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The author considers an impulsive boundary value problem involving the one-dimensional p-Laplacian −(𝜑𝑝(𝑢
󸀠
))

󸀠
=

𝜆𝜔 (𝑡) 𝑓 (𝑡, 𝑢) , 0 < 𝑡 < 1, 𝑡 ̸= 𝑡𝑘, Δ𝑢|𝑡=𝑡𝑘
= 𝜇𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) , Δ𝑢

󸀠
|𝑡=𝑡𝑘

= 0, 𝑘 = 1, 2, . . . , 𝑛, 𝑎𝑢(0)−𝑏𝑢

󸀠
(0) = ∫

1

0
𝑔(𝑡)𝑢(𝑡)𝑑𝑡, 𝑢

󸀠
(1) = 0,

where 𝜆 > 0 and 𝜇 > 0 are two parameters. Using fixed point theories, several new and more general existence and multiplicity
results are derived in terms of different values of 𝜆 > 0 and 𝜇 > 0. The exact upper and lower bounds for these positive solutions are
also given. Moreover, the approach to deal with the impulsive term is different from earlier approaches. In this paper, our results
cover equations without impulsive effects and are compared with some recent results by Ding and Wang.

1. Introduction

Impulsive differential equations, which provide a natural
description of observed evolution processes, are regarded as
importantmathematical tools for the better understanding of
several real-world problems in applied sciences, such as pop-
ulation dynamics, ecology, biological systems, biotechnology,
industrial robotics, pharmacokinetics, and optimal control.
Therefore, the study of this class of impulsive differential
equations has gained prominence, and it is a rapidly growing
field. For the general theory of impulsive differential equa-
tions, we refer the reader to [1–3], whereas the applications
of impulsive differential equations can be found in [4–20].
In particular, we would like to mention some results of Lin
and Jiang [8] and Feng and Xie [10]. In [8], Lin and Jiang
investigated the following Dirichlet boundary value problem
with impulse effects:

−𝑢

󸀠󸀠
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡𝑘,

Δ𝑢

󸀠󵄨
󵄨

󵄨

󵄨

󵄨𝑡=𝑡𝑘
= −𝐼𝑘 (𝑢 (𝑡𝑘)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑢 (1) = 0,

(1)

and, by virtue of the fixed point index theory in cones, the
authors obtained some sufficient conditions for the existence
of multiple positive solutions.

Recently, using fixed point theorems in a cone, Feng and
Xie [10] considered the existence of positive solutions for the
following problem:

−𝑢

󸀠󸀠
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡𝑘,

−Δ𝑢

󸀠󵄨
󵄨

󵄨

󵄨

󵄨𝑡=𝑡𝑘
= 𝐼𝑘 (𝑢 (𝑡𝑘)) , 𝑘 = 1, 2, . . . , 𝑛,

𝑢 (0) =

𝑚−2

∑

𝑖=1

𝑎𝑖𝑢 (𝜉𝑖) , 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝑏𝑖𝑢 (𝜉𝑖) .

(2)

Moreover, differential equations with 𝑝-Laplacian arise
naturally in the study of flow through porous media 𝑝 =

3/2, nonlinear elasticity 𝑝 ≥ 2, glaciology 1 ≤ 𝑝 ≤ 4/3,
and so forth. In recent years, many cases of the existence,
multiplicity, and uniqueness of positive solution of differen-
tial equations with 𝑝-Laplacian have attracted considerable
attention [21–46]. Here, it is worth mentioning the studies by
Dai and Ma [25] and Kajikiya et al. [26]. In [25], Dai and
Ma considered the following one-dimensional 𝑝-Laplacian
problem:

(𝜑𝑝 (𝑢
󸀠
))

󸀠

+ 𝑓 (𝑡, 𝑢) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0.

(3)
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By using the global bifurcation theory, the authors showed the
existence of nodal solutions.

In [26], Kajikiya et al. investigated the following one-
dimensional 𝑝-Laplacian problem:

(𝜑𝑝 (𝑢
󸀠
))

󸀠

+ 𝜆𝜔 (𝑡) 𝑓 (𝑢) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(4)

and, by virtue of the global bifurcation theory, they obtained
the existence, nonexistence, uniqueness, and multiplicity of
positive solutions as well as sign-changing solutions under
suitable conditions imposed on the nonlinear term 𝑓.

At the same time, we notice that there has been a
considerable attention on impulsive differential equations
with one-dimensional𝑝-Laplacian. For example, in [31],Ding
andO’Regan studied the second-order𝑝-Laplacian boundary
value problems involving impulsive effects:

(𝜑𝑝 (𝑢
󸀠
(𝑡)))

󸀠

= −𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1, 𝑡 ̸= 𝑡𝑘,

Δ𝑢|𝑡=𝑡𝑘
= 𝐼𝑘 (𝑢 (𝑡𝑘)) ,

Δ𝑢

󸀠󵄨
󵄨

󵄨

󵄨

󵄨𝑡=𝑡𝑘
= 0, 𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑢

󸀠
(1) = 0,

(5)

and, via Jensens inequality, the first eigenvalue of a relevant
linear operator, and the Krasnoselskii-Zabreiko fixed point
theorem, they obtained the existence and multiplicity of
positive solutions under suitable conditions imposed on the
nonlinear term 𝑓 and the impulsive terms 𝐼𝑘.

In [33], employing the classical fixed point index theorem
for compact maps, Zhang and Ge obtained some sufficient
conditions for the existence of multiple positive solutions of
the following problem:

(𝜑𝑝 (𝑢
󸀠
(𝑡)))

󸀠

= −𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1, 𝑡 ̸= 𝑡𝑘,

Δ𝑢|𝑡=𝑡𝑘
= −𝐼𝑘 (𝑢 (𝑡𝑘)) ,

Δ𝑢

󸀠󵄨
󵄨

󵄨

󵄨

󵄨𝑡=𝑡𝑘
= 0, 𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) =

𝑚−2

∑

𝑖=1

𝑎𝑖𝑢 (𝜉𝑖) , 𝑢

󸀠
(1) = 0.

(6)

However, to the best of our knowledge, no paper has
considered the second-order impulsive differential equations
with one-dimensional 𝑝-Laplacian and two parameters till
now; for example, see [4–20, 31, 32, 43–45] and the references
therein. In this paper, we will use fixed point theorem to
investigate the existence andmultiplicity of positive solutions
for a second-order impulsive differential equation involving
one-dimensional 𝑝-Laplacian and two parameters.

Consider the following second-order impulsive differen-
tial equation with one-dimensional 𝑝-Laplacian:

−(𝜑𝑝 (𝑢
󸀠
))

󸀠

= 𝜆𝜔 (𝑡) 𝑓 (𝑡, 𝑢) , 0 < 𝑡 < 1, 𝑡 ̸= 𝑡𝑘,

Δ𝑢|𝑡=𝑡𝑘
= 𝜇𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) ,

Δ𝑢

󸀠󵄨
󵄨

󵄨

󵄨

󵄨𝑡=𝑡𝑘
= 0, 𝑘 = 1, 2, . . . , 𝑛,

𝑎𝑢 (0) − 𝑏𝑢

󸀠
(0) = ∫

1

0

𝑔 (𝑡) 𝑢 (𝑡) 𝑑𝑡, 𝑢

󸀠
(1) = 0,

(7)

where𝜆 > 0, 𝜇 > 0 are two parameters,𝜑𝑝(𝑠) = |𝑠|
𝑝−2
𝑠,𝑝 > 1,

(𝜑𝑝)
−1
= 𝜑𝑞, (1/𝑝) + (1/𝑞) = 1, 𝑎, 𝑏 > 0, 𝜔may be singular at

𝑡 = 0 and/or 𝑡 = 1, 𝑡𝑘 (𝑘 = 1, 2, . . . , 𝑛, where 𝑛 is fixed positive
integer) are fixed points with 0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅ <
𝑡𝑛 < 1, and Δ𝑢|𝑡=𝑡𝑘

denotes the jump of 𝑢(𝑡) at 𝑡 = 𝑡𝑘; that is,

Δ𝑢|𝑡=𝑡𝑘
= 𝑢 (𝑡

+

𝑘
) − 𝑢 (𝑡

−

𝑘
) , (8)

where 𝑢(𝑡+
𝑘
) and 𝑢(𝑡−

𝑘
) represent the right-hand limit and left-

hand limit of 𝑢(𝑡) at 𝑡 = 𝑡𝑘, respectively. In addition, 𝜔, 𝑓, 𝐼𝑘,
and 𝑔 satisfy the following:

(𝐻1) 𝜔 is a nonnegative measurable function on (0, 1) and
𝜔 ̸≡ 0 on any open subinterval in (0, 1);

(𝐻2) 𝑓 ∈ 𝐶 ([0, 1] × [0, +∞), [0, +∞)) with 𝑓(𝑡, 𝑢) > 0 for
all 𝑡 and 𝑢 > 0;

(𝐻3) 𝐼𝑘 ∈ 𝐶 ([0, 1] × [0, +∞), [0, +∞)) with 𝐼𝑘(𝑡, 𝑢) > 0

(𝑘 = 1, 2, . . . , 𝑛) for all 𝑡 and 𝑢 > 0;
(𝐻4) 𝑔 ∈ 𝐿

1
[0, 1] is nonnegative and 𝜎 ∈ [0, 𝑎), where

𝜎 = ∫

1

0

𝑔 (𝑡) 𝑑𝑡.

(9)

Some special cases of (7) have been investigated. For
example, Ding and Wang [14] considered problem (7) with
𝑝 = 2, 𝜆 = 1, 𝜇 = 1, and 𝜔(𝑡) ≡ 1, 𝑡 ∈ [0, 1].
By using Krasnoselskii’s fixed point theorem, they proved
the existence results of positive solutions of problem (7).
However, the authors only obtained that problem (7) has at
least one positive solution.

Motivated by the papers mentioned above, we will extend
the results of [11, 14, 23, 31, 33, 47, 48] to problem (7). We
remark that on impulsive differential equationswith a param-
eter only a few results have been obtained, not to mention
impulsive differential equations with two parameters; see, for
instance, [12, 18, 19, 45]. These results only dealt with the case
that 𝑝 = 2 and 𝜇 = 1. Many difficulties occur when we
study problem (7); for example, it is difficult to construct the
cone and the operator because its state is discontinuous. It
is also difficult to deal with 𝜆 and 𝜇 because of 𝜆 with one-
dimensional 𝑝-Laplacian, and 𝜇 without one-dimensional 𝑝-
Laplacian in the same equation (21). In this paper, we try to
solve this kind of problem. Moreover, we will use a different
approach to deal with the impulsive term to obtain the
existence and multiplicity of positive solutions for problem
(7); for details, see the proof of Theorem 1.
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The rest of the paper is organized as follows: in Section 2,
we state the main results of problem (7). In Section 3, we
provide some preliminary results, and the proofs of the main
results together with several technical lemmas are given in
Section 4. The final section of the paper contains an example
to illustrate the theoretical results.

2. Main Results

In this section, we state the main results, including existence
and multiplicity results of positive solutions for problem (7).

For convenience, we introduce the following notations:

𝑓

0
= lim sup
𝑢→0+

max
𝑡∈𝐽

𝑓 (𝑡, 𝑢)

𝜑𝑝 (𝑢)

, 𝑓

∞
= lim sup
𝑢→∞

max
𝑡∈𝐽

𝑓 (𝑡, 𝑢)

𝜑𝑝 (𝑢)

,

𝑓0 = lim inf
𝑢→0+

min
𝑡∈𝐽

𝑓 (𝑡, 𝑢)

𝜑𝑝 (𝑢)

, 𝑓∞ = lim inf
𝑢→∞

min
𝑡∈𝐽

𝑓 (𝑡, 𝑢)

𝜑𝑝 (𝑢)

,

𝐼

0
(𝑘) = lim sup

𝑢→0+

max
𝑡∈𝐽

𝐼𝑘 (𝑡, 𝑢)

𝑢

,

𝐼

∞
(𝑘) = lim sup

𝑢→∞

max
𝑡∈𝐽

𝐼𝑘 (𝑡, 𝑢)

𝑢

,

𝐼0 (𝑘) = lim inf
𝑢→0+

min
𝑡∈𝐽

𝐼𝑘 (𝑡, 𝑢)

𝑢

,

𝐼∞ (𝑘) = lim inf
𝑢→∞

min
𝑡∈𝐽

𝐼𝑘 (𝑡, 𝑢)

𝑢

,

𝐽 = [0, 1] , 𝑘 = 1, 2, . . . , 𝑛.

(10)

Moreover, we choose four numbers 𝑟, 𝑟1, 𝑟2, and 𝑅 satisfying

0 < 𝑟 < 𝑟1 < 𝛿𝑟2 < 𝑟2 < 𝑅 < +∞, (11)

where 𝛿 is defined in (23).

Theorem 1. Assume that (𝐻1)–(𝐻4) hold and 𝑓∞, 𝑓∞, 𝐼∞(𝑘),
and 𝐼∞(𝑘) (𝑘 = 1, 2, . . . , 𝑛) are positive constants. Then,

(i) there exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any 𝜆 > 𝜆0
and 𝜇 > 𝜇0, problem (7) has a positive solution 𝑢 with

𝛿𝑟 ≤ 𝑢 (𝑡) ≤

1

𝛿

𝑅, 𝑡 ∈ 𝐽;
(12)

(ii) there exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any 0 < 𝜆 <
𝜆0 and 0 < 𝜇 < 𝜇0, problem (7) has a positive solution
𝑢 with property (12).

Theorem 2. Assume that (𝐻1)–(𝐻4) hold and 𝑓0, 𝑓0, 𝐼0(𝑘),
and 𝐼0(𝑘) (𝑘 = 1, 2, . . . , 𝑛) are positive constants. Then,

(i) there exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any 𝜆 > 𝜆0
and 𝜇 > 𝜇0, problem (7) has a positive solution 𝑢 with

𝛿𝑟 ≤ 𝑢 (𝑡) ≤ 𝑅, 𝑡 ∈ 𝐽; (13)

(ii) there exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any 0 < 𝜆 <
𝜆0 and 0 < 𝜇 < 𝜇0, problem (7) has a positive solution
𝑢 with property (13).

Remark 3. Some ideas of the proof of Theorems 1 and
2 are from Yan [47]. In [47], Yan studied a class of the
periodic impulsive functional differential equations with two
parameters and proved the following existence result by using
a well-known fixed point index theorem due to Krasnoselskii.

Theorem 4 (see [47, Theorem 3.1]). Assume that (𝐴1)–(𝐴6)
hold and 𝑓0, 𝑓∞, 𝐼∞, and 𝐼0 are positive constants. If

𝛽 (𝜆𝑓

0
𝑃 + 𝜇𝐼

0
𝑄) < 1,

𝛼 𝜎 (𝜆𝑓∞𝑃 + 𝜇𝐼∞𝑄) > 1,

(14)

then problem (7) has a positive 𝜔-periodic solution.

It is not difficult to see that the conditions of Theorem 4
are not the optimal conditions which guarantee the existence
of at least one positive 𝜔-periodic solution for the related
problem. In fact, if

𝛽 (𝜆𝑓

0
𝑃 + 𝜇𝐼

0
𝑄) < 1 (15)

or

𝛼𝜎 (𝜆𝑓∞𝑃 + 𝜇𝐼∞𝑄) > 1, (16)

we can prove that the problem studied in [47] has at least one
positive 𝜔-periodic solution, respectively.

Theorem 5. Assume that (𝐻1)–(𝐻4) hold.

(i) If 𝑓∞ = 0 and 𝐼∞(𝑘) = 0, 𝑘 = 1, 2, . . . , 𝑛, then there
exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any 𝜆 > 𝜆0

and 𝜇 > 𝜇0, problem (7) has a positive solution 𝑢 with
property (12).

(ii) If 𝑓0 = 0 and 𝐼0(𝑘) = 0, 𝑘 = 1, 2, . . . , 𝑛, then there
exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any 𝜆 > 𝜆0

and 𝜇 > 𝜇0, problem (7) has a positive solution 𝑢 with
property (13).

(iii) If 𝑓0 = 𝑓

∞
= 𝐼

∞
(𝑘) = 𝐼

0
(𝑘) = 0, 𝑘 = 1, 2, . . . , 𝑛,

then there exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any
𝜆 > 𝜆0 and𝜇 > 𝜇0, problem (7) has at least two positive
solutions 𝑢1 and 𝑢2 with

𝛿𝑟 ≤ 𝑢1 (𝑡) ≤ 𝑟1 < 𝛿𝑟2 ≤ 𝑢2 (𝑡) ≤ 𝑅, 𝑡 ∈ 𝐽. (17)

Theorem 6. Assume that (𝐻1)–(𝐻4) hold.

(i) If 𝑓∞ = ∞ and 𝐼∞(𝑘) = ∞, 𝑘 = 1, 2, . . . , 𝑛, then there
exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any 0 < 𝜆 < 𝜆0
and 0 < 𝜇 < 𝜇

0
, problem (7) has a positive solution 𝑢

with property (12).
(ii) If 𝑓0 = ∞ and 𝐼0(𝑘) = ∞, 𝑘 = 1, 2, . . . , 𝑛, then there

exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any 0 < 𝜆 < 𝜆0
and 0 < 𝜇 < 𝜇

0
, problem (7) has a positive solution 𝑢

with property (13).
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(iii) If 𝑓0 = 𝑓∞ = 𝐼∞(𝑘) = 𝐼0(𝑘) = +∞, 𝑘 = 1, 2, . . . , 𝑛,
then there exist 𝜆0 > 0 and 𝜇0 > 0 such that, for any
0 < 𝜆 < 𝜆0 and 0 < 𝜇 < 𝜇0, problem (7) has at least
two positive solutions 𝑢1 and 𝑢2 with

𝛿𝑟 ≤ 𝑢1 (𝑡) ≤ 𝑟1 < 𝛿𝑟2 ≤ 𝑢2 (𝑡) ≤
1

𝛿

𝑅, 𝑡 ∈ 𝐽.
(18)

Remark 7. Some ideas of the proof of Theorems 5 and 6 are
from Graef et al. [48].

3. Preliminaries

Let 𝐽󸀠 = 𝐽 \ {𝑡1, 𝑡2, . . . , 𝑡𝑛} and let 𝐸 be the Banach space:

𝐸 = {𝑢 | 𝑢 : 𝐽 󳨀→ R is continuous at 𝑡 ̸= 𝑡𝑘,

𝑢 (𝑡

−

𝑘
) = 𝑢 (𝑡𝑘) , 𝑢 (𝑡

+

𝑘
) exist, 𝑘 = 1, 2, . . . , 𝑛}

(19)

with ‖𝑢‖ = max0≤𝑡≤1|𝑢(𝑡)|. We denote

Ω𝑟 := {𝑢 ∈ 𝐸 : ‖𝑢‖ < 𝑟} (20)

for all 𝑟 > 0 in the sequel.
In our main results, we will make use of the following

definitions and lemmas.

Definition 8 (see [49]). Let 𝐸 be a real Banach space over R.
A nonempty closed set 𝑃 ⊂ 𝐸 is said to be a cone provided
that

(i) 𝑎𝑢 + 𝑏V ∈ 𝑃 for all 𝑢, V ∈ 𝑃 and all 𝑎 ≥ 0, 𝑏 ≥ 0;
(ii) 𝑢, −𝑢 ∈ 𝑃 implies 𝑢 = 0.

Every cone𝑃 ⊂ 𝐸 induces an ordering in𝐸 given by 𝑥 ≤ 𝑦
if and only if 𝑦 − 𝑥 ∈ 𝑃.

Definition 9. A function 𝑢 ∈ 𝐸 ∩ 𝐶

1
(0, 1) with 𝜑𝑝(𝑢

󸀠
) ∈

𝐶

1
(0, 1) is called a solution of (7) if it satisfies (7). If 𝑢(𝑡) ≥ 0

and 𝑢(𝑡) ̸≡ 0 on 𝐽, then 𝑢 is called a positive solution of (7).

Lemma 10. Assume that (𝐻1)–(𝐻4) hold. Then, 𝑢 ∈ 𝐸 ∩

𝐶

1
(0, 1) with 𝜑𝑝(𝑢󸀠) ∈ 𝐶1(0, 1) is a solution of problem (7) if

and only if 𝑢 ∈ 𝐸 is a solution of the following impulsive integral
equation:

𝑢 (𝑡) = ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) +
1

𝑎 − 𝜎

× {∫

1

0

𝑔 (𝑡) [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡} .

(21)

Moreover, if 𝑢 is a positive solution of problem (7), then
min
𝑡∈𝐽

𝑢 (𝑡) ≥ 𝛿 ‖𝑢‖ , (22)

where

𝛿 =

∫

1

0
𝑡𝑔 (𝑡) 𝑑𝑡

𝑎 − ∫

1

0
𝑔 (𝑡) 𝑑𝑡 + ∫

1

0
𝑡𝑔 (𝑡) 𝑑𝑡

. (23)

Proof. First, suppose that 𝑢 ∈ 𝐸 is a solution of problem (7).
It is easy to see by integration of (7) that

−𝜙𝑝 (𝑢
󸀠
(1)) + 𝜙𝑝 (𝑢

󸀠
(𝑡)) = ∫

1

𝑡

𝜆𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠.

(24)

By the boundary condition 𝑢󸀠(1) = 0, we have

𝑢

󸀠
(𝑡) = 𝜙𝑞 (∫

1

𝑡

𝜆𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠) ,
(25)

𝑢

󸀠
(0) = 𝜙𝑞 (∫

1

0

𝜆𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠) .
(26)

If 0 < 𝑡 ≤ 𝑡1, integrating (25) from 0 to 𝑡 we obtain

𝑢 (𝑡) − 𝑢 (0) = ∫

𝑡

0

𝜙𝑞 (∫

1

𝑠

𝜆𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠.
(27)

If 𝑡1 < 𝑡 ≤ 𝑡2, integrating (25) from 0 to 𝑡1 we obtain

𝑢 (𝑡1) − 𝑢 (0) = ∫

𝑡1

0

𝜙𝑞 (∫

1

𝑠

𝜆𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠,
(28)

and integrating (25) from 𝑡1 to 𝑡 we obtain

𝑢 (𝑡) − 𝑢 (𝑡

+

1
) = ∫

𝑡

𝑡1

𝜙𝑞 (∫

1

𝑠

𝜆𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠. (29)

It follows that

𝑢 (𝑡) − 𝑢 (0) = ∫

𝑡

0

𝜙𝑞 (∫

1

𝑠

𝜆𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇𝐼1 (𝑡1, 𝑢 (𝑡1)) , 𝑡1 < 𝑡 ≤ 𝑡2.

(30)

For 𝑡𝑘 < 𝑡 ≤ 𝑡𝑘+1, repeating the process we have

𝑢 (𝑡) = 𝑢 (0) + ∫

𝑡

0

𝜙𝑞 (∫

1

𝑠

𝜆𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) .

(31)

Combining this with the boundary condition, we have

𝑢 (0) =

1

𝑎 − ∫

1

0
𝑔 (𝑡) 𝑑𝑡

× {∫

1

0

𝑔 (𝑡) [∫

𝑡

0

𝜙𝑞 (∫

1

𝑠

𝜆𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜙𝑞 (∫

1

0

𝜆𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡} .

(32)
Then, the proof of sufficient is complete.
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Conversely, if 𝑢 ∈ 𝐸 is a solution of (21), then we have the
following.

Direct differentiation of (21) implies

𝑢

󸀠
(𝑡) = 𝜙𝑞 (∫

1

𝑡

𝜆𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠) , 𝑡 ∈ 𝐽.
(33)

Evidently,

(𝜙𝑝 (𝑢
󸀠
(𝑡)))

󸀠

= −𝜆𝜔 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑎𝑢 (0) − 𝑏𝑢

󸀠
(0) = ∫

1

0

𝑔 (𝑡) 𝑢 (𝑡) 𝑑𝑡, 𝑢

󸀠
(1) = 0.

(34)

Finally, we show that (22) holds. It is clear that 𝑢󸀠(𝑡) =
𝜙𝑞(∫
1

𝑡
𝜆𝜔(𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠) > 0, which implies that

‖𝑢‖ = 𝑢 (1) , min
𝑡∈𝐽

𝑢 (𝑡) = 𝑢 (0) . (35)

As we assume that 𝑓(𝑡, 𝑢) ≥ 0 and 𝜔(𝑡) ≥ 0, we see that
any nontrivial solution 𝑢 of problem (7) is concave on 𝐽; that
is, 𝑢󸀠󸀠 ≤ 0, and then we get that 𝑢󸀠(𝑡) is nonincreasing on 𝐽.

So, for every 𝑡 ∈ (0, 1], we have

𝑢 (1) − 𝑢 (0)

1

≤

𝑢 (𝑡) − 𝑢 (0)

𝑡

;
(36)

that is, 𝑢(𝑡) − 𝑢(0) ≥ 𝑡𝑢(1) − 𝑡𝑢(0). Therefore,

∫

1

0

𝑔 (𝑡) 𝑢 (𝑡) 𝑑𝑡 − ∫

1

0

𝑔 (𝑡) 𝑑𝑡𝑢 (0)

≥ ∫

1

0

𝑡𝑔 (𝑡) 𝑑𝑡𝑢 (1) − ∫

1

0

𝑡𝑔 (𝑡) 𝑑𝑡𝑢 (0) .

(37)

Noticing that 𝑢 is a positive solution of problem (7) and
𝑎𝑢(0)−𝑏𝑢

󸀠
(0) = ∫

1

0
𝑔(𝑡)𝑢(𝑡)𝑑𝑡, we have∫1

0
𝑔(𝑡)𝑢(𝑡)𝑑𝑡 ≤ 𝑎𝑢(0).

Thus, we obtain

𝑢 (0) ≥

∫

1

0
𝑡𝑔 (𝑡) 𝑑𝑡

𝑎 − ∫

1

0
𝑔 (𝑡) 𝑑𝑡 + ∫

1

0
𝑡𝑔 (𝑡) 𝑑𝑡

𝑢 (1) . (38)

The lemma is proved.

Define a cone𝐾 in 𝐸 by

𝐾 = {𝑢 ∈ 𝐸 : 𝑢 ≥ 0,min
𝑡∈𝐽

𝑢 (𝑡) ≥ 𝛿 ‖𝑢‖} , (39)

where 𝛿 is defined in (23). It is easy to see that 𝐾 is a closed
convex cone of 𝐸.

Define 𝑇𝜇
𝜆
: 𝐾 → 𝐸 by

(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) +
1

𝑎 − 𝜎

× {∫

1

0

𝑔 (𝑡) [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡} .

(40)

From (40) and Lemma 10, it is easy to obtain the following
result.

Lemma 11. Assume that (𝐻1)–(𝐻4) hold. Problem (7) is
equivalent to the fixed point problem of 𝑇𝜇

𝜆
in 𝐾.

Lemma 12 (see [47, Lemmas 2.1 and 2.2]). Assume that (𝐻1)–
(𝐻4) hold. Then, 𝑇𝜇

𝜆
: 𝐾 → 𝐾 is completely continuous.

The following well-known result of the fixed point is
crucial in our arguments.

Lemma 13 (see [49]). Let 𝑃 be a cone in a real Banach space
𝐸. Assume that Ω1, Ω2 are bounded open sets in 𝐸 with 0 ∈
Ω1, Ω1 ⊂ Ω2. If

𝐴 : 𝑃 ∩ (Ω2 \ Ω1) 󳨀→ 𝑃 (41)

is completely continuous such that either
(a) ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω1, and ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈

𝑃 ∩ 𝜕Ω2, or
(b) ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω1, and ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈

𝑃 ∩ 𝜕Ω2,

then 𝐴 has at least one fixed point in 𝑃 ∩ (Ω2 \ Ω1).

4. Proofs of the Main Results

For convenience, we introduce the following notation:

𝛾 = 𝜑𝑞 (∫

1

0

𝜔 (𝑠) 𝑑𝑠) , 𝜎1 = ∫

1

𝑡1

𝑔 (𝑠) 𝑑𝑠. (42)

Proof of Theorem 1. Part (i). Noticing that 𝑓(𝑡, 𝑢) > 0,
𝐼𝑘(𝑡, 𝑢) > 0 (𝑘 = 1, 2, . . . , 𝑛) for all 𝑡 and 𝑢 > 0, we can define

𝑚𝑟 = min
𝑡∈𝐽,𝛿𝑟≤𝑢≤𝑟

{𝑓 (𝑡, 𝑢)} > 0,

𝑚

∗
= min {𝑚𝑘, 𝑘 = 1, 2, . . . , 𝑛} > 0,

(43)

where 𝑟 > 0,𝑚𝑘 = min𝑡∈𝐽,𝛿𝑟≤𝑢≤𝑟{𝐼𝑘(𝑡, 𝑢)}, 𝑘 = 1, 2, . . . , 𝑛.
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Let

𝜆0 ≥ (
𝑎 − 𝜎

2𝑏𝛿𝛾

𝑟)

𝑝−1

𝑚

−1

𝑟
, 𝜇0 ≥

(𝑎 − 𝜎) 𝑟

2𝜎1𝑚
∗
.

(44)

Then, for 𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟 and 𝜆 > 𝜆0, 𝜇 > 𝜇0, we have
(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡}

≥

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝜑𝑞 (∫

1

0

𝜔 (𝑠)𝑚𝑟𝑑𝑠)

+

𝜇

𝑎 − 𝜎

[∫

𝑡2

𝑡1

𝑔 (𝑡) 𝐼1 (𝑡1, 𝑢 (𝑡1)) 𝑑𝑡

+ ∫

𝑡3

𝑡2

𝑔 (𝑡) (𝐼1 (𝑡1, 𝑢 (𝑡1))

+𝐼2 (𝑡2, 𝑢 (𝑡2)) ) 𝑑𝑡 + ⋅ ⋅ ⋅

+ ∫

1

𝑡𝑛

𝑔 (𝑡) (𝐼1 (𝑡1, 𝑢 (𝑡1)) + 𝐼2 (𝑡2, 𝑢 (𝑡2))

+ ⋅ ⋅ ⋅ + 𝐼𝑛 (𝑡𝑛, 𝑢 (𝑡𝑛)) ) 𝑑𝑡]

=

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝜑𝑞 (∫

1

0

𝜔 (𝑠)𝑚𝑟𝑑𝑠)

+

𝜇

𝑎 − 𝜎

[∫

1

𝑡1

𝑔 (𝑡) (𝐼1 (𝑡1, 𝑢 (𝑡1)) 𝑑𝑡

+ ∫

1

𝑡2

𝑔 (𝑡) 𝐼2 (𝑡2, 𝑢 (𝑡2)) 𝑑𝑡

+ ⋅ ⋅ ⋅ + ∫

1

𝑡𝑛

𝑔 (𝑡) 𝐼𝑛 (𝑡𝑛, 𝑢 (𝑡𝑛))) 𝑑𝑡]

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝜑𝑞 (∫

1

0

𝜔 (𝑠)𝑚𝑟𝑑𝑠)

+

𝜇

𝑎 − 𝜎

∫

1

𝑡1

𝑔 (𝑡) 𝐼1 (𝑡1, 𝑢 (𝑡1)) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝑚

𝑞−1

𝑟
𝛾 +

𝜎1

𝑎 − 𝜎

𝜇𝑚

∗

>

𝑏

𝑎 − 𝜎

𝜆

1−𝑞

0
𝑚

𝑞−1

𝑟
𝛾 +

𝜎1

𝑎 − 𝜎

𝜇0𝑚
∗

≥

1

2

𝑟 +

1

2

𝑟 = 𝑟,

(45)

which implies that

󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

> ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟,

𝜆 > 𝜆0, 𝜇 > 𝜇0.

(46)

If 0 < 𝑓∞ < +∞, 0 < 𝐼∞ < +∞, then there exist 𝑙1 > 0,
and 𝑙2 > 0 and 𝑅 > 𝑟 > 0 such that

𝑓 (𝑡, 𝑢) < 𝑙1𝜑𝑝 (𝑢) , 𝐼𝑘 (𝑡, 𝑢) < 𝑙2𝑢,

(∀𝑡 ∈ 𝐽, 𝑢 ≥ 𝑅, 𝑘 = 1, 2, . . . , 𝑛) ,

(47)

where 𝑙1 satisfies

2 (𝑎 + 𝑏)

𝑎 − 𝜎

𝜑𝑞 (𝜆) 𝜑𝑞 (𝑙1) 𝛾 ≤ 1
(48)

𝑙2 satisfies

2𝑎

𝑎 − 𝜎

𝜇𝑛𝑙2 ≤ 1. (49)

Let ] = 𝑅/𝛿. Thus, when 𝑢 ∈ 𝐾 ∩ 𝜕Ω], we have

𝑢 (𝑡) ≥ 𝛿 ‖𝑢‖ = 𝛿] = 𝑅, 𝑡 ∈ 𝐽, (50)

and then we get

(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠 + 𝜇∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡}
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≤ ∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)}

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

= ∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠 (1 +

𝜎

𝑎 − 𝜎

)

+

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≤

𝑎

𝑎 − 𝜎

∫

1

0

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

=

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≤

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑙1𝜑𝑝 (𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝑙2𝑢 (𝑡𝑘)

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝑙2𝑢 (𝑡𝑘) 𝑑𝑡

≤

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝑙1) ‖𝑢‖ 𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑑𝑠)

+ 𝜇𝑛𝑙2 ‖𝑢‖ +
1

𝑎 − 𝜎

𝜇𝜎𝑛𝑙2 ‖𝑢‖

=

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆) 𝜑𝑞 (𝑙1) 𝛾 ‖𝑢‖

+

𝑎

𝑎 − 𝜎

𝜇𝑛𝑙2 ‖𝑢‖

≤

1

2

‖𝑢‖ +

1

2

‖𝑢‖ = ‖𝑢‖ .

(51)

This yields

󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

≤ ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω]. (52)

Applying (b) of Lemma 13 to (46) and (52) yields that 𝑇
has a fixed point 𝑢 ∈ 𝐾∩(Ω] \Ω𝑟)with 𝑟 ≤ ‖𝑢‖ ≤ ] = (1/𝛿)𝑅.
Hence, since for 𝑢 ∈ 𝐾 we have 𝑢(𝑡) ≥ 𝛿‖𝑢‖ for 𝑡 ∈ 𝐽, it
follows that (12) holds. This gives the proof of Part (i).

Part (ii). Noticing that 𝑓(𝑡, 𝑢) > 0, 𝐼𝑘(𝑡, 𝑢) > 0 for all 𝑡
and 𝑢 > 0, we can define

𝑀𝑟 = max
𝑡∈𝐽,0≤𝑢≤𝑟

{𝑓 (𝑡, 𝑢)} > 0,

𝑀

∗
= max {𝑀𝑘, 𝑘 = 1, 2, . . . , 𝑛} > 0,

(53)

where 𝑟 > 0,𝑀𝑘 = max𝑡∈𝐽,0≤𝑢≤𝑟{𝐼𝑘(𝑡, 𝑢)}, 𝑘 = 1, 2, . . . , 𝑛.
Let

𝜆0 ≤ (
(𝑎 − 𝜎) 𝑟

2 (𝑎 + 𝑏) 𝛾

)

𝑝−1

𝑀

−1

𝑟
, 𝜇

0
≤

(𝑎 − 𝜎) 𝑟

2𝑎𝑛𝑀

∗
.

(54)

Then, for 𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟 and 𝜆 < 𝜆0, 𝜇 < 𝜇0, we have

(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡}
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≤ ∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)}

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

= ∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠 (1 +

𝜎

𝑎 − 𝜎

)

+

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≤

𝑎

𝑎 − 𝜎

∫

1

0

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

=

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≤

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠)𝑀𝑟𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝑀

∗
+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝑀

∗
𝑑𝑡

≤

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆) 𝜑𝑞 (𝑀𝑟) 𝛾 +
𝑎

𝑎 − 𝜎

𝜇𝑛𝑀

∗

<

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆0) 𝜑𝑞 (𝑀𝑟) 𝛾 +
𝑎

𝑎 − 𝜎

𝜇

0
𝑛𝑀

∗

≤

1

2

‖𝑢‖ +

1

2

‖𝑢‖ = ‖𝑢‖ .

(55)

This implies that

󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

< ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟. (56)

If 0 < 𝑓∞ < +∞, 0 < 𝐼∞ < +∞, then there exist 𝑙3 >
0, and 𝑙4 > 0 and 𝑅 > 𝑟 > 0 such that

𝑓 (𝑡, 𝑢) > 𝑙3𝜑𝑝 (𝑢) , 𝐼𝑘 (𝑡, 𝑢) > 𝑙4𝑢,

(∀𝑡 ∈ 𝐽, 𝑢 ≥ 𝑅, 𝑘 = 1, 2, . . . , 𝑛) ,

(57)

where 𝑙3 satisfies

2𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝑙

𝑞−1

3
𝛾𝛿 ≥ 1

(58)

𝑙4 satisfies

2𝜎1

𝑎 − 𝜎

𝜇𝑙4𝛿 ≥ 1.
(59)

Let ] = 𝑅/𝛿. Then, for 𝑢 ∈ 𝐾 ∩ 𝜕Ω], we obtain

𝑢 (𝑡) ≥ 𝛿𝑅 = ], 𝑡 ∈ 𝐽, (60)

and it follows from (40) that

(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢1 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢1 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢1 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡}

≥

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢1 (𝑠)) 𝑑𝑠)

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡
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≥

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢1 (𝑠)) 𝑑𝑠)

+

1

𝑎 − 𝜎

𝜇∫

1

𝑡1

𝑔 (𝑡) 𝐼1 (𝑡1, 𝑢 (𝑡1)) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝜑𝑞 (∫

1

0

𝜔 (𝑠) 𝑙3𝜑𝑝 (𝑢 (𝑠)) 𝑑𝑠)

+

𝜇

𝑎 − 𝜎

∫

1

𝑡1

𝑔 (𝑡) 𝑙4𝑢 (𝑡1) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝑙

𝑞−1

3
𝛾𝛿 ‖𝑢‖

+

𝜎1

𝑎 − 𝜎

𝜇𝑙4𝛿 ‖𝑢‖

≥

1

2

‖𝑢‖ +

1

2

‖𝑢‖ = ‖𝑢‖ ,

(61)
which implies that

󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

> ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω]. (62)

Applying (a) of Lemma 13 to (56) and (62) yields that 𝑇𝜇
𝜆

has a fixed point 𝑢 ∈ 𝐾∩(Ω] \Ω𝑟)with 𝑟 ≤ ‖𝑢‖ ≤ ] = (1/𝛿)𝑅.
Hence, since for𝑢 ∈ 𝐾wehave𝑢(𝑡) ≥ 𝛿‖𝑢‖ for 𝑡 ∈ 𝐽, it follows
that (13) holds. This finishes the proof of Part (ii).

Proof of Theorem 2. Part (i). Noticing that 𝑓(𝑡, 𝑢) > 0,
𝐼𝑘(𝑡, 𝑢) > 0 (𝑘 = 1, 2, . . . , 𝑛) for all 𝑡 and 𝑢 > 0, we can define

𝑚𝑅 = min
𝑡∈𝐽, 𝛿𝑅≤𝑢≤𝑅

{𝑓 (𝑡, 𝑢)} > 0,

𝑚

∗

𝑅
= min {𝑚𝑅𝑘, 𝑘 = 1, 2, . . . , 𝑛} > 0,

(63)

where 𝑅 > 0,𝑚𝑅𝑘 = min𝑡∈𝐽,𝛿𝑅≤𝑢≤𝑅{𝐼𝑘(𝑡, 𝑢)}, 𝑘 = 1, 2, . . . , 𝑛.
Let

𝜆0 ≥ (
𝑎 − 𝜎

2𝑏𝛿𝛾

𝑅)

𝑝−1

𝑚

−1

𝑅
, 𝜇0 ≥

(𝑎 − 𝜎) 𝑅

2𝜎1𝑚
∗
𝑅

. (64)

Then, for 𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑅 and 𝜆 > 𝜆0, 𝜇 > 𝜇0, we have
(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡}

≥

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+

1

𝑎 − 𝜎

𝜇∫

1

𝑡1

𝑔 (𝑡) 𝐼1 (𝑡1, 𝑢 (𝑡1)) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝜑𝑞 (∫

1

0

𝜔 (𝑠)𝑚𝑅𝑑𝑠)

+

𝜇

𝑎 − 𝜎

∫

1

𝑡1

𝑔 (𝑡)𝑚

∗

𝑅
𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝑚

𝑞−1

𝑅
𝛾 +

𝜎1

𝑎 − 𝜎

𝜇𝑚

∗

𝑅

>

𝑏

𝑎 − 𝜎

𝜆

1−𝑞

0
𝑚

𝑞−1

𝑅
𝛾 +

𝜎1

𝑎 − 𝜎

𝜇0𝑚
∗

𝑅

≥

1

2

𝑅 +

1

2

𝑅 = 𝑅,

(65)

which implies that
󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

> ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑅,

𝜆 > 𝜆0, 𝜇 > 𝜇0.

(66)

If 0 < 𝑓0 < +∞, 0 < 𝐼0 < +∞, then there exist 𝑙1 > 0,
𝑙2 > 0 and 0 < 𝑟 < 𝑅 such that

𝑓 (𝑡, 𝑢) < 𝑙1𝜑𝑝 (𝑢) , 𝐼𝑘 (𝑡, 𝑢) < 𝑙2𝑢,

(∀𝑡 ∈ 𝐽, 0 ≤ 𝑢 ≤ 𝑟, 2𝑘 = 1, 2, . . . , 𝑛) ,

(67)

where 𝑙1 and 𝑙2 satisfy (48) and (49), respectively.
Therefore, for 𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟, we have

(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡}



10 Abstract and Applied Analysis

≤ ∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)}

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

= ∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠 (1 +

𝜎

𝑎 − 𝜎

)

+

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≤

𝑎

𝑎 − 𝜎

∫

1

0

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

=

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≤

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑙1𝜑𝑝 (𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝑙2𝑢 (𝑡𝑘)

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝑙2𝑢 (𝑡𝑘) 𝑑𝑡

≤

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝑙1) ‖𝑢‖ 𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑑𝑠)

+ 𝜇𝑛𝑙2 ‖𝑢‖ +
1

𝑎 − 𝜎

𝜇𝜎𝑛𝑙2 ‖𝑢‖

=

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆) 𝜑𝑞 (𝑙1) 𝛾 ‖𝑢‖

+

𝑎

𝑎 − 𝜎

𝜇𝜎𝑛𝑙2 ‖𝑢‖

≤

1

2

‖𝑢‖ +

1

2

‖𝑢‖ = ‖𝑢‖ .

(68)

This yields

󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

≤ ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟. (69)

Applying (a) of Lemma 13 to (66) and (69) yields that 𝑇𝜇
𝜆

has a fixed point 𝑢 ∈ 𝐾 ∩ (Ω𝑅 \ Ω𝑟) with 𝑟 ≤ ‖𝑢‖ ≤ 𝑅. Hence,
since for 𝑢 ∈ 𝐾 we have 𝑢(𝑡) ≥ 𝛿‖𝑢‖ for 𝑡 ∈ 𝐽, it follows that
(13) holds. This gives the proof of Part (i).

Part (ii). Noticing that 𝑓(𝑡, 𝑢) > 0, 𝐼𝑘(𝑡, 𝑢) > 0 (𝑘 =

1, 2, . . . , 𝑛) for all 𝑡 and 𝑢 > 0, we can define

𝑀𝑅 = max
𝑡∈𝐽,0≤𝑢≤𝑅

{𝑓 (𝑡, 𝑢)} > 0,

𝑀

∗

𝑅
= max {𝑀𝑅𝑘, 𝑘 = 1, 2, . . . , 𝑛} > 0,

(70)

where 𝑅 > 0,𝑀𝑅𝑘 = max𝑡∈𝐽, 0≤𝑢≤𝑅{𝐼𝑘(𝑡, 𝑢)}, 𝑘 = 1, 2, . . . , 𝑛.
Let

𝜆0 ≤ (
𝑎 − 𝜎

2 (𝑎 + 𝑏) 𝛾

𝑅)

𝑝−1

𝑀

−1

𝑅
, 𝜇

0
≤

(𝑎 − 𝜎) 𝑅

2𝜎𝑛𝑀

∗
𝑅

. (71)

Then, for 𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑅 and 𝜆 < 𝜆0, 𝜇 < 𝜇0, we have

(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡}
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≤ ∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)}

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

= ∫

1

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠 (1 +

𝜎

𝑎 − 𝜎

)

+

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≤

𝑎

𝑎 − 𝜎

∫

1

0

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

=

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≤

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠)𝑀𝑅𝑑𝑠)

+ 𝜇

𝑛

∑

𝑘=1

𝑀

∗

𝑅
+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡)

𝑛

∑

𝑘=1

𝑀

∗

𝑅
𝑑𝑡

≤

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆) 𝜑𝑞 (𝑀𝑅) 𝛾 +
𝑎

𝑎 − 𝜎

𝜇𝑛𝑀

∗

𝑅

<

𝑎 + 𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆0) 𝜑𝑞 (𝑀𝑅) 𝛾 +
𝑎

𝑎 − 𝜎

𝜇

0
𝑛𝑀

∗

𝑅

≤

1

2

𝑅 +

1

2

𝑅 = 𝑅.

(72)

This implies that
󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

< ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑅. (73)

If 0 < 𝑓0 < +∞, 0 < 𝐼0 < +∞, then there exist 𝑙3 > 0, 𝑙4 >
0 and 0 < 𝑟 < 𝑅 such that

𝑓 (𝑡, 𝑢) > 𝑙3𝜑𝑝 (𝑢) , 𝐼𝑘 (𝑡, 𝑢) > 𝑙4𝑢

(∀𝑡 ∈ 𝐽, 0 ≤ 𝑢 ≤ 𝑟, 𝑘 = 1, 2, . . . , 𝑛) ,

(74)

where 𝑙3 and 𝑙4 satisfy (58) and (59), respectively.
Therefore, for 𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟, we obtain

(𝑇

𝜇

𝜆
𝑢) (𝑡)

= ∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠

+ 𝜇∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘))

+

1

𝑎 − 𝜎

{∫

1

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑𝑞 (𝜆∫

1

𝑠

𝜔 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟)) 𝑑𝑟) 𝑑𝑠] 𝑑𝑡

+ 𝑏𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡}

≥

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+

1

𝑎 − 𝜎

𝜇∫

1

0

𝑔 (𝑡) ∑

𝑡<𝑡𝑘

𝐼𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜑𝑞 (𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

+

1

𝑎 − 𝜎

𝜇∫

1

𝑡1

𝑔 (𝑡) 𝐼1 (𝑡1, 𝑢 (𝑡1)) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝜑𝑞 (∫

1

0

𝜔 (𝑠) 𝑙3𝜑𝑝 (𝑢 (𝑠)) 𝑑𝑠)

+

𝜇

𝑎 − 𝜎

∫

1

𝑡1

𝑔 (𝑡) 𝑙4𝑢 (𝑡𝑘) 𝑑𝑡

≥

𝑏

𝑎 − 𝜎

𝜆

𝑞−1
𝑙

𝑞−1

3
𝛾𝛿 ‖𝑢‖

+

𝜎1

𝑎 − 𝜎

𝜇𝑘𝑙4𝛿 ‖𝑢‖

≥

1

2

‖𝑢‖ +

1

2

‖𝑢‖ = ‖𝑢‖ ,

(75)
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which implies that
󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

> ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟. (76)

Applying (a) of Lemma 13 to (73) and (76) yields that 𝑇𝜇
𝜆

has a fixed point 𝑢 ∈ 𝐾 ∩ (Ω𝑅 \ Ω𝑟) with 𝑟 ≤ ‖𝑢‖ ≤ 𝑅. Hence,
since for 𝑢 ∈ 𝐾 we have 𝑢(𝑡) ≥ 𝛿‖𝑢‖ for 𝑡 ∈ 𝐽, it follows that
(13) holds. This finishes the proof of Part (ii).

Proof of Theorem 5. Similar to the proof ofTheorems 1(i) and
2(i), respectively, one can show that Theorems 5(i) and (ii)
hold.

Considering Part (iii), choose two numbers 𝑟1 and 𝑟2
satisfying (11). By Theorems 1(i) and 2(i), there exist 𝜆0 > 0
and 𝜇0 > 0 such that

󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

> ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟𝑖
, 𝑖 = 1, 2. (77)

Since 𝑓0 = 𝑓

∞
= 𝐼

∞
= 𝐼

0
= 0, from the proof of

Theorem 1(i) andTheorem 2(i) and from (11), it follows that
󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

< ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟, (78)
󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

< ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑅. (79)

Applying Lemma 12 to (77)–(79) yields that 𝑇𝜇
𝜆
has two

fixed points 𝑢1 and 𝑢2 such that 𝑢1 ∈ 𝐾 ∩ (Ω𝑟1
\ Ω𝑟) and

𝑢2 ∈ 𝐾 ∩ (Ω𝑅 \ Ω𝑟2
). These are the desired distinct positive

solutions of problem (7) for 𝜆0 > 0 and 𝜇0 > 0 satisfying (17).
Then, the result of Part (iii) follows.

Proof of Theorem 6. Similar to the proof ofTheorems 1(ii) and
2(ii), respectively, one can show that Theorems 6(i) and (ii)
hold.

Now, considering Part (iii), choose two numbers 𝑟1 and 𝑟2
satisfying (11). By Theorems 1(ii) and 2(ii), there exist 𝜆0 > 0
and 𝜇

0
> 0 such that

󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

< ‖𝑢‖ , ∀0 < 𝜆 < 𝜆0,

0 < 𝜇 < 𝜇

0
, 𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟𝑖

, 𝑖 = 1, 2.

(80)

Since 𝑓0 = 𝑓∞ = 𝐼∞ = 𝐼0 = ∞, from the proof of
Theorems 1(ii) and 2(ii) and from (11), it follows that

󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

> ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑟, (81)
󵄩

󵄩

󵄩

󵄩

𝑇

𝜇

𝜆
𝑢

󵄩

󵄩

󵄩

󵄩

> ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω𝑅. (82)

Applying Lemma 13 to (80)–(82) yields that 𝑇𝜇
𝜆
has two

fixed points 𝑢1 and 𝑢2 such that 𝑢1 ∈ 𝐾 ∩ (Ω𝑟1
\ Ω𝑟) and

𝑢2 ∈ 𝐾 ∩ (Ω𝑅 \ Ω𝑟2
). These are the desired distinct positive

solutions of problem (7) for 0 < 𝜆 < 𝜆0 and 0 < 𝜇 < 𝜇

0

satisfying (18). Then, proof of Part (iii) is complete.

5. An Example

To illustrate how our main results can be used in practice, we
present an example.

Example 1. For 𝑝 = 3/2, consider the following boundary
value problem:

−(𝜑𝑝 (𝑢
󸀠
))

󸀠

= 𝜆(𝑡 (1 − 𝑡))

−1/2
(𝑡

2
+ 1)

1/2

𝑢

𝑝−1
, 𝑡 ∈ 𝐽,

Δ𝑢|𝑡=1/2 = 𝜇𝐼1 (
1

2

, 𝑢 (

1

2

)) ,

Δ𝑢

󸀠󵄨
󵄨

󵄨

󵄨

󵄨𝑡=1/2
= 0,

𝑢 (0) − 2𝑢

󸀠
(0) = ∫

1

0

1

2

𝑢 (𝑡) 𝑑𝑡, 𝑢

󸀠
(1) = 0.

(83)

Evidently, 𝑢(𝑡) ≡ 0 is the trivial solution of problem (83).

6. Conclusion

Problem (83) has at least one positive solution for any 𝜆 >

√

6/4𝜋 and 𝜇 > 3.

Proof. Problem (83) can be regarded as a problem of the form
(7), where 𝑎 = 1, 𝑏 = 2, and

𝜔 (𝑡) = (𝑡 (1 − 𝑡))

−1/2
, 𝑓 (𝑡, 𝑢) = (𝑡

2
+ 1)

1/2

𝑢

𝑝−1
,

𝐼1 (𝑡, 𝑢) = (1 + 𝑡) 𝑢, 𝑔 (𝑡) ≡

1

2

, ∀𝑡 ∈ 𝐽.

(84)

It follows from the definition of 𝜔, 𝑓, and 𝑔 that (H1)–
(H4) hold, and 𝜔(𝑡) is singular at 𝑡 = 0 and 𝑡 = 1. By
calculating, we have

∫

1

0

𝜔 (𝑡) 𝑑𝑡 = 𝜋, 1 ≤ 𝑓∞ ≤ 𝑓
∞
≤ 2,

1 ≤ 𝐼∞ ≤ 𝐼
∞
≤ 2,

𝑞 = 3, 𝛿 =

1

3

, 𝜎 =

1

2

, 𝜎1 =
1

4

,

𝛾 = 𝜋

2
, 𝑚𝑟 =

√

1

3

𝑟, 𝑚

∗

𝑟
=

1

3

𝑟,

𝜆0 ≥

√

6

4𝜋

, 𝜇0 ≥ 3,

(85)

where 𝑟 > 0 is a constant.
Hence, by Theorem 1(i), the conclusion follows, and the

proof is complete.
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