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In this paper, we study that the (ℎ, 𝑞)-Euler numbers 𝐸(ℎ)𝑛,𝑞 and (ℎ, 𝑞)-Euler polynomials 𝐸(ℎ)𝑛,𝑞(𝑥) are analytic continued to 𝐸(ℎ)𝑞 (𝑠)
and 𝐸(ℎ)𝑞 (𝑠, 𝑤). We investigate the new concept of dynamics of the zeros of analytic continued polynomials related to solution of
Bernoulli equation. Finally, we observe an interesting phenomenon of “scattering” of the zeros of 𝐸(ℎ)𝑞 (𝑠, 𝑤).

1. Introduction

By using software, many mathematicians can explore con-
cepts much more easily than in the past. The ability to
create andmanipulate figures on the computer screen enables
mathematicians to quickly visualize and producemany prob-
lems, examine properties of the figures, look for patterns,
and make conjectures. This capability is especially exciting
because these steps are essential for most mathematicians to
truly understand even basic concept. Recently, the computing
environment would make more and more rapid progress and
there has been increasing interest in solving mathematical
problems with the aid of computers. Mathematicians have
studied different kinds of the Euler, Bernoulli, Tangent, and
Genocchi numbers and polynomials. Numerical experiments
of Bernoulli polynomials, Euler polynomials, Genocchi poly-
nomials, and Tangent polynomials have been the subject of
extensive study in recent year and much progress has been
made both mathematically and computationally (see [1–18]).
Throughout this paper, we always make use of the following
notations: N denotes the set of natural numbers, N0 denotes
the set of nonnegative integers, Z denotes the set of integers,
R denotes the set of real numbers, and C denotes the set of
complex numbers. Let 𝑞 be a complex number with |𝑞| < 1
and ℎ ∈ Z. Bernoulli equation is one of the well known
nonlinear differential equations of the first order. It is written
as

𝑑𝑦

𝑑𝑡
+ 𝑝 (𝑥) 𝑦 = 𝑔 (𝑥) 𝑦

𝑚
(𝑚 any real number) , (1)

where 𝑝(𝑥) and 𝑔(𝑥) are continuous functions. For 𝑚 = 0

and𝑚 = 1 the equation is linear, and otherwise it is nonlinear.
When𝑚 = 2, the Bernoulli equation has the solutionwhich is
the function of exponential generating function of the Euler
numbers. Simsek [18] introduced the (ℎ, 𝑞)-Euler numbers
𝐸
(ℎ)
𝑛,𝑞 and polynomials 𝐸(ℎ)𝑛,𝑞(𝑥). He gave recurrence identities
(ℎ, 𝑞)-Euler polynomials and the alternating sums of powers
of consecutive (ℎ, 𝑞)-integers. In [13], we described the
beautiful zeros of the (ℎ, 𝑞)-Euler polynomials 𝐸(ℎ)𝑛,𝑞(𝑥) using
a numerical investigation. Also we investigated distribution
and structure of the zeros of the (ℎ, 𝑞)-Euler polynomials
𝐸(ℎ)𝑛,𝑞(𝑥) by using computer.

Let us define the (ℎ, 𝑞)-Euler numbers 𝐸(ℎ)𝑛,𝑞 and polyno-
mials 𝐸(ℎ)𝑛,𝑞(𝑥) as follows:

𝐹
(ℎ)

𝑞 (𝑡) =
2

𝑞ℎ𝑒𝑡 + 1
=

∞

∑
𝑛=0

𝐸
(ℎ)

𝑛,𝑞

𝑡𝑛

𝑛!
, (2)

𝐹
(ℎ)

𝑞 (𝑥, 𝑡) =
2

𝑞ℎ𝑒𝑡 + 1
𝑒
𝑥𝑡
=

∞

∑
𝑛=0

𝐸
(ℎ)

𝑛,𝑞 (𝑥)
𝑡𝑛

𝑛!
. (3)

Observe that if 𝑞 → 1, then 𝐸(ℎ)𝑛,𝑞(𝑥) = 𝐸𝑛(𝑥) and 𝐸
(ℎ)
𝑛,𝑞 = 𝐸𝑛,

where 𝐸𝑛(𝑥) and 𝐸𝑛 denote the Euler polynomials and the
numbers, respectively (see [2, 5, 8, 16, 17]).
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Thus (ℎ, 𝑞)-Euler numbers 𝐸(ℎ)𝑛,𝑞 are defined by means of
the generating function

𝐹
(ℎ)

𝑞 (𝑡) =

∞

∑
𝑛=0

𝐸
(ℎ)

𝑛,𝑞

𝑡𝑛

𝑛!

= 2

∞

∑
𝑚=0

(−1)
𝑚
𝑞
ℎ𝑚
𝑒
𝑚𝑡
.

(4)

As is well known, when𝑚 = 2 a special Bernoulli equation

𝑑𝑦

𝑑𝑡
+ 𝑦 =

1

2
𝑦
2 (5)

has the solution

𝑦 =
2

𝑞ℎ𝑒𝑡 + 1
=

∞

∑
𝑛=0

𝐸
(ℎ)

𝑛,𝑞,

𝑡
𝑛

𝑛!
. (6)

That is, the Bernoulli equation has the solution which
is the function of exponential generating function of the
(ℎ, 𝑞)-Euler numbers. Thus, a realistic study for the analytic
continued polynomials 𝐸(ℎ)𝑞 (𝑠, 𝑤) is very interesting by using
computer. It is the aim of this paper to observe an interesting
phenomenon of “scattering” of the zeros of the analytic
continued polynomials 𝐸(ℎ)𝑞 (𝑠, 𝑤) in complex plane.

By using computer, the (ℎ, 𝑞)-Euler numbers 𝐸(ℎ)𝑛,𝑞, can be
determined explicitly. A few of them are

𝐸
(ℎ)

0,𝑞 =
2

1 + 𝑞ℎ
,

𝐸
(ℎ)

1,𝑞 = −
2𝑞ℎ

(1 + 𝑞ℎ)
2
,

𝐸
(ℎ)

2,𝑞 = −
2𝑞ℎ

(1 + 𝑞ℎ)
2
+

4𝑞2ℎ

(1 + 𝑞ℎ)
3
,

𝐸
(ℎ)

3,𝑞 = −
2𝑞ℎ

(1 + 𝑞ℎ)
2
+

12𝑞2ℎ

(1 + 𝑞ℎ)
3
−

12𝑞3ℎ

(1 + 𝑞ℎ)
4
.

(7)

Theorem 1. For 𝑛 ∈ N0, we have

𝐸
(ℎ)

𝑛,𝑞, (𝑥) =

𝑛

∑
𝑘=0

(
𝑛

𝑘
)𝐸
(ℎ)

𝑘,𝑞
𝑥
𝑛−𝑘
. (8)

By Theorem 1, after some elementary calculations, we
have

∫
𝑏

𝑎

𝐸
(ℎ)

𝑛,𝑞 (𝑥) 𝑑𝑥 =

𝑛

∑
𝑙=0

(
𝑛

𝑙
)𝐸
(ℎ)

𝑙,𝑞
∫
𝑏

𝑎

𝑥
𝑛−𝑙
𝑑𝑥

=
1

𝑛 + 1

𝑛+1

∑
𝑙=0

(
𝑛 + 1

𝑙
)𝐸
(ℎ)

𝑙,𝑞
𝑥
𝑛−𝑙+1󵄨󵄨󵄨󵄨󵄨

𝑏

𝑎

=
𝐸
(ℎ)
𝑛+1,𝑞 (𝑏) − 𝐸

(ℎ)
𝑛+1,𝑞 (𝑎)

𝑛 + 1
.

(9)

Since 𝐸(ℎ)𝑛,𝑞,(0) = 𝐸
(ℎ)
𝑛,𝑞, by (9), we obtain

𝐸
(ℎ)

𝑛,𝑞 (𝑥) = 𝐸
(ℎ)

𝑛,𝑞 + 𝑛∫
𝑥

0

𝐸
(ℎ)

𝑛−1,𝑞 (𝑡) 𝑑𝑡 for 𝑛 ∈ N. (10)

Then, it is easy to deduce that 𝐸(ℎ)𝑛,𝑞(𝑥) are polynomials of
degree 𝑛. Here is the list of the first (ℎ, 𝑞)-Euler’s polynomials:

𝐸
(ℎ)

0,𝑞 (𝑥) =
2

1 + 𝑞ℎ
,

𝐸
(ℎ)

1,𝑞 (𝑥) = −
2𝑞ℎ

(1 + 𝑞ℎ)
2
+

2𝑥

1 + 𝑞ℎ
,

𝐸
(ℎ)

2,𝑞 (𝑥) = −
2𝑞ℎ

(1 + 𝑞ℎ)
2
+

4𝑞2ℎ

(1 + 𝑞ℎ)
3
−

4𝑞ℎ𝑥

(1 + 𝑞ℎ)
2
+

2𝑥2

1 + 𝑞ℎ
,

𝐸
(ℎ)

3,𝑞 (𝑥) = −
2𝑞ℎ

(1 + 𝑞ℎ)
2
+

12𝑞2ℎ

(1 + 𝑞ℎ)
3
−

12𝑞3ℎ

(1 + 𝑞ℎ)
4

+
12𝑞2ℎ𝑥

(1 + 𝑞ℎ)
3
−

6𝑞ℎ𝑥

(1 + 𝑞ℎ)
2
−

6𝑞ℎ𝑥2

(1 + 𝑞ℎ)
2
+

2𝑥3

1 + 𝑞ℎ
.

(11)

2. Analytic Continuation of
(ℎ, 𝑞)-Euler Numbers 𝐸(ℎ)𝑛,𝑞

In this section, we introduce the (ℎ, 𝑞)-Euler zeta function
and Hurwitz (ℎ, 𝑞)-Euler zeta function. By (ℎ, 𝑞)-Euler zeta
function, we consider the function 𝐸(ℎ)𝑞 (𝑠) as the analytic
continuation of (ℎ, 𝑞)-Euler numbers. Formore studies in this
subject, you may see [2–5, 7–9, 12, 13, 18].

From (4), we note that

𝑑
𝑘

𝑑𝑡𝑘
𝐹
(ℎ)

𝑞 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0
= 2

∞

∑
𝑚=0

(−1)
𝑚
𝑞
ℎ𝑚
𝑚
𝑘

= 𝐸
(ℎ)

𝑘,𝑞
, (𝑘 ∈ N) .

(12)

By using the above equation, we are now ready to define
(ℎ, 𝑞)-Euler zeta functions.

Definition 2. Let 𝑠 ∈ C with Re(𝑠) > 0. Consider

𝜁
(ℎ)

𝐸,𝑞 (𝑠) = 2

∞

∑
𝑛=1

(−1)
𝑛
𝑞ℎ𝑛

𝑛𝑠
. (13)

Observe that 𝜁(ℎ)
𝐸,𝑞
(𝑠) is a meromorphic function on C.

Clearly, lim𝑞→1𝜁
(ℎ)

𝐸,𝑞
(𝑠) = 𝜁𝐸(𝑠) (see [3, 4, 7–9, 12, 13, 18]).

Notice that the (ℎ, 𝑞)-Euler zeta function can be analytically
continued to the whole complex plane, and these zeta func-
tions have the values of the (ℎ, 𝑞)-Euler numbers at negative
integers.
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Figure 1: The curve 𝐸(ℎ)𝑞 (𝑠) runs through the points of all 𝐸(ℎ)𝑛,𝑞 except 𝐸
(ℎ)

0,𝑞 .

Theorem 3. For 𝑘 ∈ N, we have

𝜁
(ℎ)

𝐸,𝑞 (−𝑘) = 𝐸
(ℎ)

𝑘,𝑞
. (14)

Observe that 𝜁(ℎ)
𝐸,𝑞
(𝑠) function interpolates 𝐸(ℎ)

𝑘,𝑞
numbers at

nonnegative integers.
By using (3), we note that

𝑑𝑘

𝑑𝑡𝑘
𝐹
(ℎ)

𝑞 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0
= 2

∞

∑
𝑚=0

(−1)
𝑚
𝑞
ℎ𝑚
(𝑥 + 𝑚)

𝑘

= 𝐸
(ℎ)

𝑘,𝑞
(𝑥) , (𝑘 ∈ N) ,

(15)

(
𝑑

𝑑𝑡
)

𝑘

(

∞

∑
𝑛=0

𝐸
(ℎ)

𝑛,𝑞,(𝑥)
𝑡𝑛

𝑛!
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝐸
(ℎ)

𝑘,𝑞
(𝑥) , for 𝑘 ∈ N. (16)

By (16), we are now ready to define the Hurwitz-type (ℎ, 𝑞)-
Euler zeta functions.

Definition 4. Let 𝑠 ∈ C with Re(𝑠) > 0. Consider

𝜁
(ℎ)

𝐸,𝑞 (𝑠, 𝑥) = 2

∞

∑
𝑛=0

(−1)
𝑛
𝑞ℎ𝑛

(𝑛 + 𝑥)
𝑠 . (17)

Note that 𝜁(ℎ)
𝐸,𝑞
(𝑠, 𝑥) is a meromorphic function on C (see

[3, 4, 7–9, 12, 13, 18]). Relation between 𝜁(ℎ)
𝐸,𝑞
(𝑠, 𝑥) and 𝐸(ℎ)

𝑘,𝑞
(𝑥)

is given by the following theorem.

Theorem 5. For 𝑘 ∈ N, we have

𝜁
(ℎ)

𝐸,𝑞 (−𝑘, 𝑥) = 𝐸
(ℎ)

𝑘,𝑞
(𝑥) . (18)

We now consider the function 𝐸(ℎ)𝑞 (𝑠) as the analytic con-
tinuation of (ℎ, 𝑞)-Euler numbers. From the above analytic
continuation of (ℎ, 𝑞)-Euler numbers, we consider

𝐸
(ℎ)

𝑛,𝑞 󳨃󳨀→ 𝐸
(ℎ)

𝑞 (𝑠) ,

𝜁
(ℎ)

𝐸,𝑞 (−𝑛) = 𝐸
(ℎ)

𝑛,𝑞 󳨃󳨀→ 𝜁
(ℎ)

𝐸,𝑞 (−𝑠) = 𝐸
(ℎ)

𝑞 (𝑠) .

(19)

In Figure 1(a), we choose 𝑞 = −1/2 and ℎ = 3. In
Figure 1(b), we choose 𝑞 = 1/2 and ℎ = 3.

All the (ℎ, 𝑞)-Euler numbers 𝐸(ℎ)𝑛,𝑞 agree with 𝐸
(ℎ)
𝑞 (𝑛), the

analytic continuation of (ℎ, 𝑞)-Euler numbers evaluated at 𝑛
(see Figure 1),

𝐸
(ℎ)

𝑛,𝑞 = 𝐸
(ℎ)

𝑞 (𝑛) for 𝑛 ≥ 1

except 𝐸(ℎ)𝑞 (0) =
−2𝑞ℎ

1 + 𝑞ℎ
, but 𝐸(ℎ)0,𝑞 =

2

1 + 𝑞ℎ
.

(20)

In fact, we can express 𝐸(ℎ)
󸀠

𝑞 (𝑠) in terms of 𝜁(ℎ)
󸀠

𝐸,𝑞
(𝑠), the

derivative of 𝜁(ℎ)
𝐸
(𝑠), as follows:

𝐸
(ℎ)

𝑞 (𝑠) = 𝜁
(ℎ)

𝐸,𝑞 (−𝑠) ,

𝐸
(ℎ)
󸀠

𝑞 (𝑠) = −𝜁
(ℎ)
󸀠

𝐸,𝑞 (−𝑠) ,

𝐸
(ℎ)
󸀠

𝑞 (2𝑛 + 1) = −𝜁
(ℎ)
󸀠

𝐸,𝑞 (−2𝑛 − 1) for 𝑛 ∈ N0.

(21)

From the relation (21), we can define the other analytic
continued half of (ℎ, 𝑞)-Euler numbers

𝐸
(ℎ)

𝑞 (𝑠) = 𝜁
(ℎ)

𝐸,𝑞 (−𝑠) , 𝐸
(ℎ)

𝑞 (−𝑠) = 𝜁
(ℎ)

𝐸,𝑞 (𝑠)

󳨐⇒ 𝐸
(ℎ)

𝑞 (−𝑛) = 𝜁
(ℎ)

𝐸,𝑞 (𝑛) , 𝑛 ∈ N.

(22)
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Figure 2: The curve 𝐸(ℎ)𝑞 (𝑠) runs through the points 𝐸(ℎ)−𝑛,𝑞.
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Figure 3: The curve of 𝐸(ℎ)𝑞 (𝑠, 𝑤), 2 ≤ 𝑠 ≤ 3, −0.1 ≤ 𝑤 ≤ 0.1.

By (22), we have

lim
𝑛→∞

𝐸
(ℎ)

−𝑛,𝑞 = 𝜁
(ℎ)

𝐸,𝑞 (𝑛) = −2𝑞
ℎ
. (23)

The curve 𝐸(ℎ)𝑞 (𝑠) runs through the points 𝐸(ℎ)−𝑛,𝑞 = 𝐸(ℎ)𝑞 (−𝑛)

and grows ∼−2𝑞ℎ asymptotically as −𝑛 → ∞ (see Figure 2).
In Figure 2(a), we choose 𝑞 = −1/2 and ℎ = 3. In

Figure 2(b), we choose 𝑞 = 1/2 and ℎ = 3.

3. Analytic Continuation of
Euler Polynomials 𝐸(ℎ)𝑛,𝑞(𝑥)

In this section, we observe the analytic continued (ℎ, 𝑞)-Euler
polynomials. Looking back at (13) and (22), for consistency

with the definition of 𝐸(ℎ)𝑛,𝑞(𝑥) = 𝐸
(ℎ)
𝑞 (𝑛, 𝑥), (ℎ, 𝑞)-Euler poly-

nomials should be analogously redefined as

𝐸
(ℎ)

𝑞 (0, 𝑥) = − 𝑞
ℎ
𝐸
(ℎ)

0,𝑞 (𝑥) ,

𝐸
(ℎ)

𝑞 (𝑛, 𝑥) =

𝑛

∑
𝑙=0

(
𝑛

𝑙
)𝐸
(ℎ)

𝑙,𝑞
𝑥
𝑛−𝑙
.

(24)

Let Γ(𝑠) be the gamma function. The analytic continuation
can be then obtained as

𝑛 󳨃󳨀→ 𝑠 ∈ R, 𝑥 󳨃󳨀→ 𝑤 ∈ C,

𝐸
(ℎ)

0,𝑞 󳨃󳨀→ 𝐸
(ℎ)

𝑞 (0) = −
1

𝑞ℎ
𝜁
(ℎ)

𝐸,𝑞 (0) ,

𝐸
(ℎ)

𝑘,𝑞
󳨃󳨀→ 𝐸

(ℎ)

𝑞 (𝑘 + 𝑠 − [𝑠]) = 𝜁
(ℎ)

𝐸,𝑞 (− (𝑘 + (𝑠 − [𝑠]))) ,

(
𝑛

𝑘
) 󳨃󳨀→

Γ (1 + 𝑠)

Γ (1 + 𝑘 + (𝑠 − [𝑠])) Γ (1 + [𝑠] − 𝑘)

󳨐⇒ 𝐸
(ℎ)

𝑛,𝑞 (𝑤) 󳨃󳨀→ 𝐸
(ℎ)

𝑞 (𝑠, 𝑤)

=

[𝑠]

∑
𝑘=−1

Γ (1 + 𝑠) 𝐸
(ℎ)
𝑞 (𝑘 + 𝑠 − [𝑠]) 𝑤

[𝑠]−𝑘

Γ (1 + 𝑘 + (𝑠 − [𝑠])) Γ (1 + [𝑠] − 𝑘)

=

[𝑠]+1

∑
𝑘=0

Γ (1 + 𝑠) 𝐸
(ℎ)
𝑞 ((𝑘 − 1) + 𝑠 − [𝑠]) 𝑤

[𝑠]+1−𝑘

Γ (𝑘 + (𝑠 − [𝑠])) Γ (2 + [𝑠] − 𝑘)
,

(25)

where [𝑠] gives the integer part of 𝑠, and so 𝑠 − [𝑠] gives the
fractional part.
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Figure 4: Stacks of zeros of 𝐸(ℎ)𝑞 (𝑛, 𝑤) for 1 ≤ 𝑛 ≤ 30.

By (25), we obtain analytic continuation of (ℎ, 𝑞)-Euler
polynomials for 𝑞 = −1/2 and ℎ = 3 as follows:

𝐸
(ℎ)

𝑞 (0, 𝑤) ≈ 2.28571,

𝐸
(ℎ)

𝑞 (1, 𝑤) ≈ 0.326531 + 2.28571𝑤,

𝐸
(ℎ)

𝑞 (2, 𝑤) ≈ 0.41982 + 0.65306𝑤 + 0.28571𝑤
2
,

𝐸
(ℎ)

𝑞 (2.2, 𝑤) ≈ 0.45027 + 0.74682𝑤 + 0.38478𝑤
2

+ 0.02373𝑤
3
,

𝐸
(ℎ)

𝑞 (2.4, 𝑤) ≈ 0.48668 + 0.85139𝑤 + 0.50111𝑤
2

+ 0.06112𝑤
3
,

𝐸
(ℎ)

𝑞 (2.6, 𝑤) ≈ 0.53037 + 0.96937𝑤 + 0.63694𝑤
2

+ 0.11503𝑤
3
,

𝐸
(ℎ)

𝑞 (2.8, 𝑤) ≈ 0.58293 + 1.10403𝑤 + 0.79519𝑤
2

+ 0.18867𝑤
3
,

𝐸
(ℎ)

𝑞 (2.9, 𝑤) ≈ 0.61316 + 1.178859𝑤 + 0.88385𝑤
2

+ 0.23401𝑤
3
,

𝐸
(ℎ)

𝑞 (3, 𝑤) ≈ 0.64639 + 1.25947𝑤 + 0.97959𝑤
2

+ 2.28571𝑤
3
.

(26)
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Figure 5: Zeros of 𝐸(ℎ)𝑞 (𝑠, 𝑤) for 𝑠 = 28, 28.8, 28.9, 29.

By using (26), we plot the deformation of the curve 𝐸(ℎ)𝑞 (2, 𝑤)
into the curve of 𝐸(ℎ)𝑞 (3, 𝑤) via the real analytic continuation
𝐸(ℎ)𝑞 (𝑠, 𝑤), 2 ≤ 𝑠 ≤ 3, 𝑤 ∈ R (see Figure 3).

Next, we investigate the beautiful zeros of the𝐸(ℎ)𝑞 (𝑛, 𝑤) by
using a computer. We plot the zeros of 𝐸(ℎ)𝑞 (𝑛, 𝑤) for 𝑛 ∈ N,
𝑞 = 1/2, ℎ = 3, and𝑤 ∈ C (Figure 4). In Figure 4(b), we draw
𝑥 and 𝑦 axes but no 𝑧 axis in three dimensions. In Figure 4(c),
we draw 𝑦 and 𝑧 axes but no 𝑥 axis in three dimensions.
In Figure 4(d), we draw 𝑥 and 𝑧 axes but no 𝑦 axis in three
dimensions.

In Figure 4, we observe that 𝐸(ℎ)𝑞 (𝑛, 𝑤), 𝑤 ∈ C, has
Im(𝑤) = 0 reflection symmetry analytic complex functions
(Figure 4).The obvious corollary is that the zeros of𝐸(ℎ)𝑞 (𝑛, 𝑤)
will also inherit these symmetries:

if 𝐸(ℎ)𝑞 (𝑛, 𝑤0) = 0, then 𝐸(ℎ)𝑞 (𝑛, 𝑤
∗

0 ) = 0, (27)

where ∗ denotes complex conjugation.
Finally, we investigate the beautiful zeros of the 𝐸(ℎ)𝑞 (𝑠, 𝑤)

by using a computer. We plot the zeros of 𝐸(ℎ)𝑞 (𝑠, 𝑤) for 𝑠 =
28, 20.8, 20.9, 29, 𝑞 = −1/2, ℎ = 3, and 𝑤 ∈ C (Figure 5).
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Figure 6: Stacks of zeros of 𝐸(ℎ)𝑞 (𝑠, 𝑤) for 1 ≤ 𝑛 ≤ 30.

In Figure 5(a), we choose 𝑠 = 28. In Figure 5(b), we
choose 𝑠 = 28.8. In Figure 5(c), we choose 𝑠 = 28.9. In
Figure 5(d), we choose 𝑠 = 29.

Since
∞

∑
𝑛=0

𝐸
(ℎ)

𝑛,𝑞−1
(1 − 𝑥)

(−1)
𝑛
𝑡𝑛

𝑛!
=

2

𝑞−ℎ𝑒−𝑡 + 1
𝑒
(1−𝑥)(−𝑡)

= 𝑞
ℎ
(

2

𝑞ℎ𝑒𝑡 + 1
) 𝑒
𝑥𝑡

=

∞

∑
𝑛=0

𝑞
ℎ
𝐸
(ℎ)

𝑛,𝑞 (𝑥)
𝑡𝑛

𝑛!
,

(28)

we obtain

𝑞
ℎ
𝐸
(ℎ)

𝑛,𝑞 (𝑥) = (−1)
𝑛
𝐸
(ℎ)

𝑛,𝑞−1
(1 − 𝑥) . (29)

Observe that 𝐸𝑛(𝑥), 𝑥 ∈ C, has Re(𝑥) = 1/2 reflection
symmetry in addition to the usual Im(𝑥) = 0 reflection
symmetry analytic complex functions (see [14]).The question
is, what happens with the reflexive symmetry (29), when one
considers (ℎ, 𝑞)-Euler polynomials? Prove that𝐸(ℎ)𝑞 (𝑛, 𝑤),𝑤 ∈
C, has no Re(𝑤) = 1/2 reflection symmetry analytic complex
functions (Figure 4). However, we observe that 𝐸(ℎ)𝑞 (𝑠, 𝑤),



8 Abstract and Applied Analysis

0

10

20

30

s

−40 −30 −20 −10 0

Re(w)

(a)

0

10

20

30

s

−4 −3 −2 −1 0

Re(w)

(b)

Figure 7: Real zeros of 𝐸(ℎ)𝑞 (𝑠, 𝑤).

𝑤 ∈ C, has Im(𝑥) = 0 reflection symmetry analytic complex
functions (Figure 5).

Stacks of zeros of 𝐸(ℎ)𝑞 (𝑠, 𝑤) for 𝑠 = 𝑛 + 1/2, ℎ = 3, 1 ≤ 𝑛 ≤
30 from a 3-D structure are presented (Figure 6).

In Figure 6(b), we draw 𝑦 and 𝑧 axes but no 𝑥 axis in three
dimensions. In Figure 6(c), we draw𝑥 and𝑦 axes but no 𝑧 axis
in three dimensions. In Figure 6(d), we draw 𝑥 and 𝑧 axes but
no 𝑦 axis in three dimensions.

Our numerical results for approximate solutions of real
zeros of 𝐸(ℎ)𝑞 (𝑠, 𝑤), 𝑞 = −1/2, ℎ = 3 are displayed. We observe
a remarkably regular structure of the complex roots of (ℎ, 𝑞)-
Euler polynomials. We hope to verify a remarkably regular
structure of the complex roots of (ℎ, 𝑞)-Euler polynomials
(Table 1).

Next, we calculated an approximate solution satisfying
𝐸
(ℎ)
𝑞 (𝑠, 𝑤), 𝑞 = −1/2, ℎ = 3, 𝑤 ∈ R. The results are given

in Table 2.
In Figure 7, we plot the real zeros of the (ℎ, 𝑞)-Euler

polynomials 𝐸(ℎ)𝑞 (𝑠, 𝑤) for 𝑠 = 𝑛 + 1/2, 𝑞 = −1/2, ℎ = 3, and
𝑤 ∈ C (Figure 7). In Figure 7(a), we choose 𝑠 = 𝑛 + 1/2. In
Figure 7(b), we choose 𝑠 = 𝑛. We want to find a formula that
best fits a given set of data points.The least squares method is
used to fit polynomials or a set of functions to a given set of
data points. Using the least squaresmethod, we can find 𝑎 and
𝑏 such that 𝑥 = 𝑎 + 𝑏𝑛 is the least squares fit to the data given
in Table 2. The graph of the data points is shown in Figure 7.
We obtain 𝑥 = −0.0818486−0.138376𝑛 for 𝑛 = 1, 3, 5, . . .. We
also obtain 𝑥 = −1.48453 − 1.22923𝑛 for 𝑛 = 1, 3, 5, . . . and
𝑥 = −0.850454 − 0.134332𝑛 for 𝑛 = 1.5, 2.5, 3.5, 4.5, . . .. The
real zero 𝑥 ∼ −∞ asymptotically as 𝑛 → ∞.

The (ℎ, 𝑞)-Euler polynomials 𝐸(ℎ)𝑞 (𝑛, 𝑤) are polynomials
of degree 𝑛. Thus, 𝐸(ℎ)𝑞 (𝑛, 𝑤) has 𝑛 zeros and 𝐸(ℎ)𝑞 (𝑛 + 1, 𝑤)

Table 1: Numbers of real and complex zeros of 𝐸(ℎ)𝑞 (𝑠, 𝑤).

𝑠 Real zeros Complex zeros
1.5 2 0
2.5 1 2
3.5 2 2
4.5 1 4
5.5 2 4
6.5 1 6
7.5 2 6
8 0 8
8.5 1 8
9 1 8
9.5 2 8
10 0 10
10.5 1 10
11 1 10
11.5 2 10

has 𝑛 + 1 zeros. When discrete 𝑛 is analytic continued to
continuous parameter 𝑠, it naturally leads to the following
question.

How does 𝐸(ℎ)𝑞 (𝑠, 𝑤), the analytic continuation of
𝐸(ℎ)𝑞 (𝑛, 𝑤), pick up an additional zero as 𝑠 increases contin-
uously by one?

This introduces the exciting concept of the dynamics of
the zeros of analytic continued Euler polynomials, the idea of
looking at how the zeros move about in the 𝑤 complex plane
as we vary the parameter 𝑠.
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Table 2: Approximate solutions of 𝐸(ℎ)𝑞 (𝑠, 𝑤) = 0, ℎ = 3, 𝑤 ∈ R.

𝑠 𝑤

6 ×

6.5 −9.47111

7 −1.06648

7.5 −10.6998, −1.8568

8 ×

8.5 −11.9289

9 −1.34687

9.5 −13.1581, −2.12315

10 ×

10.5 −14.3874

11 −1.62471

11.5 −15.6169, −2.3908

To have a physical picture of the motion of the zeros in
the complex 𝑤 plane, imagine that each time as 𝑠 increases
gradually and continuously by one, an additional real zero
flies in from positive infinity along the real positive axis,
gradually slowing down as if “it is flying through a viscous
medium.”

For more studies and results in this subject, you may see
[6, 11–15].
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