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We address some forward and inverse problems involving indefinite eigenvalues for discrete 𝑝-Laplacian operators with potential
terms. These indefinite eigenvalues are the discrete analogues of 𝑝-Laplacians on Riemannian manifolds with potential terms.
We first define and discuss some fundamental properties of the indefinite eigenvalue problems for discrete 𝑝-Laplacian operators
with potential terms with respect to some given weight functions. We then discuss resonance problems, anti-minimum principles,
and inverse conductivity problems for the discrete 𝑝-Laplacian operators with potential terms involving the smallest indefinite
eigenvalues.

1. Introduction

In this paper, we study a generalized version of spectral
theory, resonance problems, antiminimum principles, and
inverse problems for discrete 𝑝-Laplacian operators with
potential terms on a network. We define a network as a way
of interconnecting any pair of users or nodes by means of
some meaningful links.Therefore, we represent a network by
a weighted graph 𝐺 = 𝐺(𝑆;𝜕𝑆, 𝐸, 𝜔) with a weight function.

The main goal of this paper is to characterize the
indefinite eigenvalues and to solve the inverse conductivity
problems for the equations

− Δ𝑝,𝜔𝜙 (𝑥) + 𝑉 (𝑥)
𝜙 (𝑥)


𝑝−2

𝜙 (𝑥)

= 𝜆ℎℎ (𝑥)
𝜙 (𝑥)


𝑝−2

𝜙 (𝑥) , 𝑥 ∈ 𝑆

𝜙 (𝑧) = 0, 𝑧 ∈ 𝜕𝑆,

(1)

where 𝑉 and ℎ are real valued functions on a network 𝑆 with
boundary 𝜕𝑆. Here, Δ𝑝,𝜔 is the discrete 𝑝-Laplacian on a
network 𝑆 with weight 𝜔 defined by
Δ𝑝,𝜔𝑢 (𝑥)

:= ∑

𝑦∈𝑆

𝑢 (𝑦) − 𝑢 (𝑥)

𝑝−2

(𝑢 (𝑦) − 𝑢 (𝑥)) 𝜔 (𝑥, 𝑦) , 𝑥 ∈ 𝑆

(2)

for 1 < 𝑝 < ∞. To address these problems, many researchers
have especially concentrated on spectral graph theory which
has been one of the most significant tools used in studying
graphs. This has led to noteworthy progress in the study of
these questions (see, e.g., [1, 2]). In this paper, we are primarily
concerned with indefinite eigenvalue problems.

In particular, we deal with these problems under the
assumptions that ℎ is positive and that ℎ has both positive
and negative values. For each case, we present properties for
the smallest indefinite eigenvalue 𝜆ℎ,0 as follows:

(i) the variationally expressed form of 𝜆ℎ,0,
(ii) the positivity of eigenfunctions corresponding to 𝜆ℎ,0,
(iii) the multiplicity of 𝜆ℎ,0.

Moreover, we also show that𝜆ℎ,0 is isolated. Using these prop-
erties, we then discuss resonance problems, antiminimum
principles, and the inverse conductivity problems. Note that
the uniqueness of the conductivity 𝜔 is not guaranteed from
𝜆ℎ,0. This implies that there can be different conductivities 𝜔1
and 𝜔2 on edges such that the smallest indefinite eigenvalues
of networks for 𝜔1 and 𝜔2 are the same. Therefore, to
guarantee the uniqueness of the conductivity, we impose
the additional constraint, the monotonicity condition, on
conductivity of the edges. The result for the case that ℎ is
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positive is Theorem 10 and the results for the other case of
ℎ are Theorems 18 and 19.

Recently, in order to expand the results on spectral
graph theory with respect to the above viewpoint, great
efforts have been concentrated on studying the properties
of graphs involving eigenvalues of operators such as discrete
Schrödinger or discrete 𝑝-Laplacian operators (see, e.g., [3–
8]) which are generalizations of the discrete Laplacian. In [9],
in particular, Amghibech introduces the indefinite eigenvalue
problem for the case where 𝑉 ≡ 0 and ℎ > 0 in (1)
and gives some characterizations of the smallest indefinite
eigenvalue. The author also addresses a resonance problem,
an antiminimum principle, and an inverse problem.

This paper is organized as follows. In Section 2, we recall
some basic terminology and properties of networks. In
Section 3, for the case that ℎ is positive, we give some char-
acterizations of the smallest positive indefinite eigenvalue,
and we study the resonance problems, the antiminimum
principles, and the inverse conductivity problems. Finally,
in Section 4, we discuss the same problems discussed in
Section 3 under the assumption that ℎ has both positive and
negative values.

2. Preliminaries

In this section, we describe the theoretic graph notations
frequently used throughout this paper.

By a graph 𝐺 = 𝐺(V, 𝐸) we refer to a finite set V of
vertices with a set 𝐸 of two-element subsets of V whose
elements are called edges.

For notational convenience, we denote by 𝑥 ∈ 𝐺 the fact
that 𝑥 is a vertex in 𝐺(V, 𝐸). A graph 𝐺


= 𝐺

(V, 𝐸) is said

to be a subgraph of 𝐺(V, 𝐸) if 𝑉 ⊂ 𝑉 and 𝐸

⊂ 𝐸. If 𝐸

consists of all the edges from 𝐸 which connect the vertices of
V in 𝐺, then 𝐺

 is called an induced subgraph. Throughout
this paper, we assume that the graph𝐺(V, 𝐸) is finite, simple,
and connected.

A weight on a graph 𝐺(V, 𝐸) is a function 𝜔 : V ×V →

[0,∞) satisfying

(i) 𝜔(𝑥, 𝑥) = 0, 𝑥 ∈ V,
(ii) 𝜔(𝑥, 𝑦) = 𝜔(𝑦, 𝑥) > 0 if {𝑥, 𝑦} ∈ 𝐸,
(iii) 𝜔(𝑥, 𝑦) = 0 if and only if {𝑥, 𝑦} ∉ 𝐸,

and a graph 𝐺(V, 𝐸) with a weight 𝜔 is called a network
𝐺(V, 𝐸, 𝜔). The integration of a function 𝑢 : V → R is
defined by

∫
V

𝑢 := ∑

𝑥∈V

𝑢 (𝑥) . (3)

For an induced subgraph 𝑆 of 𝐺(𝑉, 𝐸), by 𝑆 := 𝑆;𝜕𝑆 we
denote a graph whose vertices and edges are in 𝑆 and vertices
in 𝜕𝑆 := {𝑦 ∈ 𝑉 \ 𝑆 | 𝜔(𝑥, 𝑦) > 0 for some 𝑥 ∈ 𝑆}. Here, 𝑆 and
𝜕𝑆 are called interiors and boundaries, respectively.

The 𝑝-gradient ∇𝑝,𝜔 of a function 𝑢 : 𝑆 → R is defined as

∇𝑝,𝜔𝑢 (𝑥) := (𝐷𝑝,𝜔,𝑦𝑢 (𝑥))
𝑦∈𝑆

(4)

for 𝑥 ∈ 𝑆. In the case of 𝑝 = 2, we write simply ∇𝜔 instead of
∇2,𝜔.

It has been known that for any pair of functions 𝑢 : 𝑆 →

R and V : 𝑆 → R, we have

2∫
𝑆

V (−Δ𝑝,𝜔𝑢) = ∫
𝑆

∇𝜔V ⋅ ∇𝑝,𝜔𝑢, (5)

where A ⋅ B := ∑
𝑛

𝑖=1
𝑎𝑖𝑏𝑖 for A = (𝑎1, . . . , 𝑎𝑛) and B =

(𝑏1, . . . , 𝑏𝑛). This fact yields many useful formulas such as the
network version of the Green theorem (for details, see [7]).

For the given functions 𝑉 and ℎ : 𝑆 → R, if 𝜆ℎ ∈ R

and 𝜙 : 𝑆 → R satisfy (1), then 𝜆ℎ is called the (Dirichlet)
indefinite eigenvalue for −L𝑉

𝑝,𝜔
where L𝑉

𝑝,𝜔
𝑢 := Δ𝑝,𝜔𝑢 −

𝑉|𝑢|
𝑝−2

𝑢 and 𝜙 is called an eigenfunction corresponding to
𝜆ℎ. Moreover, (𝜆ℎ, 𝜙) is called an indefinite eigenpair.

Finally, we recall some known results on discrete 𝑝-
Laplacian operators such as the minimum principle and
Picone’s identity.

Theorem 1 (see [6] minimum principle for −Δ𝑝,𝜔 on net-
works). Let 𝑢 : 𝑆 → R satisfy the differential inequality
−Δ𝑝,𝜔𝑢(𝑥) ≥ 0 for all 𝑥 ∈ 𝑆. If 𝑢 attains the minimum at a
point in 𝑆, then 𝑢 is constant in 𝑆.

Theorem 2 (see [9] Picone’s identity for Δ𝑝,𝜔 on networks).
For an induced subnetwork 𝑆 of a given weighted network 𝐺,
let two functions 𝑢1 and 𝑢2 be nonnegative and positive on 𝑆,
respectively. Then

(∇𝑆,𝜔𝑢1 ⋅ ∇𝑆,𝑝,𝜔𝑢1 − ∇𝑆,𝜔(
𝑢
𝑝

1

𝑢
𝑝−1

2

) ⋅ ∇𝑆,𝑝,𝜔𝑢2) (𝑥) ≥ 0 (6)

for all 𝑥 in 𝑆. Moreover, if the induced subnetwork 𝑆 is
connected, then the equality holds if and only if there exists
𝑡 > 0 such that 𝑢(𝑥) = 𝑡V(𝑥) for all 𝑥 in 𝑆.

3. Indefinite Eigenvalue Problems with
Positive Weight Functions

In [9], Amghibech introduces the indefinite eigenvalue prob-
lems for −Δ𝑝,𝜔 on networks with standard weights. In this
paper, we study the indefinite eigenvalue problems under
more complicated situations than those of Amghibech. More
specifically, we look at the 𝑝-Laplacian operator combined
with potential terms and moreover, we do not impose any
restrictions on the weight of the networks, further differen-
tiating this paper from [9].

We now start this section under the assumption that ℎ is
positive.

3.1. The Smallest Indefinite Eigenvalue. In this subsection,
we prove the existence of the smallest indefinite eigenvalue
𝜆ℎ,0 for −L𝑉

𝑝,𝜔
when ℎ is positive. We also address some

fundamental problems such as the multiplicity of 𝜆ℎ,0 and its
isolation.
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It will be shown in the next theorem that 𝜆ℎ,0 exists and
can be variationally expressed as

𝜆ℎ,0 = inf
𝜙∈A
𝜙 ̸≡ 0

(1/2) ∫
𝑆
∇𝜔𝜙 ⋅ ∇𝑝,𝜔𝜙 + ∫

𝑆
𝑉
𝜙

𝑝

∫
𝑆
ℎ
𝜙

𝑝

, (7)

where

A := {𝜙 ∈ 𝑆
𝜙
𝜕𝑆 = 0} . (8)

Theorem 3. There exists a nonzero function 𝜙0 ∈ A such that

𝜆ℎ,0 =
(1/2) ∫

𝑆
∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫

𝑆
𝑉
𝜙0


𝑝

∫
𝑆
ℎ
𝜙0


𝑝

. (9)

Moreover, 𝜆ℎ,0 is the smallest eigenvalue for −L𝑉
𝑝,𝜔

and 𝜙0 is
an eigenfunction corresponding to 𝜆ℎ,0.

Proof. Note that

inf
𝜙∈A
𝜙 ̸≡ 0

(1/2) ∫
𝑆
∇𝜔𝜙 ⋅ ∇𝑝,𝜔𝜙 + ∫

𝑆
𝑉ℎ

𝜙

𝑝

∫
𝑆
ℎ
𝜙

𝑝

= inf
𝜙∈A
𝜙 ̸≡ 0

1

2
∫
𝑆

∇𝜔(
𝜙

∫
𝑆
ℎ
𝜙

𝑝
) ⋅ ∇𝑝,𝜔(

𝜙

∫
𝑆
ℎ
𝜙

𝑝
)

+ ∫
𝑆

𝑉ℎ



𝜙

∫
𝑆
ℎ
𝜙

𝑝



𝑝

= inf
𝜙∈𝑆
1

(∫
𝑆

1

2
∇𝜔𝜙 ⋅ ∇𝑝,𝜔𝜙 + ∫

𝑆

𝑉
𝜙

𝑝
) ,

(10)

where S1 := {𝜙 ∈ A| ∫
𝑆
ℎ|𝜙|
𝑝

= 1}. Here, we note that 𝑆1
is closed and bounded (i.e., compact), since it is a subset of
vectors in R𝑛, for 𝑛 = |𝑆|, and since ℎ is positive. Therefore,
there exists 𝜙0 ∈ S1 such that

(
1

2
)∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫
𝑆

𝑉
𝜙0


𝑝

= min
𝜙∈S
1

(
1

2
∫
𝑆

∇𝜔𝜙 ⋅ ∇𝑝,𝜔𝜙 + ∫
𝑆

𝑉
𝜙

𝑝
) .

(11)

Since it is easily seen from (1) and (5) that 𝜆ℎ,0 ≤ 𝜆ℎ for
each eigenvalues 𝜆ℎ, it suffices to show that (𝜆ℎ,0, 𝜙0) is an
eigenpair. For any 𝑥 ∈ 𝑆, we define a function 𝛿𝑥 : 𝑆 → R as

𝛿𝑥 (𝑦) = {
1, 𝑥 = 𝑦,

0, otherwise.
(12)

Taking an arbitrary 𝑥0 ∈ 𝑆, we have

∫
𝑆


𝜙1 + 𝑡𝛿𝑥

0



𝑝

̸= 0 (13)

for a sufficiently small 𝑡 and

𝜆ℎ,0 ≤ (
1

2
∫
𝑆

∇𝜔 (𝜙0 + 𝑡𝛿𝑥
0

) ⋅ ∇𝑝,𝜔 (𝜙0 + 𝑡𝛿𝑥
0

)

+∫
𝑆

𝑉

(𝜙0 + 𝑡𝛿𝑥

0

)


𝑝

)

× (∫
𝑆

ℎ

(𝜙0 + 𝑡𝛿𝑥

0

)


𝑝

)

−1

.

(14)

Hence, we have

0 ≤
1

2
∫
𝑆

∇𝜔 (𝜙0 + 𝑡𝛿𝑥
0

) ⋅ ∇𝑝,𝜔 (𝜙0 + 𝑡𝛿𝑥
0

)

+ ∫
𝑆

(𝑉 − 𝜆ℎ,0ℎ)

(𝜙0 + 𝑡𝛿𝑥

0

)


𝑝

(15)

for a sufficiently small 𝑡. Note that the right-hand side is
continuously differentiable with respect to 𝑡 and equals zero
at 𝑡 = 0. Thus, we have

0 =
𝑑

𝑑𝑡
[
1

2
∫
𝑆

∇𝜔 (𝜙0 + 𝑡𝛿𝑥
0

) ⋅ ∇𝑝,𝜔 (𝜙0 + 𝑡𝛿𝑥
0

)

+∫
𝑆

(𝑉 − 𝜆ℎ,0ℎ)

(𝜙0 + 𝑡𝛿𝑥

0

)


𝑝

]
𝑡=0

= 𝑝 (−Δ𝑝,𝜔𝜙1 (𝑥0) + (𝑉 (𝑥0) − 𝜆ℎ,0ℎ)
𝜙0 (𝑥0)


𝑝−2

×𝜙0 (𝑥0) ) 𝑑𝜔𝑥0.

(16)

Since 𝑥0 is chosen arbitrary in 𝑆, we have

− Δ𝑝,𝜔𝜙0 (𝑥) + 𝑉 (𝑥)
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥)

= 𝜆ℎ,0ℎ
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥) , 𝑥 ∈ 𝑆,

(17)

which completes the proof.

We now prove the simplicity of 𝜆ℎ,0. To achieve this goal,
we first prove a theoremwhich asserts that there always exists
an eigenfunction𝜙0 corresponding to𝜆ℎ,0 which is positive in
𝑆.

Theorem 4. There exists 𝜙0 ∈ A with 𝜙0 > 0 in 𝑆 such that
(𝜆ℎ,0, 𝜙0) is an indefinite eigenpair for −L𝑉

𝑝,𝜔
.

Proof. It follows from Theorem 3 that there exists an eigen-
function 𝜙0 corresponding to 𝜆ℎ,0 satisfying

− Δ𝑝,𝜔𝜙0 (𝑥) + 𝑉 (𝑥)
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥)

= 𝜆ℎ,0ℎ (𝑥)
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥) , 𝑥 ∈ 𝑆.

(18)

Let 𝜓(𝑥) := |𝜙0(𝑥)|, 𝑥 ∈ 𝑆. Then

∫
𝑆

𝜓

𝑝
= ∫
𝑆

𝜙0

𝑝
,

1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫
𝑆

𝑉
𝜙0


𝑝

≥
1

2
∫
𝑆

∇𝜔𝜓 ⋅ ∇𝑝,𝜔𝜓 + ∫
𝑆

𝑉
𝜓


𝑝
.

(19)
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Thus, we have

𝜆ℎ,0 =
(1/2) ∫

𝑆
∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫

𝑆
𝑉
𝜙0


𝑝

∫
𝑆
ℎ
𝜙0


𝑝

≥
(1/2) ∫

𝑆
∇𝜔𝜓 ⋅ ∇𝑝,𝜔𝜓 + ∫

𝑆
𝑉
𝜓


𝑝

∫
𝑆
ℎ
𝜓


𝑝

.

(20)

Otherwise, by the definition of 𝜆ℎ,0,

𝜆ℎ,0 ≤
(1/2) ∫

𝑆
∇𝜔𝜓 ⋅ ∇𝑝,𝜔𝜓 + ∫

𝑆
𝑉
𝜓


𝑝

∫
𝑆
ℎ
𝜓


𝑝

. (21)

Thus,

𝜆ℎ,0 =
(1/2) ∫

𝑆
∇𝜔𝜓 ⋅ ∇𝑝,𝜔𝜓 + ∫

𝑆
𝑉
𝜓


𝑝

∫
𝑆
ℎ
𝜓


𝑝

. (22)

It follows from Theorem 3 that (𝜆ℎ,0, 𝜓) is an indefinite
eigenpair. Now it suffices to show that 𝜓 > 0 in 𝑆. Suppose, to
the contrary, that 𝜓(𝑥0) = 0 for some 𝑥0 ∈ 𝑆. It will be shown
that 𝜓 ≡ 0. Since 𝜓 is an eigenvalue, it follows from (1) that

∑

𝑦∈𝑆

𝜓 (𝑦)


𝑝−2

𝜓 (𝑦) 𝜔 (𝑥0, 𝑦) = 0 (23)

and thus 𝜓(𝑦) = 0 for all 𝑦 ∼ 𝑥0 where 𝑦 ∼ 𝑥 means that
two vertices 𝑥 and 𝑦 are connected by an edge. By repeating
the above process for 𝑦 ∼ 𝑥0, we conclude that 𝜓(𝑧) = 0 for
each 𝑧 ∼ 𝑦. Since the network 𝑆 is assumed to be connected,
𝜓(𝑥) = 0 for all 𝑥 ∈ 𝑆.

Using the above theorem, we prove the simplicity of 𝜆ℎ,0
as follows.

Theorem 5. If (𝜆ℎ,0, 𝜙0) is an indefinite eigenpair for −L𝑉
𝑝,𝜔

,
then

sgn𝜙0 (𝑥) = sgn𝜙0 (𝑦) , 𝑥, 𝑦 ∈ 𝑆. (24)

Proof. As shown in the proof for Theorem 4, if (𝜆ℎ,0, 𝜙0) is
indefinite, then (𝜆ℎ,0, |𝜙0|) is also an indefinite eigenpair. Let
𝜙0(𝑥) := |𝜙0(𝑥)| for all 𝑥 in 𝑆. Then we have

1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫
𝑆

𝑉
𝜙0


𝑝

=
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫
𝑆

𝑉

𝜙
0



𝑝

,

(25)

which implies that

∑

𝑥,𝑦∈𝑆

𝜙0 (𝑦) − 𝜙0 (𝑥)

𝑝
𝑤 (𝑥, 𝑦)

= ∑

𝑥,𝑦∈𝑆


𝜙0 (𝑦) − 𝜙0 (𝑥)



𝑝

𝑤 (𝑥, 𝑦) .

(26)

Since
𝜙0 (𝑦) − 𝜙0 (𝑥)

 ≥

𝜙0 (𝑦) − 𝜙0 (𝑥)


(27)

for all 𝑥 ∼ 𝑦 in 𝑆, we have

𝜙0 (𝑦) − 𝜙0 (𝑥)
 =


𝜙0 (𝑦) − 𝜙0 (𝑥)


(28)

for all𝑥,𝑦 in 𝑆. Hence, either𝜙0(𝑥) = 𝜙0(𝑥) or𝜙0(𝑥) = −𝜙0(𝑥)

for all 𝑥 in 𝑆.

The above theorem shows that the dimension of the
eigenspace corresponding to 𝜆ℎ,0 is one. Thus, we have the
following.

Corollary 6. The multiplicity of 𝜆ℎ,0 is one.

For linear operators such as −Δ𝜔 on finite networks, it is
clear that the number of eigenvalues (including multiplicity)
is the same as the number of vertices. However, whenwe con-
sider nonlinear operators such as −L𝑉

𝑝,𝜔
, it becomes signifi-

cantly more complicated to count the number of eigenvalues.
It is not sufficient to simply prove whether the number of
eigenvalues is finite of infinite. However, by applying Picone’s
identity, it is possible to show that the smallest indefinite
eigenvalue 𝜆ℎ,0 is isolated for a set of indefinite eigenvalues.

Theorem 7. The smallest eigenvalue 𝜆ℎ,0 is isolated.

Proof. We proceed by contradiction. Suppose that for each
𝜖 > 0, there exists 𝑢𝜖 satisfying ∫

𝑆
|𝑢𝜖|
𝑝
= 1 and

−Δ𝑝,𝜔𝑢𝜖 + 𝑉
𝑢𝜖


𝑝−2

𝑢𝜖 = (𝜆ℎ + 𝜖) ℎ
𝑢𝜖


𝑝−2

𝑢𝜖, in 𝑆

𝑢𝜖 = 0, on 𝜕𝑆.

(29)

Since the multiplicity of 𝜆ℎ,0 is one, there exists an eigenfunc-
tion 𝜙0 corresponding to 𝜆ℎ,0 with 𝜙0 in 𝑆 such that 𝑢𝜖 →

𝜙0 > 0 in 𝑆 as 𝜖 → 0. Hence, for sufficiently small 𝜖 > 0 we
have 𝑢𝜖 > 0 in 𝑆. Since

𝑉 =
Δ𝑝𝑢𝜖

𝑢
𝑝−1

𝜖

+ (𝜆ℎ,0 + 𝜖) ℎ in 𝑆, (30)

we have

− Δ𝑝𝜙0 +
𝜙
𝑝−1

0

𝑢
𝑝−1

𝜖

Δ𝑝𝑢𝜖 + 𝜆ℎ,0ℎ𝜙
𝑝−1

0
+ 𝜖ℎ𝜙

𝑝−1

0

= 𝜆ℎ,0ℎ𝜙
𝑝−1

0
on 𝑆.

(31)

That is,

−𝜖𝜙
𝑝−1

0
= −Δ𝑝,𝜔𝜙0 −

𝜙
𝑝−1

0

𝑢
𝑝−1

𝜖

(−Δ𝑝,𝜔𝑢𝜖) on 𝑆. (32)

Multiplying 𝜙0 and integrating over 𝑆 on both sides (32) and
using Picone’s identity, we have a contradiction.

3.2. Resonance Problems, Antiminimum Principle, and Inverse
Problems. In this subsection, we deal with some interesting
problems such as the resonance problems, the antiminimum
principles, and the inverse conductivity problems with regard
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to indefinite eigenvalues. We remind the reader that during
this section, we assume the weight function ℎ is a positive
valued function.

For a given function𝑉 : 𝑆 → R and a nonnegative source
term 𝑔 : 𝑆 → [0,∞), we consider the following equation:

−Δ𝑝,𝜔𝑢 + 𝑉|𝑢|
𝑝−2

𝑢 − 𝜆ℎ,0ℎ|𝑢|
𝑝−2

𝑢 = 𝑔 in 𝑆,

𝑢 = 0 on 𝜕𝑆.

(33)

It is clear that the above equation has a solution (in fact, an
eigenvalue) if𝑔 ≡ 0 in 𝑆.The next result shows that if 𝜆ℎ,0 > 0,
then the converse of the statement also holds. Thus, there is
no solution of the above equation if 𝑔 is nonzero in 𝑆.

Theorem 8 (resonance problem). Suppose that a function 𝑉

satisfies the condition that the smallest indefinite eigenvalue
𝜆ℎ,0 is positive. Then (33) has a solution if and only if 𝑔 ≡ 0.

Proof. Suppose that a function 𝑢0 is a solution to the equation
and we define a function 𝑢0 as

𝑢0 (𝑥) := max {−𝑢0 (𝑥) , 0} , 𝑥 ∈ 𝑆. (34)

Since it is obvious that if 𝑢0 ≡ 0, then 𝑔 ≡ 0; we assume that
𝑢0 ̸≡ 0. Then we have

0 ≤ ∫
𝑆

𝑔 (𝑢0) = ∫
𝑆

(−Δ𝑝𝑢0 + 𝑉
𝑢0


𝑝−2

𝑢0 − 𝜆ℎ,0ℎ
𝑢0


𝑝−2

𝑢0) 𝑢0

≤ −
1

2
∑

𝑥,𝑦∈𝑆

(𝑢0 (𝑦)) − (𝑢0 (𝑥))

𝑝

− ∑

𝑥∈𝑆

V (𝑥) 𝑢0 (𝑥)

𝑝

+ 𝜆ℎ,0∑

𝑥∈𝑆

ℎ (𝑥)
𝑢0 (𝑥)


𝑝
,

(35)

which implies that 𝑢0 ≡ 𝑘𝜙0 for some 𝑘 ≥ 0. If 𝑘 > 0 then 𝑢0
is an eigenfunction corresponding to 𝜆ℎ,0 so that 𝑔 ≡ 0. Now
suppose that 𝑘 = 0 so 𝑢0 ≥ 0. Since 𝑢0 ̸≡ 0 and 𝑔 ≥ 0, we
have

− Δ𝑝,𝜔𝑢0 + V𝑢0

𝑝−2

𝑢0 ≥ 0, but

− Δ𝑝,𝜔𝑢0 + V𝑢0

𝑝−2

𝑢0 ̸≡ 0

in 𝑆.

(36)

Thus, by using a similar method that we used in the proof for
Theorem 4, it is easy towe show that the solution𝑢0 is positive
in 𝑆. Using Picone’s identity, we have

0 ≤
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 − ∇𝜔(
𝜙
𝑝

0

𝑢
𝑝−1

0

) ⋅ ∇𝑝,𝜔𝑢0

=
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 − ∫
𝑆

𝜙
𝑝

0

𝑢
𝑝−1

0

(−V𝑢𝑝−1
0

+ 𝜆0ℎ𝑢
𝑝−1

0
+ 𝑔)

=
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫
𝑆

V𝜙𝑝
0
− 𝜆0 ∫

𝑆

ℎ𝜙
𝑝

0
− ∫
𝑆

𝜙
𝑝

0

𝑢
𝑝−1

0
𝑔

(37)

which implies that 𝑔 ≡ 0.

The next theorem is the antiminimum principle. From
it, we see that each (nonconstant) solution for the following
equation

−Δ𝑝,𝜔𝑢 + 𝑉|𝑢|
𝑝−2

𝑢 − 𝜆ℎ|𝑢|
𝑝−2

𝑢 ≥ 0 in 𝑆

𝑢 = 0 on 𝜕𝑆.

(38)

has its minimum in 𝑆 if 𝜆 > 𝜆ℎ,0.

Theorem 9 (antiminimum principle). For a nonnegative
source term 𝑔 : 𝑆 → [0,∞), suppose 𝑢𝜆 is a solution to the
following equation:

−Δ𝑝,𝜔𝑢 + 𝑉|𝑢|
𝑝−2

𝑢 − 𝜆ℎ|𝑢|
𝑝−2

𝑢 = 𝑔 𝑖𝑛 𝑆

𝑢 = 0 𝑜𝑛 𝜕𝑆.

(39)

If 𝜆 > 𝜆ℎ,0, then 𝑢𝜆(𝑥0) < 0 for some 𝑥0 ∈ 𝑆.

Proof. By virtue ofTheorem 8, it suffices to show that if there
exist a nonnegative solution 𝑢𝜆 for (75), then 𝜆 < 𝜆ℎ,0.
Suppose 𝑢𝜆 is a solution to (75) with 𝑢𝜆(𝑥) ≥ 0, 𝑥 ∈ 𝑆. Using
a similar method that we used in the proof of Theorem 4, we
can easily show that if 𝑢𝜆(𝑥0) = 0 for some 𝑥0 ∈ 𝑆, then
𝑢𝜆 ≡ 0. Thus, we may assume that 𝑢𝜆 is positive in 𝑆. By
Picone’s identity, we have

0 ≤
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 − ∇𝜔(
𝜙
𝑝

0

𝑢
𝑝−1

𝜆

) ⋅ ∇𝑝,𝜔𝑢𝜆

=
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 −
𝜙
𝑝

0

𝑢
𝑝−1

𝜆

(−Δ𝑝,𝜔𝑢𝜆)

=
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 −
𝜙
𝑝

𝑢
𝑝−1

𝜆

(−𝑉𝑢
𝑝−1

𝜆
+ 𝜆ℎ𝑢

𝑝−1

𝜆
+ 𝑔) ,

(40)

where 𝜙0 is the positive eigenfunction corresponding to 𝜆ℎ,0.
Thus, we have

0 < (𝜆ℎ,0 − 𝜆)∫
𝑆

ℎ𝜙
𝑝

0
. (41)

Since ∫
𝑆
ℎ𝜙
𝑝

0
> 0, we finally have 𝜆ℎ,0 > 𝜆, which completes

the proof.

We now discuss an inverse conductivity problem on net-
works.Themain concern is related to the problem of recover-
ing the conductivity (weight)𝜔 of the network by the smallest
indefinite eigenvalue 𝜆ℎ,0 for −L𝑝,𝜔 with respect to ℎ. Note
that the uniqueness of the conductivity 𝜔 is not guaranteed
by 𝜆ℎ,0. This implies that there can be different conductivities
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𝜔1 and 𝜔2 on the edges which induces the same eigenvalue
𝜆ℎ,0 for the operators −L𝑝,𝜔

𝑖

, 𝑖 = 1, 2. To guarantee the
uniqueness of the conductivity, we need to impose somemore
assumption on the structure of network or on the conduc-
tivity. We impose here the additional constraint, called the
monotonicity condition, on the conductivity of the edges. The
main result of this section shows that there are no different
conductivities𝜔1 and𝜔2 on the edges satisfying𝜔1 ≤ 𝜔2 in 𝑆×

𝑆 which induce the same smallest indefinite eigenvalue 𝜆ℎ,0.

Theorem 10 (inverse conductivity problem). For networks
𝐺(𝑆, 𝐸𝑖, 𝜔𝑖) for 𝑖 = 1, 2, let 𝜆

𝜔
𝑖

ℎ,0
be the smallest indefinite

eigenvalue for −L𝑉
𝑝,𝜔
𝑖

. If the weight functions satisfy

𝜔1 ≤ 𝜔2 𝑖𝑛 𝑆 × 𝑆, (42)

then one has
𝜆
𝜔
1

ℎ,0
≤ 𝜆
𝜔
2

ℎ,0
. (43)

Moreover, 𝜆𝜔1
ℎ,0

= 𝜆
𝜔
2

ℎ,0
if and only if one has

(i) 𝜙1 = 𝜙2 on 𝑆,
(ii) 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever 𝜙1(𝑥) ̸= 𝜙1(𝑦) or

𝜙2(𝑥) ̸= 𝜙2(𝑦)

where 𝜙𝑖 is the eigenfunction corresponding to 𝜆
𝜔
𝑖

ℎ,0
, 𝑖 = 1, 2.

Proof. By definition of the smallest eigenvalue, we have

𝜆
𝜔
1

0,ℎ
≤

(1/2) ∫
𝑆
∇𝑝,𝑤

1

𝜙2 ⋅ ∇𝑤
1

𝜙2 + ∫
𝑆
V𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

. (44)

It follows from 𝜔1 ≤ 𝜔2 that

(1/2) ∫
𝑆
∇
𝑝,𝑤
1

𝜙2 ⋅ ∇𝑤
1

𝜙2 + ∫
𝑆
V𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

≤
(1/2) ∫

𝑆
∇𝑝,𝑤

2

𝜙2 ⋅ ∇𝑤
2

𝜙2 + ∫
𝑆
V𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

.

(45)

Hence we have 𝜆𝜔1
ℎ,0

≤ 𝜆
𝜔
2

ℎ,0
. Now, we suppose that 𝜆𝜔1

ℎ,0
= 𝜆
𝜔
2

ℎ,0
.

Then

𝜆
𝜔
2

ℎ,0
=

(1/2) ∫
𝑆
∇𝑝,𝑤

2

𝜙2 ⋅ ∇𝑤
2

𝜙2 + ∫
𝑆
𝑉
𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

≥
(1/2)∑

𝑥,𝑦∈𝑆

𝜙2 (𝑦) − 𝜙2 (𝑥)

𝑝
(𝜔2 (𝑥, 𝑦) − 𝜔1 (𝑥, 𝑦))

∫
𝑆
ℎ
𝜙2


𝑝

+ 𝜆
𝜔
1

ℎ,0
.

(46)

Since 𝜆𝜔1
ℎ,0

= 𝜆
𝜔
2

ℎ,0
, we have

0 ≥
(1/2)∑

𝑥,𝑦∈𝑆

𝜙2 (𝑦) − 𝜙2 (𝑥)

𝑝
(𝜔2 (𝑥, 𝑦) − 𝜔1 (𝑥, 𝑦))

∫
𝑆
ℎ
𝜙2


𝑝

.

(47)

Thus 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever 𝜙2(𝑥) ̸= 𝜙2(𝑦), which
implies that

(1/2) ∫
𝑆
∇𝑝,𝑤

1

𝜙2 ⋅ ∇𝑤
1

𝜙2 + ∫
𝑆
𝑉
𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

≤ 𝜆
𝜔
1

ℎ,0
. (48)

Thus 𝜙1 ≡ 𝜙2. Hence 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever
𝜙𝑖(𝑥) ̸= 𝜙𝑖(𝑦), 𝑖 = 1, 2. If 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever
𝜙𝑖(𝑥) ̸= 𝜙𝑖(𝑦), 𝑖 = 1, 2, then

𝜆
𝜔
1

ℎ,0
=

(1/2)∑
𝑥,𝑦∈𝑆

𝜙1 (𝑦) − 𝜙1 (𝑥)

𝑝
𝜔1 (𝑥, 𝑦) + ∫

𝑆
𝑉
𝜙1


𝑝

∫
𝑆
ℎ
𝜙1


𝑝

=
(1/2)∑

𝑥,𝑦∈𝑆

𝜙1 (𝑦) − 𝜙1 (𝑥)

𝑝
𝜔2 (𝑥, 𝑦) + ∫

𝑆
𝑉
𝜙1


𝑝

∫
𝑆
ℎ
𝜙1


𝑝

≥ 𝜆
𝜔
2

ℎ,0
.

(49)

Thus we have 𝜆𝜔1
ℎ,0

= 𝜆
𝜔
2

ℎ,0
.

4. Indefinite Eigenvalue Problems with
Weight Functions Which Have Both Positive
and Negative Values

In this section, we address problems for the other case that
ℎ has both positive and negative values. Namely, we now
assume that the function ℎ : 𝑆 → R satisfies

ℎ
+

̸≡ 0, ℎ
−

̸≡ 0, (50)

where

ℎ
+
(𝑥) := max {ℎ (𝑥) , 0} , ℎ

−
(𝑥) := −min {ℎ (𝑥) , 0}

(51)

for 𝑥 ∈ 𝑆.

4.1. Indefinite Eigenvalue Problems. We now discuss the
indefinite eigenvalue problemswith the assumption thatℎhas
both positive and negative values and two real values 𝜆+

ℎ,0
and

𝜆
−

ℎ,0
defined by

𝜆
+

ℎ,0
:= inf
∫
𝑆
ℎ|𝑢|
𝑝
>0

(1/2) ∫
𝑆
∇𝜔𝑢 ⋅ ∇𝑝,𝜔𝑢 + ∫

𝑆
𝑉|𝑢|
𝑝

∫
𝑆
ℎ|𝑢|
𝑝

,

𝜆
−

ℎ,0
:= sup
∫
𝑆
ℎ|𝑢|
𝑝
<0

(1/2) ∫
𝑆
∇𝜔𝑢 ⋅ ∇𝑝,𝜔𝑢 + ∫

𝑆
𝑉|𝑢|
𝑝

∫
𝑆
ℎ|𝑢|
𝑝

.

(52)

Theorem 11. If functions 𝑉 : 𝑆 → R and ℎ : 𝑆 → R satisfy
either 𝑉 ≥ 0 or 𝑉 ≥ ℎ in 𝑆, then there exists 𝜙0 ∈ 𝐴 such that

𝜆
+

ℎ,0
=

(1/2) ∫
𝑆
∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫

𝑆
𝑉
𝜙0


𝑝

∫
𝑆
ℎ
𝜙0


𝑝

, (53)

where

𝐴 := {𝑢 : 𝑆 → R | ∫
𝑆

ℎ|𝑢|
𝑝
> 0, 𝑢|𝜕𝑆 = 0} . (54)
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Moreover 𝜆+
ℎ,0

is the smallest positive eigenvalue for −L𝑉
𝑝,𝜔

and
𝜙0 is an eigenfunction corresponding to 𝜆

+

ℎ,0
.

Proof. Define

𝐴1 := {𝑢 : 𝑆 → R | ∫
𝑆

|𝑢|
𝑝
= 1} . (55)

We note that 𝐴 ∩ 𝐴1 is not compact and its boundary 𝜕(𝐴 ∩

𝐴1) is given by

𝜕 (𝐴 ∩ 𝐴1) = {𝑢 : 𝑆 → R | ∫
𝑆

|𝑢|
𝑝
= 1,

∫
𝑆

ℎ|𝑢|
𝑝
= 0, 𝑢|𝜕𝑆 = 0} ,

(56)

so 𝐴 ∩ 𝐴1 is compact. Now we take {𝑢𝑛}
∞

𝑛=1
⊂ 𝐴 ∩ 𝐴1 such

that {𝑢𝑛} converges at some point 𝑢0 ∈ 𝜕(𝐴 ∩ 𝐴1). Since {𝑢𝑛}
converges, (1/2) ∫

𝑆
∇𝜔𝑢𝑛 ⋅ ∇𝑝,𝜔𝑢𝑛 + ∫

𝑆
𝑉|𝑢𝑛|
𝑝 also converges.

From ∫
𝑆
ℎ|𝑢𝑛| → 0 and the function 𝑉 which satisfies either

𝑉 ≥ 0 or 𝑉 ≥ ℎ, we easily show that

(1/2) ∫
𝑆
∇𝜔𝑢𝑛 ⋅ ∇𝑝𝑢𝑛 + ∫

𝑆
𝑉
𝑢𝑛


𝑝

∫
𝑆
ℎ
𝑢𝑛


𝑝

↗ ∞. (57)

Therefore, there exists 𝜙0 ∈ 𝐴 ∩ 𝐴1 such that

(1/2) ∫
𝑆
∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫

𝑆
𝑉
𝜙0


𝑝

∫
𝑆
ℎ
𝜙0


𝑝

= min
𝜙∈𝐴∩𝐴

1

(1/2) ∫
𝑆
∇𝜔𝜙 ⋅ ∇𝑝,𝜔𝜙 + ∫

𝑆
𝑉
𝜙

𝑝

∫
𝑆
ℎ
𝜙

𝑝

.

(58)

Now we take an arbitrary 𝑥0 ∈ 𝑆. Since ∫
𝑆
ℎ|𝜙0 + 𝑡𝛿𝑥

0

|
𝑝

̸= 0 for
sufficiently small 𝑡 > 0, by definition of 𝜆+

ℎ,1
, we have

𝜆
+

ℎ,0
≤ (

1

2
∫
𝑆

∇𝜔 (𝜙0 + 𝑡𝛿𝑥
0

) ⋅ ∇𝑝,𝜔 (𝜙0 + 𝑡𝛿𝑥
0

)

+∫
𝑆

𝑉

𝜙0 + 𝑡𝛿𝑥

0



𝑝

)

× (∫
𝑆

ℎ

𝜙0 + 𝑡𝛿𝑥

0



𝑝

)

−1

.

(59)

Thus,

0 ≤ ∫
𝑆

1

2
∇𝜔 (𝜙0 + 𝑡𝛿𝑥

0

) ⋅ ∇𝑝 (𝜙0 + 𝑡𝛿𝑥
0

)

+ ∫
𝑆

𝑉

𝜙0 + 𝑡𝛿𝑥

0



𝑝

− 𝜆
+

ℎ,0
ℎ

𝜙0 + 𝑡𝛿𝑥

0



𝑝

(60)

for a sufficiently small 𝑡 > 0. The right-hand side is contin-
uously differentiable with respect to 𝑡 and is equal to zero at
𝑡 = 0. Thus,

0 =
𝑑

𝑑𝑡
[∫
𝑆

1

2
∇𝜔 (𝜙0 + 𝑡𝛿𝑥

0

) ⋅ ∇𝑝,𝜔 (𝜙0 + 𝑡𝛿𝑥
0

)

+∫
𝑆

𝑉

𝜙0 + 𝑡𝛿𝑥

0



𝑝

− 𝜆
+

ℎ,0
ℎ

𝜙0 + 𝑡𝛿𝑥

0



𝑝

]
𝑡=0

= −𝑝 ∑

𝑥,𝑦∈𝑆

𝜙0 (𝑦) − 𝜙0 (𝑥)

𝑝−2

(𝜙0 (𝑦)

−𝜙0 (𝑥)) 𝛿𝑥
0
(𝑥) 𝜔 (𝑥, 𝑦)

+ 𝑝∑

𝑥∈𝑆

𝑉 (𝑥)
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥) 𝛿𝑥
0
(𝑥)

+ 𝑝∑

𝑥∈𝑆

− 𝜆
+

ℎ,0
ℎ
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥) 𝛿𝑥
0
(𝑥)

= 𝑝 (−Δ𝑝𝜙0 (𝑥0) + 𝑉 (𝑥)
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥)

−𝜆
+

ℎ,0
ℎ
𝜙0 (𝑥0)


𝑝−2

𝜙0 (𝑥0)) 𝑥0.

(61)

Since the above equations hold for an arbitrary 𝑥0 ∈ 𝑆, we
have

− Δ𝑝,𝜔𝜙
+

0
(𝑥) + 𝑉 (𝑥)

𝜙0 (𝑥)

𝑝−2

𝜙0 (𝑥)

= 𝜆
+

ℎ,0
ℎ
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥) , 𝑥 ∈ 𝑆.

(62)

Theorem 12. For a function 𝑉 : 𝑆 → R and ℎ : 𝑆 → R

satisfying either 𝑉 ≥ 0 or 𝑉 ≤ ℎ in 𝑆, there exists 𝜙0 ∈ 𝐵 such
that

𝜆
−

ℎ,0
=

(1/2) ∫
𝑆
∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫

𝑆
𝑉
𝜙0


𝑝

∫
𝑆
ℎ
𝜙0


𝑝

. (63)

where

𝐵 := {𝑢 : 𝑆 → R | ∫
𝑆

ℎ|𝑢|
𝑝
< 0, 𝑢|𝜕𝑆 = 0} . (64)

Moreover 𝜆−
ℎ,0

is the largest negative eigenvalue for −L𝑉
𝑝,𝜔

and
𝜙0 is an eigenfunction corresponding to 𝜆

−

ℎ,0
.

Proof. Since the proof is similar to that of the previous
theorem, we omit it.

We note that it follows from the two above results that if
either 𝑉 ≥ 0 or 𝑉 ≡ ℎ, then there exist 𝜆+

ℎ,0
and 𝜆

−

ℎ,0
at the

same time. The specific case of 𝑉 ≡ 0 was dealt with in [9].
In the following results, we give some properties of 𝜆+

ℎ,0

and its eigenfunction. One also can get similar results for 𝜆−
ℎ,0

and its eigenfunction, assuming that the function 𝑉 satisfies
either 𝑉 ≥ 0 or 𝑉 ≤ ℎ.

Theorem 13. For a function𝑉 : 𝑆 → R and a weight function
ℎ satisfying either 𝑉 ≥ 0 or 𝑉 ≥ ℎ in 𝑆, there exists a positive
eigenfunction 𝜙0 corresponding to the indefinite eigenvalue 𝜆+ℎ,0
for −L𝑉

𝑝,𝜔
.

Proof. It follows fromTheorem 11 that there exists an indefi-
nite eigenfunction 𝜙0 satisfying

− Δ𝑝,𝜔𝜙0 (𝑥) + 𝑉 (𝑥)
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥)

= 𝜆
+

ℎ,0
ℎ
𝜙0 (𝑥)


𝑝−2

𝜙0 (𝑥)

(65)
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for 𝑥 ∈ 𝑆. Let 𝜓(𝑥) := |𝜙0(𝑥)| for all 𝑥 in 𝑆. Then ∫
𝑆
|𝜓|
𝑝

=

∫
𝑆
|𝜙0|
𝑝 and

1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫
𝑆

𝑉
𝜙0


𝑝

≥
1

2
∫
𝑆

∇𝜔𝜓 ⋅ ∇𝑝,𝜔𝜓 + ∫
𝑆

𝑉
𝜓


𝑝
.

(66)

Thus, we have

𝜆
+

ℎ,0
=

(1/2) ∫
𝑆
∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫

𝑆
𝑉
𝜙0


𝑝

∫
𝑆
ℎ
𝜙0


𝑝

≥
(1/2) ∫

𝑆
∇𝜔𝜓 ⋅ ∇𝑝,𝜔𝜓 + ∫

𝑆
𝑉
𝜓


𝑝

∫
𝑆
ℎ
𝜓


𝑝

.

(67)

Otherwise, by definition of 𝜆+
ℎ,1
,

𝜆
+

ℎ,0
≤

(1/2) ∫
𝑆
∇𝜔𝜓 ⋅ ∇𝑝,𝜔𝜓 + ∫

𝑆
𝑉
𝜓


𝑝

∫
𝑆
ℎ
𝜓


𝑝

. (68)

Thus,

𝜆
+

ℎ,0
=

(1/2) ∫
𝑆
∇𝜔𝜓 ⋅ ∇𝑝,𝜔𝜓 + ∫

𝑆
𝑉
𝜓


𝑝

∫
𝑆
ℎ
𝜓


𝑝

. (69)

It follows from Theorem 11 that (𝜆
+

ℎ,0
, 𝜓) is an indefinite

Dirichlet eigenpair. Next we show that 𝜓(𝑥) > 0 for all 𝑥 in
𝑆. It is sufficient to prove that if there exists 𝑥0 in 𝑆 such that
𝜓(𝑥0) = 0, then𝜓 ≡ 0. Since (𝜆+

ℎ,0
, 𝜓) is an indefiniteDirichlet

eigenpair, it satisfies (1). This implies that

∑

𝑦∈𝑆

𝜓 (𝑦)

𝑝−2

𝜓 (𝑦) 𝜔 (𝑥0, 𝑦) = 0. (70)

Hence𝜓(𝑦) = 0 for all 𝑦 ∼ 𝑥0. By repeating the above process
for 𝑦 ∼ 𝑥0, we conclude that 𝜓(𝑧) = 0 for each 𝑧 ∼ 𝑦. Since
𝐺 is a connected network, 𝜓(𝑥) = 0 for all 𝑥 ∈ 𝐺. However,
this contradicts the fact that 𝜙 ̸≡ 0. Thus, 𝜓(𝑥) > 0 for all 𝑥
in 𝐺.

Corollary 14. For a function 𝑉 : 𝑆 → R with 𝑉 ≤ 0 in 𝑆

or 𝑉 ≤ ℎ in 𝑆, if 𝜙0 is an eigenfunction corresponding to the
eigenvalue 𝜆+

ℎ,0
for −L𝑉

𝑝,𝜔
with respect to ℎ, then sgn𝜙0(𝑥) =

sgn𝜙0(𝑦) for all 𝑥, 𝑦 in 𝑆.

Proof. Let𝜙0 be an eigenfunction corresponding to𝜆+ℎ,0.Then
byTheorem 13, |𝜙0| is also an eigenfunction corresponding to
𝜆
+

ℎ,0
. Therefore, we have

1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 + ∫
𝑆

𝑉
𝜙0


𝑝

=
1

2
∫
𝑆

∇𝜔
𝜙0

 ⋅ ∇𝑝,𝜔
𝜙0

 + ∫
𝑆

𝑉
𝜙0


𝑝
.

(71)

This implies that |𝜙0(𝑦) − 𝜙0(𝑥)| = ||𝜙0(𝑦)| − |𝜙0(𝑥)|| for all
𝑥, 𝑦 ∈ 𝑆. Thus, we have 𝜙0(𝑥) = |𝜙0(𝑥)|, 𝑥 ∈ 𝑆.

Corollary 15. The multiplicity of 𝜆+
ℎ,0

is one.

4.2. Resonance Problems, AntiminimumPrinciple, and Inverse
Problems. As previously mentioned, throughout this section
the weight function ℎ is assumed to have both positive and
negative values in 𝑆. The next theorem shows that even in
this case, we can solve a resonance problem similar to that
in Theorem 8.

Theorem 16 (resonance problems). Suppose that a function
𝑉 satisfies 𝜆+

ℎ,0
> 0. For 𝑔 : 𝑆 → [0,∞), the equation

−Δ𝑝,𝜔𝑢 + 𝑉|𝑢|
𝑝−2

𝑢 − 𝜆
+

ℎ,0
ℎ|𝑢|
𝑝−2

𝑢 = 𝑔 𝑖𝑛 𝑆,

𝑢 = 0 𝑜𝑛 𝜕𝑆

(72)

has a solution if and only if 𝑔 ≡ 0. Moreover, the solutions are
eigenfunctions corresponding to 𝜆

+

ℎ,0
.

Proof. Suppose that a function 𝑢0 is a solution to (72). If 𝑢0 ≡
0, then we have 𝑔 ≡ 0. Suppose 𝑢0 ̸≡ 0 and set a function 𝑢0

as 𝑢0(𝑥) := max{−𝑢0(𝑥), 0} for all 𝑥 ∈ 𝑆. Since 𝑢(𝑥) = 0 for all
𝑥 ∈ 𝜕𝑆, 𝑢0(𝑥) = 0 for all 𝑥 ∈ 𝜕𝑆. Since 𝑢0 is a solution of (72),
we have

0 ≤ ∫
𝑆

𝑔 (𝑢0) = ∫
𝑆

(−Δ𝑝𝑢0 + 𝑉
𝑢0


𝑝−2

𝑢0 − 𝜆0ℎ
𝑢0


𝑝−2

𝑢0) 𝑢0

≤ −
1

2
∑

𝑥,𝑦∈𝑆

(−𝑢0 (𝑦)) − (−𝑢0 (𝑥))

𝑝
− ∑

𝑥∈𝑆

𝑉 (𝑥)
−𝑢0 (𝑥)


𝑝

+ 𝜆
+

ℎ,0
∑

𝑥∈𝑆

ℎ (𝑥)
−𝑢0 (𝑥)


𝑝

(73)

which implies that 𝑢0 ≡ 𝑘𝜙0 for some 𝑘 ≥ 0. Assume 𝑘 > 0;
then 𝑢0 is an eigenfunction corresponding to 𝜆

+

ℎ,0
so that 𝑔 ≡

0. Now, assume 𝑘 = 0. Then 𝑢0 ≥ 0. Suppose 𝑢0(𝑥0) = 0 for
some 𝑥0 ∈ 𝑆. Then we have −Δ𝑝,𝜔𝑢0(𝑥0) = 𝑔(𝑥0). Since 𝑔

is a nonnegative function, we have 𝑢0(𝑦) = 0 for 𝑦 ∼ 𝑥0, so
𝑢0 ≡ 0. This presents a contradiction. Thus, 𝑢0(𝑥) > 0, 𝑥 ∈ 𝑆.
Let 𝜙0 be a positive eigenfunction corresponding to 𝜆

+

ℎ,0
. By

Picone’s identity,

0 ≤
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 − ∇𝜔(
𝜙
𝑝

0

𝑢
𝑝−1

0

) ⋅ ∇𝑝,𝜔𝑢0

= ∫
𝑆

(−Δ𝑝𝜙0) 𝜙0 − (−Δ𝑝𝜙0)
𝜙
𝑝

0

𝑢
𝑝−1

0

= ∫
𝑆

(−Δ𝑝𝜙0) 𝜙0 − ((𝜆
+

ℎ,0
− 𝑉) 𝑢

𝑝−1

0
+ 𝑔)

𝜙
𝑝

0

𝑢
𝑝−1

0

= ∫
𝑆

(−Δ𝑝𝜙0 + 𝑉𝜙
𝑝

0
) − ∫
𝑆

𝜆
+

ℎ,0
ℎ𝜙
𝑝

0
− ∫
𝑆

𝑔
𝜙
𝑝

0

𝑢
𝑝−1

0

(74)

which implies that 𝑔 ≡ 0.

The next result that we will discuss is the parallel version
of the antiminimum principle discussed inTheorem 9 where
the weight function ℎ is assumed to have both positive and
negative values in 𝑆.
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Theorem 17 (antiminimum principle). Let a function 𝑉 :

𝑆 → R and a weight function ℎ with 𝑉 ≥ 0 in 𝑆 or 𝑉 ≥ ℎ

in 𝑆 be given. For a nonnegative source term 𝑔 : 𝑆 → [0,∞),
suppose 𝑢𝜆 is a solution to the following equation:

−Δ𝑝,𝜔𝑢 + 𝑉|𝑢|
𝑝−2

𝑢 − 𝜆ℎ|𝑢|
𝑝−2

𝑢 = 𝑔 𝑖𝑛 𝑆

𝑢 = 0 𝑜𝑛 𝜕𝑆.

(75)

If 𝜆 > 𝜆
+

ℎ,0
, then 𝑢𝜆(𝑥0) < 0 for some 𝑥0 ∈ 𝑆.

Proof. By virtue of Theorem 16, it suffices to show that if
there exists a nonnegative solution 𝑢𝜆 of (75) then 𝜆 <

𝜆
+

ℎ,0
. Suppose 𝑢𝜆(𝑥0) = 0 for some 𝑥0 ∈ 𝑆. Then we have

−Δ𝑝,𝜔𝑢0(𝑥0) = 𝑔(𝑥0). Since 𝑔 is a nonnegative function, we
have 𝑢0(𝑦) = 0 for𝑦 ∼ 𝑥0, so 𝑢0 ≡ 0.This is a contradiction to
the assumption.Thus, we have 𝑢𝜆 > 0 in 𝑆. Let 𝜙0 be a positive
eigenfunction corresponding to 𝜆

+

ℎ,0
. By Picone’s identity,

0 ≤
1

2
∫
𝑆

∇𝜔𝜙0 ⋅ ∇𝑝,𝜔𝜙0 − ∇𝜔(
𝜙
𝑝

0

𝑢
𝑝−1

𝜆

) ⋅ ∇𝑝,𝜔𝑢𝜆

= ∫
𝑆

(−Δ𝑝𝜙0) 𝜙0 − (−Δ𝑝𝜙0)
𝜙
𝑝

0

𝑢
𝑝−1

𝜆

= ∫
𝑆

(−Δ𝑝𝜙0) 𝜙0 − ∫
𝑆

(−𝑉𝑢
𝑝−1

𝜆
+ 𝜆ℎ𝑢

𝑝−1

𝜆
+ 𝑔)

𝜙
𝑝

0

𝑢
𝑝−1

𝜆

= ∫
𝑆

𝜆
+

ℎ,0
ℎ𝜙
𝑝

0
− ∫
𝑆

𝜆ℎ𝜙
𝑝

0
− ∫
𝑆

𝑔
𝜙
𝑝

0

𝑢
𝑝−1

0

.

(76)

Since ∫
𝑆
𝑔(𝜙
𝑝

0
/𝑢
𝑝−1

0
) > 0, we have

0 < (𝜆
+

ℎ,0
− 𝜆)∫

𝑆

ℎ𝜙
𝑝

0
. (77)

Finally, we deal with inverse conductivity problems for
𝜆
+

ℎ,0
and 𝜆

−

ℎ,0
.

Theorem 18 (inverse conductivity problem). For networks
𝐺(𝑆, 𝐸𝑖, 𝜔𝑖), 𝑖 = 1, 2, let 𝜆+

0,𝜔
𝑖

be the smallest positive indefinite
eigenvalue for−L𝑉

𝑝,𝜔
𝑖

. One can suppose that the given functions
𝑉 and ℎ satisfy either 𝑉 ≥ 0 or 𝑉 ≥ ℎ. If the weight functions
satisfy

𝜔1 ≤ 𝜔2 𝑖𝑛 𝑆 × 𝑆, (78)

then one has

𝜆
+

0,𝜔
1

≤ 𝜆
+

0,𝜔
2

. (79)

Moreover, 𝜆+
0,𝜔
1

= 𝜆
+

0,𝜔
2

if and only if one has

(i) 𝜙1 = 𝜙2 on 𝑆,
(ii) 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever 𝜙1(𝑥) ̸= 𝜙1(𝑦) or

𝜙2(𝑥) ̸= 𝜙2(𝑦),

where 𝜙𝑖 is the eigenfunction corresponding to 𝜆
+

0,𝜔
𝑖

, 𝑖 = 1, 2.

Proof. Let 𝜙+
𝑖
be an eigenfunction corresponding to 𝜆

+

0,𝜔
𝑖

for
𝑖 = 1, 2. By the definition of the smallest eigenvalue, we have

𝜆
+

0,𝜔
1

≤
(1/2) ∫

𝑆
∇𝑝,𝑤

1

𝜙2 ⋅ ∇𝑤
1

𝜙2 + ∫
𝑆
𝑉
𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

. (80)

It follows from 𝜔1 ≤ 𝜔2 that

(1/2) ∫
𝑆
∇𝑝,𝑤

1

𝜙2 ⋅ ∇𝑤
1

𝜙2 + ∫
𝑆
𝑉
𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

≤
(1/2) ∫

𝑆
∇𝑝,𝑤

2

𝜙2 ⋅ ∇𝑤
2

𝜙2 + ∫
𝑆
𝑉
𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

= 𝜆
+

0,𝜔
2

.

(81)

Thus, we obtain 𝜆
+

0,𝜔
1

≤ 𝜆
+

0,𝜔
2

. Now, we suppose that 𝜆+
0,𝜔
1

=

𝜆
+

0,𝜔
2

. Then

𝜆
+

0,𝜔
2

=
(1/2) ∫

𝑆
∇𝑝,𝑤

2

𝜙2 ⋅ ∇𝑤
2

𝜙2 + ∫
𝑆
𝑉
𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

≥
(1/2)∑

𝑥,𝑦∈𝑆

𝜙2 (𝑦) − 𝜙2 (𝑥)

𝑝
(𝜔2 (𝑥, 𝑦) − 𝜔1 (𝑥, 𝑦))

∫
𝑆
ℎ
𝜙2


𝑝

+ 𝜆
+

0,𝜔
1

.

(82)

Since ∑𝑥∈𝑆 ℎ|𝜙2|
𝑝

> 0, we have |𝜙2(𝑦) − 𝜙2(𝑥)|
𝑝
(𝜔2(𝑥, 𝑦) −

𝜔1(𝑥, 𝑦)) = 0, 𝑥, 𝑦 ∈ 𝑆. Then 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever
𝜙2(𝑥) ̸= 𝜙2(𝑦). This implies that

𝜆
+

0,𝜔
1

= 𝜆
+

0,𝜔
2

=
(1/2) ∫

𝑆
∇𝑝,𝑤

2

𝜙2 ⋅ ∇𝑤
2

𝜙2 + ∫
𝑆
𝑉
𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

=
(1/2) ∫

𝑆
∇𝑝,𝑤

2

𝜙2 ⋅ ∇𝑤
1

𝜙2 + ∫
𝑆
𝑉
𝜙2


𝑝

∫
𝑆
ℎ
𝜙2


𝑝

.

(83)

Hence, 𝜙2 is an eigenfunction of 𝜆+
0,𝜔
1

. Since 𝜆
+

0,𝜔
1

is simple,
we have 𝜙2 ≡ 𝜙1. Therefore, 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever
𝜙𝑖(𝑥) ̸= 𝜙𝑖(𝑦), 𝑖 = 1, 2.

If 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever 𝜙𝑖(𝑥) ̸= 𝜙𝑖(𝑦), 𝑖 = 1, 2,
then

𝜆
+

0,𝜔
1

=
(1/2)∑

𝑥,𝑦∈𝑆

𝜙1 (𝑦) − 𝜙1 (𝑥)

𝑝
𝜔1 (𝑥, 𝑦) + ∫

𝑆
𝑉
𝜙1


𝑝

∫
𝑆
ℎ
𝜙1


𝑝

=
(1/2)∑

𝑥,𝑦∈𝑆

𝜙1 (𝑦) − 𝜙1 (𝑥)

𝑝
𝜔2 (𝑥, 𝑦) + ∫

𝑆
𝑉
𝜙1


𝑝

∫
𝑆
ℎ
𝜙1


𝑝

≥ 𝜆
+

0,𝜔
2

.

(84)

Thus, we have 𝜆+
0,𝜔
1

= 𝜆
+

0,𝜔
2

.
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Theorem 19 (inverse conductivity problem). For networks
𝐺(𝑆, 𝐸𝑖, 𝜔𝑖), 𝑖 = 1, 2, let 𝜆−

0,𝜔
𝑖

be the largest negative indefinite
eigenvalue for−L𝑉

𝑝,𝜔
𝑖

. One can suppose that the given functions
𝑉 and ℎ satisfy either 𝑉 ≥ 0 or 𝑉 ≤ ℎ. If the weight functions
satisfy

𝜔1 ≤ 𝜔2 𝑖𝑛 𝑆 × 𝑆, (85)

then one has

𝜆
−

0,𝜔
1

≥ 𝜆
−

0,𝜔
2

. (86)

Moreover, 𝜆−
0,𝜔
1

= 𝜆
−

0,𝜔
2

if and only if one has

(i) 𝜙1 = 𝜙2 on 𝑆,
(ii) 𝜔1(𝑥, 𝑦) = 𝜔2(𝑥, 𝑦) whenever 𝜙1(𝑥) ̸= 𝜙1(𝑦) or

𝜙2(𝑥) ̸= 𝜙2(𝑦),

where 𝜙𝑖 is the eigenfunction corresponding to 𝜆
−

0,𝜔
𝑖

, 𝑖 = 1, 2.

Proof. The proof is similar to that inTheorem 18 and we thus
omit it.
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