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Now dealing with power system became the most important arts. In this paper we report the dynamic analysis of a fractional-order
power system with parameter 𝑄

1
. To the best know of our knowledge, that was the first report about bifurcation analysis of the

fractional order power system. So first we discuss the dynamic analysis with different fractional order and different parameters.
Furthermore we will establish its numerical simulations which are provided to demonstrate the feasibility and efficacy of our
analysis.

1. Introduction

For a long time, many researchers have been growing interest
in investigating the potential use of dynamics in applica-
tions, taking power system as an example. Under normal
and emergency operating conditions, power systems always
can show rich nonlinear dynamic phenomena. From a math-
ematical point of view, differential equations can be used
to describe the dynamic behavior of the power system. The
power system is usually run under equilibrium conditions,
but in engineering practice, the stability of the equilibrium
point form sometimes changeswith the range of small pertur-
bations. After 1980s, with the development of the power sys-
tem, even if a small perturbation can also cause the system to
lose stability, due to the changing of some control parameters.
Researchers focus on the study of the critical state of the
system.

Along with the 300-year-old history of the fractional cal-
culus, its applications to electrical engineering have received
more attention. Typically, chaotic systems are still chaotic
even when their differential equations become fractional-
order differential systems [1–9]. We all know there are many
results on fractional-order system, but the bifurcation of
fractional-order nonlinear systems has not been well studied.

Obviously there are two kinds of methods which have
been used in the previous paper to solve fractional-order
differential systems: the frequency-domain methods [10] and
the time-domain methods [11]. Some researcher found it is
sometimes invalid to research some chaotic systemswhoused
the frequently method to investigate chaos [12, 13]. However,
we give up the first method and choice the time domain
method to make the numerical simulations in this paper.The
main ideawas introduced byDiethelm et al. [14] and has been
used by the following paper [15–17].

In this paper, we report the first investigation of a frac-
tional-order power system using the time domain method.
Recently, a simplified 4D power system was reported by
Chiang et al. [18]. Its chaotic and bifurcation analysis have
been investigated and got well results [19, 20]. But to the
best know of our knowledge, that was the first report about
bifurcation analysis of the fractional-order system.According
to the different values we will show the bifurcation diagrams
of the system which chaos exists.

The paper is organized as follows. In Section 2, the
numerical algorithm for the fractional-order power system is
presented. In Section 3, the chaotic behavior and bifurcations
of the system are studied. Finally, we summarize the results.
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Figure 1: (a) The 3D trajectory in the integer order power system. (b) The related bifurcation diagram of the parameter 𝑄
1
.

2. Numerical Algorithm for Fractional-Order
Power System

2.1. System Description [21]. In this paper we consider the
following power system in [21] (see Figure 1). Here we use
𝑄
1
as the varying parameter to derive the corresponding

attractor.
Now we consider the fraction order power system by

𝑑
𝑞
1𝛿
𝑚

𝑑𝑡𝑞
= 𝜔;

𝑑
𝑞
2𝜔

𝑑𝑡𝑞
=
50

3
] sin (𝛿 − 𝛿

𝑚
+ 0.0873) −

1

6
𝜔 +

47

25
;

𝑑
𝑞
3𝛿

𝑑𝑡𝑞
= 496.8]2 −

50

3
] cos (𝛿 − 𝛿

𝑚
− 0.0873)

−
2000

3
] cos (𝛿 − 0.2094)

−
280

3
] +
100

3
𝑄
1
+
130

3
;

𝑑
𝑞
4]
𝑑𝑡𝑞

= − 78.7]2 + 26.2] cos (𝛿 − 𝛿
𝑚
− 0.0124)

+
524

5
] cos (𝛿 − 0.1346) + 29

2
] − 5.3𝑄

1
−
703

100
;

(1)
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here 𝛿
𝑚
, 𝜔, 𝛿, and ] are variables and 𝑑𝑞𝑖/𝑑𝑡𝑞𝑖 = 𝐷

𝑞
𝑖

∗
(𝑖 =

1, 2, 3, 4), its order is denoted by 𝑞 = (𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
). When

𝑞
𝑖
= 1, 𝑖 = 1, 2, 3, 4, system (1) becomes the integer order

power system in [21].

2.2. Fractional Derivative [22]. There are several definitions
of a fractional-order differential system. In the following, we
introduce the most common one of them [22]:

𝐷
𝛼

∗
𝑥 (𝑡) = 𝐽

𝑚−𝛼
𝑥(𝑡)
(𝑚)
, with 𝛼 > 0 (2)

with 𝑚 = [𝛼]; that is, 𝑚 is the first integer which is not less
than 𝛼, 𝑥𝑚 is the m-order derivative in the usual sense, and
𝐽
𝛽 (𝛽 > 0) is the 𝛽-order Reimann-Liouville integral operator
with expression

𝐽
𝛽
𝑦 (𝑡) =

1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1
𝑦 (𝜏) 𝑑𝜏. (3)

Here 𝜏 stands for Gamma function, and the operator 𝐷𝛼
∗
is

generally called “𝛼-order Caputo differential operator” [22].
Next, we consider the fractional-order differential equa-

tion with related initial conditions

𝐷
𝛼

∗
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 0 < 𝑡 < 𝑇,

𝑥
(𝑘)
(0) = 𝑥

(𝑘)

0
, 𝑘 = 0, 1, 2, . . . 𝑛 − 1.

(4)

Combined with the methods [11, 14] and the above
definition of fractional-order differential equation. Set 𝜏 =
𝑇/𝑁, the fractional-order power system can be rewritten

(𝛿
𝑚
)
𝑛+1
= (𝛿
𝑚
)
0
+

𝜏
𝑞
1

Γ (𝑞
1
+ 2)

×
{

{

{

𝜔
𝑝

𝑛+1
+

𝑛

∑

𝑗=0

(𝑎
1
)
𝑗,𝑛+1
𝜔
𝑗

}

}

}

;

𝜔
𝑛+1
= 𝜔
0
+

𝜏
𝑞
2

Γ (𝑞
2
+ 2)

× {
50

3
]𝑝
𝑛+1

sin (𝛿𝑝
𝑛+1
− (𝛿
𝑚
)
𝑝

𝑛+1
+ 0.0873)

−
1

6
𝜔
𝑝

𝑛+1
+
47

25

+

𝑛

∑

𝑗=0

(𝑎
2
)
𝑗,𝑛+1

[
50

3
]
𝑗
sin (𝛿

𝑗
− (𝛿
𝑚
)
𝑗

+0.0873)

−
1

6
𝜔
𝑗
+
47

25
]} ;

𝛿
𝑛+1
= 𝛿
0
+

𝜏
𝑞
3

Γ (𝑞
3
+ 2)

× {496.8(]𝑝
𝑛+1
)
2

−
50

3
]𝑝
𝑛+1

× cos (𝛿𝑝
𝑛+1
− (𝛿
𝑚
)
𝑝

𝑛+1
− 0.0873)

−
2000

3
]𝑝
𝑛+1

cos (𝛿𝑝
𝑛+1
− 0.2094) −

280

3
]𝑝
𝑛+1

+
100

3
𝑞
1
+
130

3

+

𝑛

∑

𝑗=0

(𝑎
3
)
𝑗,𝑛+1

[496.8(]
𝑗
)
2

−
50

3
]
𝑗

× cos (𝛿
𝑗
− (𝛿
𝑚
)
𝑗
− 0.0873)

−
2000

3
]
𝑗

× cos (𝛿
𝑗
− 0.2094)

−
280

3
]
𝑗
+
100

3
𝑞
1
+
130

3
]} ;

]
𝑛+1
= ]
0
+

𝜏
𝑞
4

Γ (𝑞
4
+ 2)

× { − 78.7(]𝑝
𝑛+1
)
2

− 26.2]𝑝
𝑛+1

× cos (𝛿𝑝
𝑛+1
− (𝛿
𝑚
)
𝑝

𝑛+1
− 0.0124)

−
524

5
]𝑝
𝑛+1

cos (𝛿𝑝
𝑛+1
− 0.1346)

+
29

2
]𝑝
𝑛+1
− 5.3𝑞

1
−
703

100

+

𝑛

∑

𝑗=0

(𝑎
4
)
𝑗,𝑛+1

[ − 78.7(]
𝑗
)
2

− 26.2]
𝑗

× cos (𝛿
𝑗
− (𝛿
𝑚
)
𝑗
− 0.0124)

−
524

5
]
𝑗
cos (𝛿

𝑗
− 0.1346)

+
29

2
]
𝑗
− 5.3𝑞

1
−
703

100
]} ;

(5)

in which

(𝛿
𝑚
)
𝑝

𝑛+1
= (𝛿
𝑚
)
0
+

1

Γ (𝑞
1
)

𝑛

∑

𝑗=0

(𝑏
1
)
𝑗,𝑛+1
𝜔
𝑗
;

𝜔
𝑝

𝑛+1
= 𝜔
0
+

1

Γ (𝑞
2
)
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×

𝑛

∑

𝑗=0

(𝑏
2
)
𝑗,𝑛+1

[
50

3
]
𝑗

× sin (𝛿
𝑗
− (𝛿
𝑚
)
𝑗
+ 0.0873)

−
1

6
𝜔
𝑗
+
47

25
] ;

𝛿
𝑝

𝑛+1
= 𝛿
0
+

1

Γ (𝑞
3
)

×

𝑛

∑

𝑗=0

(𝑏
3
)
𝑗,𝑛+1

[496.8(]
𝑗
)
2

−
50

3
]
𝑗
cos (𝛿

𝑗
− (𝛿
𝑚
)
𝑗
− 0.0873)

−
2000

3
]
𝑗
cos (𝛿

𝑗
− 0.2094)

−
280

3
]
𝑗
+
100

3
𝑞
1
+
130

3
] ;

]𝑝
𝑛+1
= ]
0
+

1

Γ (𝑞
4
)

×

𝑛

∑

𝑗=0

(𝑏
4
)
𝑗,𝑛+1

[ − 78.7(]
𝑗
)
2

− 26.2]
𝑗

× cos (𝛿
𝑗
− (𝛿
𝑚
)
𝑗
− 0.0124)

−
524

5
]
𝑗
cos (𝛿

𝑗
− 0.1346)

+
29

2
]
𝑗
− 5.3𝑞

1
−
703

100
] ;

(6)

(𝑎
1
)
𝑗,𝑛+1

=

{{

{{

{

𝑛
𝑞
1 − (𝑛 − 𝑞

1
) (𝑛 + 1)

𝑞
1 , 𝑗 = 0,

(𝑛 − 𝑗 + 2)
𝑞
1
+1

+ (𝑛 − 𝑗)
𝑞
1
+1

−2(𝑛 − 𝑗 + 1)
𝑞
1
+1

, 0 ≤ 𝑗 ≤ 𝑛,

(𝑎
2
)
𝑗,𝑛+1

=

{{

{{

{

𝑛
𝑞
2 − (𝑛 − 𝑞

2
) (𝑛 + 1)

𝑞
2 , 𝑗 = 0,

(𝑛 − 𝑗 + 2)
𝑞
2
+1

+ (𝑛 − 𝑗)
𝑞
2
+1

−2(𝑛 − 𝑗 + 1)
𝑞
2
+1

, 0 ≤ 𝑗 ≤ 𝑛,

(𝑎
3
)
𝑗,𝑛+1

=

{{

{{

{

𝑛
𝑞
3 − (𝑛 − 𝑞

3
) (𝑛 + 1)

𝑞
3 , 𝑗 = 0,

(𝑛 − 𝑗 + 2)
𝑞
3
+1

+ (𝑛 − 𝑗)
𝑞
3
+1

−2(𝑛 − 𝑗 + 1)
𝑞
3
+1

, 0 ≤ 𝑗 ≤ 𝑛,

(𝑎
4
)
𝑗,𝑛+1

=

{{

{{

{

𝑛
𝑞
4 − (𝑛 − 𝑞

4
) (𝑛 + 1)

𝑞
4 , 𝑗 = 0,

(𝑛 − 𝑗 + 2)
𝑞
4
+1

+ (𝑛 − 𝑗)
𝑞
4
+1

−2(𝑛 − 𝑗 + 1)
𝑞
4
+1

, 0 ≤ 𝑗 ≤ 𝑛,

(7)

(𝑏
1
)
𝑗,𝑛+1

=
𝜏
𝑞
1

𝑞
1

((𝑛 − 𝑗 + 1)
𝑞
1 − (𝑛 − 𝑗)

𝑞
1) , 0 ≤ 𝑗 ≤ 𝑛,

(𝑏
2
)
𝑗,𝑛+1

=
𝜏
𝑞
2

𝑞
2

((𝑛 − 𝑗 + 1)
𝑞
2 − (𝑛 − 𝑗)

𝑞
2) , 0 ≤ 𝑗 ≤ 𝑛,

(𝑏
3
)
𝑗,𝑛+1

=
𝜏
𝑞
3

𝑞
3

((𝑛 − 𝑗 + 1)
𝑞
3 − (𝑛 − 𝑗)

𝑞
3) , 0 ≤ 𝑗 ≤ 𝑛,

(𝑏
4
)
𝑗,𝑛+1

=
𝜏
𝑞
4

𝑞
4

((𝑛 − 𝑗 + 1)
𝑞
4 − (𝑛 − 𝑗)

𝑞
4) , 0 ≤ 𝑗 ≤ 𝑛.

(8)

3. Bifurcations Analysis of
the Fractional-Order Power System

3.1. Integer-Order Power System. In the following discus-
sion, we mainly use the simulation method to analyze the
fractional-order power system by calculating the largest
Lyapunov exponent using the Wolf algorithm [6]. Because
the nonperiodicity solutions and sensitive dependence on
initial conditions are important reason of chaos, here, we
let the initial condition be defined as ((𝛿

𝑚
)
0
, 𝜔
0
, 𝛿
0
, ]
0
) =

(0.348; 0.1; 0.138; 0.925) [21] and vary 𝑞
𝑖
= 𝑞 (𝑖 = 1, 2, 3, 4).

According to our numerical simulations, we have visually
founded the difference between the integer order and the
fractional order. Here we let 𝑞

𝑖
= 1 (𝑖 = 1, 2, 3, 4), that is,

integer order, the 3D trajectory in the power system is shown
in Figure 1. The related bifurcation diagram of the parameter
𝑄
1
is shown in Figure 1, and the largest Lyapunov exponent

diagram is shown in Figure 2.

3.2. Dynamic Analysis of the Fractional-Order System. Next
we correspond to discuss the fractional-order power system.
The fractional orders 𝑞

𝑖
(𝑖 = 1, 2, 3, 4) are equal and fixed

with at some value which is from 0 to 1. On the basis of
Section 2, first we find that the range of parameter is changing
along with the changing of fractional order. When we let
𝑞
𝑖
= 0.99 (𝑖 = 1, 2, 3, 4) be an example while the parameter

𝑄
1
is changed from 0 to 11.4 [21]. For a step size in 𝑄

1
is

0.01, we clearly got the range of 𝑄
1
∈ (6, 11.4) in which the

solutions of the fractional-order power system are bounded.
We take𝑄

1
= 11.37 as an example, the 2D trajectory is shown

in Figure 3 which clearly finds the difference between two
orders 0.99 and 1. The difference is that the former generates
chaotic phenomena and the later happens that after a period
of offloading shock of system voltage, ultimately stabilize at
a certain value, corresponding to the equilibrium point is
asymptotically stable focus. Further, we let 𝑞

𝑖
= 0.9 (𝑖 =

1, 2, 3, 4); we clearly got the range of 𝑄
1
∈ (1, 5.9). The 2D

trajectory is shown in Figure 4 in which𝑄
1
= 1 and𝑄

1
= 5.9.

3.3. Dynamic Analysis with Different Order

(1) Fix 𝑞
2
= 𝑞
3
= 𝑞
4
= 1, 𝑄

1
= 11, and let 𝑞

1
vary. We

calculate numerically the fractional-power system for
𝑞
1
∈ (0.9, 0.99) with a varied step size equal to 0.01.

The related Largest Lyapunov exponent is shown in
Figure 5.

(2) Fix 𝑞
1
= 𝑞
3
= 𝑞
4
= 1, 𝑄

1
= 11, and let 𝑞

2
vary. We

calculate numerically the fractional-power system for
𝑞
2
∈ (0.9, 0.99) with a varied step size equal to 0.01.

The related Largest Lyapunov exponent is shown in
Figure 5.

(3) Fix 𝑞
1
= 𝑞
2
= 𝑞
4
= 1, 𝑄

1
= 11, and let 𝑞

3
vary. We

calculate numerically the fractional-power system for
𝑞
3
∈ (0.9, 0.99) with a varied step size equal to 0.01.

The related Largest Lyapunov exponent is shown in
Figure 6.

(4) Fix 𝑞
1
= 𝑞
2
= 𝑞
3
= 1, 𝑄

1
= 11, and let 𝑞

4
vary. We

calculate numerically the fractional-power system for
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𝑖
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𝑞
4
∈ (0.9, 0.99) with a varied step size equal to 0.01.

The related Largest Lyapunov exponent is shown in
Figure 6.

4. Conclusions

Through the above discussion, we successfully have numer-
ically studied the existence of the bifurcations type of the
fractional order power system with the difference orders.
According to the different initial conditions and fractional

order, the largest Lyapunov exponent values and the bifurca-
tionmaps are given to verify the rationality of the analysis. Of
course, the next work on this topic should include the depth
study in chaos control and synchronization.
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