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A nonautonomous plant-hare model with impulse is considered. By using the continuation theorem of coincidence degree theory,
we present an easily verifiable sufficient condition on the existence of multiple periodic solutions. Though Gao et al. (2014)
considered the periodic solutions of plant-hare model, such model with impulses and delay has not been studied in previous paper.

1. Introduction

In recent years, applications of theory differential equations
in mathematical ecology have developed rapidly. Various
mathematical models have been proposed in the study of
population dynamics (see [1–13]). Recently, Gao et al. [5]
considered a nonautonomous plant-hare dynamical system
with a toxin-determined functional response given by

̇

𝑁 (𝑡) = 𝑟 (𝑡)𝑁 (𝑡) [1 −

𝑁 (𝑡)

𝐾

] − 𝐶 (𝑁 (𝑡)) 𝑃 (𝑡) ,

̇

𝑃 (𝑡) = 𝐵 (𝑡) 𝐶 (𝑁 (𝑡)) 𝑃 (𝑡) − 𝑑 (𝑡) 𝑃 (𝑡) ,

𝐶 (𝑁 (𝑡)) = 𝑓 (𝑁 (𝑡)) [1 −

𝑓 (𝑁 (𝑡))

4𝐺

] ,

𝑓 (𝑁 (𝑡)) =

𝑒𝛿𝑁 (𝑡)

1 + ℎ𝑒𝛿𝑁 (𝑡)

,

(1)

where𝑁(𝑡) denotes the density of plant at time 𝑡,𝑃(𝑡) denotes
the herbivore biomass at time 𝑡, 𝑟(𝑡) is the plant intrinsic
growth rate at time 𝑡, 𝑑(𝑡) is the per capita rate of herbivore
death unrelated to plant toxicity at time 𝑡, and 𝐵(𝑡) is the
conversion rate at time 𝑡. 𝑒 is the encounter rate per unit plant,
𝛿 is the fraction of food items encountered that the herbivore
ingests, 𝐾 is the carrying capacity of plant, 𝐺 measures the
toxicity level, and ℎ is the time for handing one unit of

plant. 𝑟(𝑡), 𝑑(𝑡), and 𝐵(𝑡) are continuously positive periodic
functions with period 𝜔 and 𝑒, 𝛿,𝐾, 𝐺, and ℎ are five positive
real constants.

However, birth of many species is an annual birth pulse;
for having more accurate description to the system, we need
to consider incorporating the impulsive effect into the differ-
ential equations. For more biological view of impulses, one
can refer to [14–17]. To describe to a system more accurately,
we should consider the following impulsive system with
delays:

̇

𝑁 (𝑡) = 𝑁 (𝑡) [𝑟 (𝑡) (1 −

𝑁 (𝑡 − 𝜏

1
)

𝐾

)

−

4𝐺𝑒𝛿𝑃 (𝑡) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑁(𝑡) 𝑃 (𝑡)

4𝐺(1 + ℎ𝑒𝛿𝑁 (𝑡))

2
] ,

̇

𝑃 (𝑡) = 𝑃 (𝑡)

× [

4𝐺𝑒𝛿𝐵 (𝑡)𝑁 (𝑡 − 𝜏

2
)+(4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 (𝑡)𝑁

2
(𝑡)

4𝐺(1+ℎ𝑒𝛿𝑁 (𝑡))

2

−𝑑 (𝑡) ] , 𝑡 ̸= 𝑡

𝑘
;

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 531932, 7 pages
http://dx.doi.org/10.1155/2014/531932

http://dx.doi.org/10.1155/2014/531932


2 Abstract and Applied Analysis

Δ𝑁(𝑡

𝑘
) = 𝑁 (𝑡

+

𝑘
) − 𝑁 (𝑡

−

𝑘
) = 𝑐

1𝑘
𝑁(𝑡

𝑘
) ,

Δ𝑃 (𝑡

𝑘
)=𝑃 (𝑡

+

𝑘
)−𝑃 (𝑡

−

𝑘
)=𝑐

2𝑘
𝑃 (𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

(2)

where the assumptions on 𝑟, 𝑑, 𝐵, 𝑒, 𝛿, 𝐾, 𝐺, and ℎ are the
same as before; 𝑐

𝑗𝑘
∈ (−1,∞) (𝑗 = 1, 2, 𝑘 ∈ N = 1, 2, . . .),

{𝑡

𝑘
} ∈ N is a strictly increasing sequence with 𝑡

1
> 0 and

lim
𝑘→∞

𝑡

𝑘
= ∞. We further assume that there exists a 𝑞 ∈ N

such that 𝑐
𝑗(𝑘+𝑞)

= 𝑐

𝑗𝑘
(𝑗 = 1, 2) and 𝑡

𝑘+𝑞
= 𝑡

𝑘
+ 𝜔 for 𝑘 ∈ N.

Without loss of generality, we will assume 𝑡
𝑘

̸= 0 for 𝑘 =

1, 2, . . ., and [0, 𝜔] ∩ {𝑡

𝑘
} = {𝑡

1
, 𝑡

2
, . . . , 𝑡

𝑚
}; hence 𝑞 = 𝑚.

The main purpose of this paper is to derive easily verifiable
sufficient conditions for the existence of multiple positive
periodic solutions of (2).

2. Preliminaries

In this section, we cite some definitions and lemmas.
Let 𝑃𝐶

𝜔
denote the space of 𝜔-periodic functions 𝜓 :

R → Rwhich are continuous for 𝑡 ̸= 𝑡

𝑘
, are continuous from

the left for 𝑡 ∈ R, and have possible discontinuities of the
first kind at points 𝑡 = 𝑡

𝑘
; that is, the limit from the right of

𝑡

𝑘
exists but may be different from the value at 𝑡

𝑘
. We also

denote 𝑃𝐶1
𝜔
= {𝜓 ∈ 𝑃𝐶

𝜔
:

̇
𝜓 ∈ 𝑃𝐶

𝜔
}.

For the convenience, we list the following definitions and
lemmas.

Definition 1 (see [17]). The set F ⊂ 𝑃𝐶

𝜔
is said to be quas-

iequicontinuous in [0, 𝜔] if for any 𝜖 > 0 there exists a 𝛿 > 0

such that if 𝑥 ∈ F , 𝑘 ∈ Z, 𝜏
1
, 𝜏

2
∈ (𝑡

𝑘−1
, 𝑡

𝑘
) ∩ [0, 𝜔], and

|𝜏

1
− 𝜏

2
| < 𝛿, then

󵄨

󵄨

󵄨

󵄨

𝑥 (𝜏

1
) − 𝑥 (𝜏

2
)

󵄨

󵄨

󵄨

󵄨

< 𝜖. (3)

Lemma 2 (see [17]). The set F ⊂ 𝑃𝐶

𝜔
is relatively compact if

and only if

(1) F is bounded, that is, ‖𝑥‖ ≤ 𝑀, for each 𝑥 ∈ F , and
some𝑀 > 0;

(2) F is quasiequicontinuous in [0, 𝜔].

Lemma 3 (see [17]). Assume that𝜓 ∈ 𝑃𝐶

1

𝜔
; then the following

inequality holds:

sup
𝑠∈[0,𝜔]

𝜓 (𝑠) − inf
𝑠∈[0,𝜔]

𝜓 (𝑠)

≤

1

2

[∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

̇
𝜓 (𝑠)

󵄨

󵄨

󵄨

󵄨

𝑑𝑠 +

𝑚

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

Δ𝜓 (𝑡

𝑘
)

󵄨

󵄨

󵄨

󵄨

] .

(4)

3. Existence of Multiple Positive
Periodic Solutions

In this section, sufficient conditions are obtained for the
existence of periodic solutions of (2).

In order to obtain the existence of positive periodic
solutions of (2), for convenience, we will summarize in the
following a few concepts and results from [8] that will be basic
for this section.

Let 𝑋,𝑌 be normed vector spaces, let 𝐿 : Dom𝐿 ⊂ 𝑋 →

𝑌 be a linear mapping, and let𝑁 : 𝑋 → 𝑌 be a continuous
mapping. The mapping 𝐿 is called a Fredholm mapping of
index zero if dimKer𝐿 = codim Im 𝐿 < +∞ and Im 𝐿 is
closed in 𝑌. If 𝐿 is a Fredholm mapping of index zero and
there exist continuous projectors 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 →

𝑌 such that Im𝑃 = Ker 𝐿 andKer𝑄 = Im 𝐿 = Im(𝐼 − 𝑄),
it follows that 𝐿 | dom 𝐿 ∩ Ker𝑃 : (𝐼 − 𝑃)𝑋 → Im 𝐿 is
invertible.We denote the inverse of that map by𝐾

𝑝
. IfΩ is an

open bounded subset of 𝑋, the mapping 𝑁 will be called 𝐿-
compact onΩ if 𝑄𝑁(Ω) is bounded and𝐾

𝑝
(𝐼 − 𝑄)𝑁 : Ω →

𝑋 is compact. Since Im𝑄 is isomorphic to Ker 𝐿, there exists
an isomorphism 𝐽 : Im𝑄 → Ker 𝐿.

Lemma 4 (see [8]). Let Ω ⊂ 𝑋 be an open and bounded set.
Let 𝐿 be a Fredholm mapping of index zero and let 𝑁 be 𝐿-
compact on Ω. Assume,

(a) for each 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜕Ω ∩ Dom𝐿, 𝐿𝑥 ̸= 𝜆𝑁𝑥;

(b) for each 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑄𝑁𝑥 ̸= 0;

(c) deg{𝐽𝑄𝑁, Ω ∩ Ker 𝐿, 0} ̸= 0.

Then 𝐿𝑥 = 𝑁𝑥 has at least one solution inΩ ∩ Dom𝐿.

Before starting our main result, for the lack of conve-
nience, we denote

𝑓 =

1

𝜔

∫

𝜔

0

𝑓 (𝑡) d𝑡 𝑓 ∈ 𝑃𝐶

𝜔
,

𝑐

𝑗
=

𝑚

∑

𝑘=1

ln (1 + 𝑐

𝑗𝑘
) , 𝑗 = 1, 2,

𝐶

1
=

𝑚

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

ln (1 + 𝑐

1𝑘
)

󵄨

󵄨

󵄨

󵄨

+ 𝑐

1
,

𝐶

2
=

𝑚

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

ln (1 + 𝑐

2𝑘
)

󵄨

󵄨

󵄨

󵄨

− 𝑐

2
.

(5)

The following assumptions are valid throughout this
paper:

(𝐴

1
) 𝑑 − (𝑐

2
/𝜔) > 0,

(𝐴

2
) 1/4ℎ < 𝐺 < 1/3ℎ,

(𝐴

3
) 4ℎ(𝑑 − (𝑐

2
/𝜔)) exp[(1/2)(2𝑟𝜔 + 𝐶

1
)] < 𝐵 <

4𝐺ℎ

2
(𝑑 − (𝑐

2
/𝜔))/(4𝐺ℎ − 1).



Abstract and Applied Analysis 3

For further convenience, we introduce six positive numbers
as follows:

ℎ

±
= ( [𝑒𝛿𝐵 exp(−1

2

(2𝑟𝜔 + 𝐶

1
))

−2ℎ𝑒𝛿 (𝑑 −

𝑐

2

𝜔

)] ±
√
Δ

1
)

× (2 (𝑑 −

𝑐

2

𝜔

)ℎ

2
𝑒

2
𝛿

2
)

−1

,

𝑙

±
= ([4𝐺ℎ

2
𝑒𝛿𝐵 exp (1

2

(2𝑟𝜔 + 𝐶

1
))

−2ℎ𝑒𝛿 [4𝐺ℎ

2
(𝑑 −

𝑐

2

𝜔

) − (4𝐺ℎ − 1) 𝐵]] ±
√
Δ

2
)

× (2ℎ

2
𝑒

2
𝛿

2
[4𝐺ℎ

2
(𝑑 −

𝑐

2

𝜔

) − (4𝐺ℎ − 1) 𝐵])

−1

𝑢

±
=

[4𝐺𝑒𝛿𝐵 − 8𝐺ℎ𝑒𝛿 (𝑑 − (𝑐

2
/𝜔))] ± √Δ

3

2 [4𝐺ℎ

2
𝑒

2
𝛿

2
(𝑑 − (𝑐

2
/𝜔)) − (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵]

,

(6)

where

Δ

1
= [𝑒𝛿𝐵 exp (−1

2

(2𝑟𝜔 + 𝐶

1
)) − 2ℎ𝑒𝛿 (𝑑 −

𝑐

2

𝜔

)]

2

− 4ℎ

2
𝑒

2
𝛿

2
(𝑑 −

𝑐

2

𝜔

)

2

,

Δ

2
= [4𝐺ℎ

2
𝑒𝛿𝐵 exp (1

2

(2𝑟𝜔 + 𝐶

1
))

−2ℎ𝑒𝛿 [4𝐺ℎ

2
(𝑑 −

𝑐

2

𝜔

) − (4𝐺ℎ − 1) 𝐵]]

2

− 4ℎ

2
𝑒

2
𝛿

2
[4𝐺ℎ

2
(𝑑 −

𝑐

2

𝜔

) − (4𝐺ℎ − 1) 𝐵]

2

,

Δ

3
= [4𝐺𝑒𝛿𝐵 − 8𝐺ℎ𝑒𝛿 (𝑑 −

𝑐

2

𝜔

)]

2

− 16𝐺(𝑑 −

𝑐

2

𝜔

) [4𝐺ℎ

2
𝑒

2
𝛿

2
(𝑑 −

𝑐

2

𝜔

)

− (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵] .

(7)

Under assumptions (𝐴
1
), (𝐴
2
), and (𝐴

3
), it is not difficult

to show that

𝑙

−
< 𝑢

−
< ℎ

−
< ℎ

+
< 𝑢

+
< 𝑙

+
. (8)

Theorem 5. In addition to (𝐴
1
), (𝐴
2
), and (𝐴

3
), suppose that

(𝐴

4
) 𝑟+(𝑐

1
/𝜔)−(𝑟/𝐾) exp(ln 𝑙

+
+(1/2)(2𝑟𝜔+𝐶

1
)) > 0.

Then system (2) has at least two positive 𝜔-periodic solutions.

Proof. Making the change of variables,

𝑁(𝑡) = exp (𝑢
1
(𝑡)) , 𝑃 (𝑡) = exp (𝑢

2
(𝑡)) . (9)

Then, system (2) can be rewritten as

𝑢̇

1
(𝑡) = 𝑟 (𝑡) −

𝑟 (𝑡)

𝐾

exp (𝑢
1
(𝑡 − 𝜏

1
))

−

4𝐺𝑒𝛿exp(𝑢
2
(𝑡))+(4𝐺ℎ−1) 𝑒

2
𝛿

2exp(𝑢
1
(𝑡)+𝑢

2
(𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2

≡ 𝑓

1
(𝑡) ,

𝑢̇

2
(𝑡) = −𝑑 (𝑡)

+ ( (4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢
1
(𝑡 − 𝜏

2
))

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 (𝑡) exp (2𝑢

1
(𝑡)))

×(4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2

)

−1

)

≡ 𝑓

2
(𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑢

1
(𝑡

𝑘
) = ln (1 + 𝑐

1𝑘
) ,

Δ𝑢

2
(𝑡

𝑘
) = ln (1 + 𝑐

2𝑘
) , 𝑡 = 𝑡

𝑘
.

(10)

Take

𝑋 = {𝑥 = (𝑢

1
, 𝑢

2
)

𝑇

: 𝑢

𝑗
∈ 𝑃𝐶

𝜔
, 𝑗 = 1, 2,

𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡) } , 𝑌 = 𝑋 ×R
2𝑞

(11)

and define

‖𝑥‖0
=

2

∑

𝑗=1

sup
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝑗
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

, 𝑥 = (𝑢

1
, 𝑢

2
) ∈ 𝑋,

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩1
= ‖𝑥‖0

+

𝑞

∑

𝑗=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝜉

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

, 𝑦 = [𝑥, 𝜉

1
, . . . , 𝜉

𝑞
] ∈ 𝑌.

(12)

Both (𝑋, ‖ ⋅ ‖) and (𝑌, ‖ ⋅ ‖
1
) are Banach spaces.

Define
Dom𝐿 = {𝑥 ∈ 𝑋 : 𝑥̇ ∈ 𝑋} , 𝐿 : Dom𝐿 󳨀→ 𝑌,

𝐿 ((𝑢

1
, 𝑢

2
)

𝑇

) = ((

𝑢̇

1

𝑢̇

2

) , (

Δ𝑢

1
(𝑡

𝑘
)

Δ𝑢

2
(𝑡

𝑘
)

)

𝑞

𝑘=1

) ;

(13)

𝑁 : 𝑋 → 𝑌,

𝑁(

𝑢

1

𝑢

2

) = ((

𝑓

1
(𝑡)

𝑓

2
(𝑡)

) , (

ln (1 + 𝑐

1𝑘
)

ln (1 + 𝑐

2𝑘
)

)

𝑞

𝑘=1

) ; (14)

𝑃 : 𝑋 → 𝑋, 𝑃((𝑢
1
, 𝑢

2
)

𝑇
) = (𝑢

1
, 𝑢

2
)

𝑇; 𝑄 : 𝑌 → 𝑌,

𝑄((

𝑢

1

𝑢

2

) , {(

𝑚

𝑘

𝑛

𝑘

)}

𝑞

𝑘=1

)

= ((

𝑢

1
+

1

𝜔

𝑞

∑

𝑘=1

𝑚

𝑘

𝑢

2
+

1

𝜔

𝑞

∑

𝑘=1

𝑛

𝑘

),{(

0

0

)}

𝑞

𝑘=1

).

(15)
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It is not difficult to show that
Ker 𝐿 = {𝑥 | 𝑥 ∈ 𝑋, (𝑢

1
, 𝑢

2
)

𝑇
∈ 𝑋 : (𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
=

(𝑐

1
, 𝑐

2
)

𝑇
∈ R 2, 𝑡 ∈ R};

Im 𝐿 =

{

{

{

{

{

{

{

{

{

{

{

[(

𝑢

1

𝑢

2

) , {(

𝑚

𝑘

𝑛

𝑘

)}

𝑞

𝑘=1

] ∈ 𝑌 :

𝜔𝑢

1
+

𝑞

∑

𝑘=1

𝑚

𝑘
= 0

𝜔𝑢

2
+

𝑞

∑

𝑘=1

𝑛

𝑘
= 0

}

}

}

}

}

}

}

}

}

}

}

.

(16)

Since Im 𝐿 is closed in 𝑌 and 𝑃 and 𝑄 are continuous projec-
tors such that

Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿 = Im (𝐼 − 𝑄) ,

dim Ker 𝐿 = codim Im 𝐿 = 2,

(17)

it follows that 𝐿 is a Fredholm mapping of index zero. Fur-
thermore, the generalized inverse (to 𝐿) 𝐾

𝑝
: Im 𝐿 →

Dom𝐿 ∩ Ker𝑃 exists, which is given by

𝐾

𝑝
[(

𝑢

1

𝑢

2

) , {(

𝑚

𝑘

𝑛

𝑘

)}

𝑞

𝑘=1

]

= (

∫

𝑡

0

𝑢

1
(𝑠) d𝑠 + ∑

0<𝑡𝑘<𝑡

𝑚

𝑘
−

1

𝜔

𝑞

∑

𝑘=1

𝑚

𝑘
− ∫

𝑡

0

𝑢

1
(𝑠) d𝑠

∫

𝑡

0

𝑢

2
(𝑠) d𝑠 + ∑

0<𝑡𝑘<𝑡

𝑛

𝑘
−

1

𝜔

𝑞

∑

𝑘=1

𝑛

𝑘
− ∫

𝑡

0

𝑢

2
(𝑠) d𝑠

) .

(18)

Then 𝑄𝑁 : 𝑋 → 𝑌 and 𝐾
𝑝
(𝐼 − 𝑄)𝑁 : 𝑋 → 𝑋 are defined

by

𝑄𝑁(

𝑢

1

𝑢

2

) = ((

𝑓

1
+

𝑐

1

𝜔

𝑓

2
+

𝑐

2

𝜔

) ,{(

0

0

)}

𝑞

𝑘=1

). (19)

𝐾

𝑝
(𝐼 − 𝑄)𝑁(

𝑢

1

𝑢

2

) = (

∫

𝑡

0

𝑓

1
(𝑠) d𝑠 + ∑

0<𝑡𝑘<𝑡

ln (1 + 𝑐

1𝑘
)

∫

𝑡

0

𝑓

2
(𝑠) d𝑠 + ∑

0<𝑡𝑘<𝑡

ln (1 + 𝑐

2𝑘
)

)

+ (

1

2

−

𝑡

𝜔

)(

∫

𝜔

0

𝑓

1
(𝑡) d𝑡 + 𝑐

1

∫

𝜔

0

𝑓

2
(𝑡) d𝑡 + 𝑐

2

)

−

1

𝜔

(

∫

𝜔

0

∫

𝑡

0

𝑓

1
(𝑠) d𝑠 d𝑡 + 𝑐

1

∫

𝜔

0

∫

𝑡

0

𝑓

2
(𝑠) d𝑠 d𝑡 + 𝑐

2

).

(20)

Clearly, 𝑄𝑁 and 𝐾

𝑝
(𝐼 − 𝑄)𝑁 are continuous. By using

the Arzela-Ascoli theorem, it is not difficult to prove that
𝐾

𝑝
(𝐼 − 𝑄)𝑁(Ω) is compact for any open bounded setΩ ⊂ 𝑋.

Moreover,𝑄𝑁(Ω) is bounded.Therefore,𝑁 is 𝐿-compact on
Ω with any open bounded set Ω ⊂ 𝑋.

Now, we reach the position to search for an appropriate
open, bounded subset Ω for the application of the continua-
tion theorem.

Corresponding to the operator equation, 𝐿𝑥 = 𝜆𝑁𝑥, 𝜆 ∈

(0, 1), we have

𝑢̇

1
(𝑡) = 𝜆 [𝑟 (𝑡) −

𝑟 (𝑡)

𝐾

exp (𝑢
1
(𝑡 − 𝜏

1
))

− ( (4𝐺𝑒𝛿 exp (𝑢
2
(𝑡)) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× exp (𝑢
1
(𝑡) + 𝑢

2
(𝑡)) )

×(4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2

)

−1

)] ,

𝑢̇

2
(𝑡) = 𝜆 [ − 𝑑 (𝑡) + ( (4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢

1
(𝑡 − 𝜏

2
))

+ (4𝐺ℎ−1) 𝑒

2
𝛿

2
𝐵 (𝑡) exp (2𝑢

1
(𝑡)))

×(4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2

)

−1

)] ,

𝑡 ̸= 𝑡

𝑘

Δ𝑢

1
(𝑡

𝑘
) = 𝜆 ln (1 + 𝑐

1𝑘
) ,

Δ𝑢

2
(𝑡

𝑘
) = 𝜆 ln (1 + 𝑐

2𝑘
) , 𝑡 = 𝑡

𝑘
.

(21)

Suppose that 𝑥 = (𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝑋 is a solution of (21) for

a certain 𝜆 ∈ (0, 1). Integrating the first equation of (21) over
the interval [0, 𝜔], we obtain

∫

𝜔

0

𝑟 (𝑡)

𝐾

exp (𝑢
1
(𝑡 − 𝜏

1
)) d𝑡

+∫

𝜔

0

4𝐺𝑒𝛿 exp (𝑢
2
(𝑡))+(4𝐺ℎ − 1) 𝑒

2
𝛿

2 exp (𝑢
1
(𝑡)+𝑢

2
(𝑡))

4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2
d𝑡

= 𝑟𝜔 + 𝑐

1
. (22)

Similarly, integrating the second equation of (21) over the
interval [0, 𝜔], we obtain

∫

𝜔

0

(4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢
1
(𝑡 − 𝜏

2
))

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 (𝑡) exp (2𝑢

1
(𝑡)))

× (4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2

)

−1

d𝑡 = 𝑑𝜔 − 𝑐

2
.

(23)

It follows from the first equation of (21) and (22) and (𝐴

2
)

that

∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

𝑢̇

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

d𝑡

= 𝜆∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

[𝑟 (𝑡) −

𝑟 (𝑡)

𝐾

exp (𝑢
1
(𝑡 − 𝜏

1
))
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− ( (4𝐺𝑒𝛿 exp (𝑢
2
(𝑡)) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× exp (𝑢
1
(𝑡) + 𝑢

2
(𝑡)) )

×(4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2

)

−1

)]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑡

< ∫

𝜔

0

𝑟 (𝑡) d𝑡 + ∫

𝜔

0

𝑟 (𝑡)

𝐾

exp (𝑢
1
(𝑡 − 𝜏

1
)) d𝑡

+ ∫

𝜔

0

(4𝐺𝑒𝛿 exp (𝑢
2
(𝑡)) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× exp (𝑢
1
(𝑡) + 𝑢

2
(𝑡)) )

× (4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2

)

−1

d𝑡

= ∫

𝜔

0

𝑟 (𝑡) d𝑡 + 𝑟𝜔 + 𝑐

1
= 2𝑟𝜔 + 𝑐

1
;

(24)

that is,

∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

𝑢̇

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

d𝑡 < 2𝑟𝜔 + 𝑐

1
. (25)

Similarly, it follows from the second equation of (21) and (23)
and (𝐴

2
) that

∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

𝑢̇

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

d𝑡 < 2𝑑𝜔 − 𝑐

2
. (26)

Since (𝑢
1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝑋, there exists 𝜉

𝑖
, 𝜂

𝑖
∈ [0, 𝜔], such that

𝑢

𝑖
(𝜉

𝑖
) = inf
𝑡∈[0,𝜔]

𝑢

𝑖
(𝑡) , 𝑢

𝑖
(𝜂

𝑖
) = sup
𝑡∈[0,𝜔]

𝑢

𝑖
(𝑡) , 𝑖 = 1, 2.

(27)

From (𝐴

2
) and (23), we see that

𝑑𝜔 − 𝑐

2
≤ ∫

𝜔

0

4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢
1
(𝑡 − 𝜏

2
))

4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2
d𝑡

+ ∫

𝜔

0

(4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 (𝑡) exp (2𝑢

1
(𝑡))

4𝐺ℎ

2
𝑒

2
𝛿

2 exp (2𝑢
1
(𝑡))

d𝑡,

(28)

which implies

𝑑 − 𝑐

2
≤

𝑒𝛿𝐵 exp (𝑢
1
(𝜂

1
))

(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝜉

1
)))

2
+

(4𝐺ℎ − 1) 𝐵

4𝐺ℎ

2
. (29)

So

𝑢

1
(𝜂

1
)

≥ ln
[4𝐺ℎ

2
(𝑑 −

𝑐

2

𝜔

)−(4𝐺ℎ−1) 𝐵] (1+ℎ𝑒𝛿 exp (𝑢
1
(𝜉

1
)))

2

4𝐺ℎ

2
𝑒𝛿𝐵

.

(30)

This, combined with Lemma 3, gives

𝑢

1
(𝜉

1
) +

1

2

(2𝑟𝜔 + 𝐶

1
)

> ln(([4𝐺ℎ2 (𝑑 − 𝑐

2

𝜔

) − (4𝐺ℎ − 1) 𝐵]

×(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝜉

1
)))

2

)

×(4𝐺ℎ

2
𝑒𝛿𝐵)

−1

)

(31)

or equivalently

[4𝐺ℎ

2
(𝑑 −

𝑐

2

𝜔

) − (4𝐺ℎ − 1) 𝐵] ℎ

2
𝑒

2
𝛿

2 exp (2𝑢
1
(𝜉

1
))

− [4𝐺ℎ

2
𝑒𝛿𝐵 exp (1

2

(2𝑟𝜔 + 𝐶

1
))

− 2ℎ𝑒𝛿 (4𝐺ℎ

2
(𝑑 −

𝑐

2

𝜔

)

− (4𝐺ℎ − 1) 𝐵) ] exp (𝑢
1
(𝜉

1
))

+ [4𝐺ℎ

2
(𝑑 −

𝑐

2

𝜔

) − (4𝐺ℎ − 1) 𝐵] < 0.

(32)

In view of (𝐴
1
) and (𝐴

3
) we have

ln 𝑙
−
< 𝑢

1
(𝜉

1
) < ln 𝑙

+
. (33)

Similarly, it follows from (𝐴

2
) and (23) that

𝑑𝜔 − 𝑐

2
≥ ∫

𝜔

0

4𝐺𝑒𝛿𝐵 (𝑡) exp (𝑢
1
(𝑡 − 𝜏

2
))

4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝑡)))

2
d𝑡, (34)

which implies

𝑑 −

𝑐

2

𝜔

≥

𝑒𝛿𝐵 exp (𝑢
1
(𝜉

1
))

(1 + ℎ𝑒𝛿 exp (𝑢
1
(𝜂

1
)))

2
. (35)

So

𝑢

1
(𝜉

1
) ≤ ln

(𝑑 − (𝑐

2
/𝜔)) (1 + ℎ𝑒𝛿 exp (𝑢

1
(𝜂

1
)))

2

𝑒𝛿𝐵

.

(36)

This, combined with Lemma 3, gives

𝑢

1
(𝜂

1
) −

1

2

(2𝑟𝜔 + 𝐶

1
)

< ln
(𝑑 − (𝑐

2
/𝜔)) (1 + ℎ𝑒𝛿 exp (𝑢

1
(𝜂

1
)))

2

𝑒𝛿𝐵

(37)

or equivalently

(𝑑 −

𝑐

2

𝜔

)ℎ

2
𝑒

2
𝛿

2 exp (2𝑢
1
(𝜂

1
))

− [𝑒𝛿𝐵 exp(−1
2

(2𝑟𝜔 + 𝐶

1
)) − 2ℎ𝑒𝛿 (𝑑 −

𝑐

2

𝜔

)]

× exp (𝑢
1
(𝜂

1
)) + (𝑑 −

𝑐

2

𝜔

) > 0.

(38)
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It follows from (𝐴

1
) and (𝐴

3
) that

𝑢

1
(𝜂

1
) < ln ℎ

−
𝑜𝑟 𝑢

1
(𝜂

1
) > ln ℎ

+
. (39)

It follows from (25), (33), and Lemma 3 that

𝑢

1
(𝜂

1
) ≤ ln 𝑙

+
+

1

2

(2𝑟𝜔 + 𝐶

1
) ≜ 𝐻

11
. (40)

On the other hand, it follows from (𝐴

2
) and (22) and (40) that

𝑟𝜔 + 𝑐

1
≥ ∫

𝜔

0

4𝐺𝑒𝛿 exp (𝑢
2
(𝜉

2
))

4𝐺(1 + ℎ𝑒𝛿 exp (𝐻
11
))

2
d𝑡, (41)

𝑟𝜔 + 𝑐

1
≤ ∫

𝜔

0

𝑟 (𝑡)

𝐾

exp (𝐻
11
) d𝑡

+ ∫

𝜔

0

𝑒𝛿 exp (𝑢
2
(𝜂

2
)) d𝑡

+ ∫

𝜔

0

𝑒𝛿 exp (𝑢
2
(𝜂

2
))

2

d𝑡.

(42)

It follows from (41) that

𝑢

2
(𝜉

2
) ≤ ln

(𝑟 + (𝑐

1
/𝜔)) (1 + ℎ𝑒𝛿 exp (𝐻

11
))

2

𝑒𝛿

.

(43)

This, combined with Lemma 3, gives

𝑢

2
(𝜂

2
) ≤ ln

(𝑟 + (𝑐

1
/𝜔)) (1 + ℎ𝑒𝛿 exp (𝐻

11
))

2

𝑒𝛿

+

1

2

(2𝑑𝜔 + 𝐶

2
) ≜ 𝐻

21
.

(44)

Moreover, because of (𝐴
4
), it follows from (42) that

𝑢

2
(𝜂

2
) ≥ ln

2 [𝑟 + (𝑐

1
/𝜔) − (𝑟/𝐾) exp (𝐻

11
)]

3𝑒𝛿

.

(45)

This, combined with Lemma 3 again, gives

𝑢

2
(𝜉

2
) ≥ ln

2 [𝑟 + (𝑐

1
/𝜔) − (𝑟/𝐾) exp (𝐻

11
)]

3𝑒𝛿

−

1

2

(2𝑑𝜔 + 𝐶

2
) ≜ 𝐻

22
.

(46)

It follows from (44) and (46) that

sup
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑢

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

< max {󵄨󵄨󵄨
󵄨

𝐻

21

󵄨

󵄨

󵄨

󵄨

,

󵄨

󵄨

󵄨

󵄨

𝐻

22

󵄨

󵄨

󵄨

󵄨

} ≜ 𝐻

2
. (47)

Obviously, ln 𝑙
±
, ln ℎ
±
,𝐻
11
, and𝐻

2
are independent of 𝜆.

Now, let us consider 𝑄𝑁𝑥 with 𝑋 = (𝑢

1
, 𝑢

2
)

𝑇
∈ R2. Note

that

𝑄𝑁(𝑢

1
, 𝑢

2
)

= [𝑟 −

𝑟

𝐾

exp (𝑢
1
)

−

4𝐺𝑒𝛿 exp (𝑢
2
) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2 exp (𝑢
1
+ 𝑢

2
)

4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
))

2
+

𝑐

1

𝜔

,

− 𝑑 +

4𝐺𝑒𝛿𝐵 exp (𝑢
1
) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 exp (2𝑢

1
)

4𝐺(1 + ℎ𝑒𝛿 exp (𝑢
1
))

2

+

𝑐

2

𝜔

] .

(48)

Because of (𝐴
1
), (𝐴
2
), (𝐴
3
), and (𝐴

4
), we can show that the

equation 𝑄𝑁(𝑢

1
, 𝑢

2
) = 0 has two distinct solutions:

𝑢̃ = (ln 𝑢
−
, ln

4𝐺 (𝑟 − (𝑟/𝐾) 𝑢

−
) (1 + ℎ𝑒𝛿𝑢

−
)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑢

−

) ,

𝑢̂ = (ln 𝑢
+
, ln

4𝐺 (𝑟 − (𝑟/𝐾) 𝑢

+
) (1 + ℎ𝑒𝛿𝑢

+
)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑢

+

) .

(49)

Choose 𝐶 > 0 such that

𝐶 > max{
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

ln
4𝐺 (𝑟 − (𝑟/𝐾) 𝑢

−
) (1 + ℎ𝑒𝛿𝑢

−
)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑢

−

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

ln
4𝐺 (𝑟 − (𝑟/𝐾) 𝑢

+
) (1 + ℎ𝑒𝛿𝑢

+
)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑢

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

} .

(50)

Let

Ω

1
= {𝑥 = (𝑢

1
, 𝑢

2
)

𝑇

∈ 𝑋 |

𝑢

1
(𝑡) ∈ (ln 𝑙

−
, In ℎ
−
)

sup
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑢

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

< 𝐻

2
+ 𝐶

} ,

Ω

2
=

{

{

{

{

{

{

{

{

{

𝑥 = (𝑢

1
, 𝑢

2
)

𝑇

∈ 𝑋 |

inf
𝑡∈[0,𝜔]

𝑢

1
(𝑡) ∈ (ln 𝑙

−
, In 𝑙
+
)

sup
𝑡∈[0,𝜔]

𝑢

1
(𝑡) ∈ (ln ℎ

+
, 𝐻

11
)

sup
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑢

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

< 𝐻

2
+ 𝐶

}

}

}

}

}

}

}

}

}

.

(51)

Then both Ω

1
and Ω

2
are bounded open subsets of 𝑋. It

follows from (2) and (50) that 𝑢̃ ∈ Ω

1
and 𝑢̂ ∈ Ω

2
. With the

help of (2), (33), (39), (40), and (47)–(50), it is easy to see that
Ω

1
∩Ω

2
= 𝜙 andΩ

𝑖
satisfies the requirement (a) in Lemma 4

for 𝑖 = 1, 2. Moreover, 𝑄𝑁𝑥 ̸= 0 for 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿 = 𝜕Ω ∩

R2. A direct computation gives deg{𝐽𝑄𝑁,Ω

𝑖
∩ Ker 𝐿, 0} ̸= 0.

Here, 𝐽 is taken as the identity mapping since Im𝑄 = Ker 𝐿.
So far we have proved that Ω

𝑖
satisfies all the assumptions in

Lemma 4. Hence, Equation (2) has at least two 𝜔-periodic
solutions. This completes the proof of Theorem 5.
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