) , 𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
0

)

+ 𝑓 (𝑡
0
, 𝛼 (𝑡
0
) , 𝐷
𝑞−1

0+
𝛼(𝑡)
|𝑡=𝑡
0

)

= − 𝑓 (𝑡
0
, 𝛼 (𝑡
0
) , 𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
0

)

+ 𝑓 (𝑡
0
, 𝛼 (𝑡
0
) , 𝐷
𝑞−1

0+
𝛼(𝑡)
|𝑡=𝑡
0

)

≤ 0,

(65)

which contradicts (62).

Case 2. When𝐷𝑞−1
0+
𝑢(𝑡)
|𝑡=𝑡
0

< −𝐿,

𝐷
𝑞

0+
𝑤(𝑡)
|𝑡=𝑡
0

= 𝐷
𝑞

0+
𝑢(𝑡)
|𝑡=𝑡
0

− 𝐷
𝑞

0+
𝛼(𝑡)
|𝑡=𝑡
0

≤ − 𝐹 (𝑡
0
, 𝑢 (𝑡
0
) , 𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
0

)

+ 𝑓 (𝑡
0
, 𝛼 (𝑡
0
) , 𝐷
𝑞−1

0+
𝛼(𝑡)
|𝑡=𝑡
0

)

= − 𝑓 (𝑡
0
, 𝛼 (𝑡
0
) , −𝐿)

+ 𝑓 (𝑡
0
, 𝛼 (𝑡
0
) , 𝐷
𝑞−1

0+
𝛼(𝑡)
|𝑡=𝑡
0

)

≤ 0,

(66)

which contradicts (62).
Thus, we know that the minimum point 𝑡

0
satisfying

𝑢(𝑡) < 𝛼(𝑡) does not occur on (0, 1).
If 𝑡
0
= 1, that is, 𝑤(1) < 0. By the boundary conditions

(42) and (52), we have

𝐷
𝑞−1

0+
𝑤(𝑡)
|𝑡=1

= 𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=1

− 𝐷
𝑞−1

0+
𝛼(𝑡)
|𝑡=1

≥ 0. (67)

However, analogously with above arguments for (64) we
obtain

𝐷
𝑞−1

0+
𝑤(𝑡)
|𝑡=1

≤
𝑤 (1)

Γ (2 − 𝑞)
< 0, 0 < 𝑞 − 1 < 1, (68)

which is a contradiction.
Then it holds that 𝑢(𝑡) ≥ 𝛼(𝑡), 𝑡 ∈ [0, 1]. Analogously we

can also obtain that 𝑢(𝑡) ≤ 𝛽(𝑡), 𝑡 ∈ [0, 1]. Hence, we have
𝛼(𝑡) ≤ 𝑢(𝑡) ≤ 𝛽(𝑡), 𝑡 ∈ [0, 1].

Step 3. We prove that |𝐷𝑞−1
0+
𝑢(𝑡)| ≤ 𝐿 on [0, 1].

We only need to show that 𝐷𝑞−1
0+
𝑢(𝑡) ≤ 𝐿 on [0, 1].

Similarly we can show that𝐷𝑞−1
0+
𝑢(𝑡) ≥ −𝐿 on [0, 1].

Suppose that𝐷𝑞−1
0+
𝑢(𝑡) ≤ 𝐿 on [0, 1] is not true; then there

exists 𝑡
1

∈ [0, 1], satisfying 𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
1

> 𝐿. Due to
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𝐼
2−𝑞

0+
𝑢(𝑡) ∈ 𝐶

1

[0, 1], and 𝛼(𝑡) ≤ 𝑢(𝑡) ≤ 𝛽(𝑡), 𝑡 ∈ [0, 1], we
know that 𝐼2−𝑞

0+
𝛼(𝑡) ≤ 𝐼

2−𝑞

0+
𝑢(𝑡) ≤ 𝐼

2−𝑞

0+
𝛽(𝑡), and by the mean

value theorem, there exists 𝑡
2
∈ (0, 1), such that

𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
2

= 𝐼
2−𝑞

0+
𝑢(𝑡)
|𝑡=1

− 𝐼
2−𝑞

0+
𝑢(𝑡)
|𝑡=0

≤ 𝜆 < 𝐿 < 𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
1

.

(69)

Since 𝐷𝑞−1
0+
𝑢(𝑡) ∈ 𝐶[0, 1], there exists an interval [𝑡

3
, 𝑡
4
] ⊂

[0, 1] (or [𝑡
4
, 𝑡
3
] ⊂ [0, 1]) such that

𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
3

= 𝜆, 𝐷
𝑞−1

0+
𝑢(𝑡)
|𝑡=𝑡
4

= 𝐿,

𝜆 < 𝐷
𝑞−1

0+
𝑢 (𝑡) < 𝐿,

𝑡 ∈ (𝑡
3
, 𝑡
4
) .

(70)

Thus, by (H
3
) we have for 𝑡 ∈ (𝑡

3
, 𝑡
4
),

𝐷
𝑞

0+
𝑢 (𝑡) ≤


𝐹 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞−1

0+
𝑢 (𝑡))


=

𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞−1

0+
𝑢 (𝑡))



≤ Φ (

𝐷
𝑞−1

0+
𝑢 (𝑡)


) .

(71)

Then,


∫

𝑡
4

𝑡
3

𝐷
𝑞−1

0+
𝑢 (𝑡) ⋅ 𝐷

𝑞

0+
𝑢 (𝑡)

Φ (

𝐷
𝑞−1

0+
𝑢 (𝑡)


)

𝑑𝑡



≤



∫

𝑡
4

𝑡
3

𝐷
𝑞−1

0+
𝑢 (𝑡) 𝑑𝑡



=

𝐼
2−𝑞

0+
𝑢 (𝑡
4
) − 𝐼
2−𝑞

0+
𝑢 (𝑡
3
)


≤ 𝜆.

(72)

However, by (49)-(50) and Property 1(4) we have


∫

𝑡
4

𝑡
3

𝐷
𝑞−1

0+
𝑢 (𝑡) ⋅ 𝐷

𝑞

0+
𝑢 (𝑡)

Φ (

𝐷
𝑞−1

0+
𝑢 (𝑡)


)

𝑑𝑡



=



∫

𝐷
𝑞−1

0+

𝑢(𝑡)
|𝑡=𝑡

4

𝐷
𝑞−1

0+

𝑢(𝑡)
|𝑡=𝑡

3

𝑠

Φ (𝑠)
𝑑𝑠



= ∫

𝐿

𝜆

𝑠

Φ (𝑠)
𝑑𝑠 > 𝜆,

(73)

which is a contradiction with (72). So there holds that
𝐷
𝑞−1

0+
𝑢(𝑡) ≤ 𝐿, 𝑡 ∈ [0, 1]. Hence, we have that |𝐷𝑞−1

0+
𝑢(𝑡)| ≤ 𝐿,

𝑡 ∈ [0, 1].
Consequently, combining Step 2 and Step 3, we obtain

that

𝐷
𝑞

0+
𝑢 (𝑡) = 𝐹 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞−1

0+
𝑢 (𝑡)) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞−1

0+
𝑢 (𝑡)) ,

𝑡 ∈ [0, 1] .

(74)

That is to say, the solution 𝑢(𝑡) is a solution of FBVP (3).
Then FBVP (3) has at least one solution 𝑢(𝑡) ∈ 𝐶[0, 1] with
𝐷
𝑞−1

0+
𝑢(𝑡) ∈ 𝐶[0, 1], such that 𝛼(𝑡) ≤ 𝑢(𝑡) ≤ 𝛽(𝑡), 𝑡 ∈

[0, 1].

Remark 25. Observe that the validity of the first inequality
in (62) can be guaranteed by means of applying approach

method. With this idea, combining Lemma 3, Remark 5,
Lemma 11, and Corollary 21, under certain stronger condi-
tions instead of (i)-(ii) in Lemma 11, in the end we have two
more concise conclusions as follows.

Theorem26. Assume that𝑢(𝑡) ∈ 𝐶[0, 1] satisfies the following
conditions:

(i) 𝐷𝛿
0+
𝑢(𝑡) ∈ 𝐶[0, 1], for 𝛿 ∈ (1, 2);

(ii) 𝑢(𝑡) attains its global minimum at 𝑡
0
∈ (0, 1).

Then,

𝐷
𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≥
(1 − 𝛿)

Γ (2 − 𝛿)
𝑡
−𝛿

0
𝑢 (𝑡
0
) , ∀1 < 𝛿 < 2. (75)

Moreover, if 𝑢(𝑡
0
) ≤ 0, then𝐷𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≥ 0.

Remark 27. In fact, 𝐷𝛿
0+
𝑢(𝑡) ∈ 𝐶[0, 1] with 𝑢(𝑡) ∈ 𝐶[0, 1]

implies 𝑢(𝑡) ∈ 𝐶
1

(0, 1]. We emphasize that this result may
help to establish some fractional comparison principles for
the case of order lying in (1, 2), which play a very important
role in studying Riemann-Liouville fractional differential
equations by means of monotone iterative method. Some
related studies will be given in a future paper.

Theorem28. Assume that𝑢(𝑡) ∈ 𝐶(0, 1] satisfies the following
conditions:

(i) 𝐷𝛿
0+
𝑢(𝑡) ∈ 𝐶[0, 1], for 𝛿 ∈ (0, 1);

(ii) 𝑢(𝑡) attains its global minimum at 𝑡
0
∈ (0, 1].

Then,

𝐷
𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≤
𝑡
−𝛿

0

Γ (1 − 𝛿)
𝑢 (𝑡
0
) , ∀0 < 𝛿 < 1. (76)

Moreover, if 𝑢(𝑡
0
) ≤ 0, then𝐷𝛿

0+
𝑢(𝑡)
|𝑡=𝑡
0

≤ 0.

4. Examples

Example 29. Consider the following fractional boundary
value problem:

𝐷
1.5

0+
𝑢 (𝑡) − 𝑡 [𝑢 (𝑡) + 𝐷

0.5

0+
𝑢 (𝑡)] = 0, 𝑡 ∈ [0, 1] ,

𝑢 (0) = 0, 𝐷
0.5

0+
𝑢 (1) =

1

2
.

(77)

Let 𝑞 = 1.5,𝑓(𝑡, 𝑢, V) = −𝑡(𝑢+V). Obviously,𝑓 ∈ 𝐶([0, 1]×
R2,R), and 𝑑𝑓/𝑑V = −𝑡 ≤ 0, 𝑡 ∈ [0, 1]. It follows that 𝑓 is
nonincreasing with respect to V. Choose 𝛼(𝑡) = −(2/√𝜋)𝑡0.5,
𝑡 ∈ [0, 1], then 𝛼(𝑡) ∈ 𝐶[0, 1] ∩ 𝐶

1

(0, 1], 𝐷1.5
0+
𝛼(𝑡) = 0, and

𝑡
𝜃

𝛼


(𝑡) = −(1/√𝜋)𝑡
𝜃−0.5, ∀𝜃 ≥ 1, which deduces that 𝑡𝜃𝛼(𝑡) ∈

𝐻
0.5

0
[0, 1]. And it is not difficult to check out that 𝛼(𝑡) is a

lower solution of FBVP (77). Analogously, 𝛽(𝑡) = (2/√𝜋)𝑡0.5,
𝑡 ∈ [0, 1] is an upper solution of FBVP (77).
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Meanwhile, if we chooseΦ(𝑠) = 𝑠+2, thenwhen 𝑡 ∈ [0, 1],
−(2/√𝜋)𝑡

0.5

≤ 𝑢 ≤ (2/√𝜋)𝑡
0.5, V ∈ R, it holds that

𝑓 (𝑡, 𝑢, V)
 ≤

2

√𝜋
+ |V| ≤ Φ (|V|) ,

∫

+∞

0

𝑠

Φ (𝑠)
𝑑𝑠 = ∫

+∞

0

𝑠

𝑠 + 2
𝑑𝑠 = +∞.

(78)

That is, 𝑓 satisfies the Nagumo condition with respect to
−(2/√𝜋)𝑡

0.5 and (2/√𝜋)𝑡0.5.
Hence, byTheorem 24we have that FBVP (77) has at least

one solution 𝑢(𝑡), satisfying −(2/√𝜋)𝑡0.5 ≤ 𝑢(𝑡) ≤ (2/√𝜋)𝑡0.5,
𝑡 ∈ [0, 1].
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