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The existence of the energy-minimizing solutions for a baby-Skyrmemodel on the sphere is proved using variational method. Some
properties of the solutions are also established.

1. Introduction

Half a century ago, Skyrme [1] firstly suggested that the
soliton in the nonlinear 𝜎-model [2] may be explained by
the baryon number, which is corresponding to the winding
number of soliton.

The Skyrmions were originally introduced to describe
baryons in three spatial dimensions [1]. In a nonlinear scalar
field theory, a Skyrmion is a classical static field configuration
of minimal energy. The scalar field is the pion field, and
the Skyrmion represents a baryon. The Skyrmion has a
topological chargewhich prevents continuously deforming to
the vacuum field configuration.This charge is identified with
the conserved baryon number which prevents a baryon from
decaying into pions [1, 3].

Skyrmions have been shown to exist for a very wide class
of geometries [4], which are now playing an increasing role
in other areas of physics as well. For example, in certain
condense matter systems, Skyrmions are used to model the
bubbles that appear in the presence of an external magnetic
field in two dimensions; they could provide a mechanism
associated with the disappearance of antiferromagnetism, the
onset of HTc superconductivity, and so on. In condensed
matter physics [5], the model [6] has direct applications
which may give an effective description in quantum Hall
systems. In the context of condensed matter physics [7,
8], direct experimental observations can be made. In three
spatial dimensions [6], baby Skyrmions have been studied
in the context of strong interactions as a toy-model in

order to understand the more complicated dynamics of usual
Skyrmions which live.

In the present paper we consider a baby-Skyrme model,
that is, Skyrmional model in two spatial dimensions, which
was introduced in [9]. Our purpose of this paper is to
establish the existence of the energy-minimizing solutions
for this baby-Skyrme model rigorously by the variational
method. In Section 2, we will present the mathematical
structure of the model and the main existence theorem.
In Section 3, we will show the existence of the energy-
minimizing solutions by the variationalmethod and establish
some properties of the solutions.

2. The Mathematical Structure
and Existence Theorem

Baby Skyrmions are obtained as the nontrivial solutions of
the well-known nonlinear𝑂(3)model.Themodel consists of
three real scalars 𝜙

𝑎
(𝑎 = 1, 2, 3) subject to the constraint

⃗
𝜙 ⋅

⃗
𝜙 = 1. (1)

The equation of motion admits solutions with finite energy
which represents a mapping of R2spat into S2int. They are
characterized by the density 𝜌,

𝜌 ≡ 𝜖
𝑖𝑗

⃗
𝜙 ⋅ (𝜕
𝑖

⃗
𝜙 × 𝜕
𝑖 ⃗
𝜙) , (2)
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and the winding number 𝑊,

𝑊 =

1

8𝜋

∫𝑑
2

𝑟𝜌. (3)

The energy functional of this model is as follows:

𝐸 = 𝐸
(2)

+ 𝐸
(4)

+ 𝐸
(𝑝)

, (4)

with

𝐸
(2)

=

1

2

∫ 𝜕
𝑖

⃗
𝜙𝜕
𝑖 ⃗
𝜙𝑑
2

𝑟,

𝐸
(4)

=

1

8

∫𝜌𝜌𝑑
2

𝑟,

𝐸
(𝑝)

=

𝛼

2

∫ (𝑛
3
−

⃗
𝜙)

2

𝑑
2

𝑟,

(5)

where 𝑛
3
is a unit vector in the third derivation in internal

space and 𝛼 is a parameter that is assumed positive.
By using the inequality

0 ≤ ∫{

1

4

(𝜕
𝑖

⃗
𝜙 ± 𝜖
𝑖𝑗

⃗
𝜙 × 𝜕
𝑗 ⃗
𝜙)

2

+

1

2

(

1

2

𝜖
𝑖𝑗
𝜕
𝑖 ⃗
𝜙 × 𝜕
𝑗 ⃗
𝜙 ± √𝛼 (𝑛

3
−

⃗
𝜙))

2

}𝑑
2

𝑟,

(6)

we may find the Bogomol’nyi bound

𝐸 ≥ 4𝜋𝑘 (1 + √𝛼) . (7)

We are to extend the model above by going from R2sp to
S2sp(𝐿) where 𝐿 is the radius of the two-sphere. By the polar
coordinates 𝜃, 𝜑(0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜑 ≤ 2𝜋),

𝑥 = 𝐿 sin 𝜃 cos𝜑; 𝑦 = 𝐿 sin 𝜃 sin𝜑. (8)

And the Jacobian of the transformation and the metric
associated with the polar coordinates are

𝐽 = −𝐿
2 sin 𝜃,

𝑑𝑠
2

= 𝐿
2

(sin2𝜃𝑑𝜑2 + 𝑑𝜃
2

) .

(9)

In order to obtain explicit static solutions in the winding
number 𝑊 = 𝑘 sector, we introduce the hedgehog parame-
terization

𝜙
1
= sin𝑓 cos 𝑘𝜑;

𝜙
2
= sin𝑓 sin 𝑘𝜑;

𝜙
3
= cos𝑓,

(10)

where

𝑓 = 𝑓 (𝜃) , (11)

is subject to the boundary conditions

𝑓 (0) = 𝜋, 𝑓 (𝜋) = 0. (12)

The energy functional is as follows:

𝐸
𝑘
(𝑓)

=

1

4𝑘

∫

𝜋

0

𝑑𝜃 sin 𝜃{𝑓
󸀠2

+ 𝑘
2

(

sin𝑓

sin 𝜃

)

2

+

𝑘
2

𝐿
2
𝑓
󸀠2

(

sin𝑓

sin 𝜃

)

2

+ 2𝛼𝐿
2

(1 − cos𝑓)} ,

(13)

while the winding number density results in

𝜌
𝑘
= −

2𝑘

𝐿
2
𝑓
󸀠
sin𝑓

sin 𝜃

. (14)

It is not difficult to show that the Euler-Lagrange equation
of (13) is

[1 +

𝑘
2

𝐿
2
(

sin𝑓

sin 𝜃

)

2

]𝑓
󸀠󸀠

+ [𝑓
󸀠

− 𝑘
2
sin 2𝑓

sin 2𝜃

+

𝑘
2

𝐿
2
𝑓
󸀠
sin𝑓

sin 𝜃

(𝑓
󸀠
cos𝑓
cos 𝜃

−

sin𝑓

sin 𝜃

)]

× cot 𝜃 − 𝛼𝐿
2 sin𝑓 = 0.

(15)

Next we are to find a solution of the boundary problem
(15) and (12). We will establish the existence of solutions by
the indirect variational method.

Here is our main existence theorem, which solves the
above problem.

Theorem 1. The boundary value problem (15) and (12) has a
solution 𝑓(𝜃) such that

0 < 𝑓 (𝜃) < 𝜋, ∀𝜃 ∈ (0, 𝜋) , (16)

and there hold the sharp asymptotic estimates

𝜋 − 𝑓 (𝜃) = 𝑂 (𝜃
3/2

) (𝑎𝑠 𝜃 󳨀→ 0) ,

𝑓 (𝜃) = 𝑂 ((𝜋 − 𝜃)
3/2

) (𝑎𝑠 𝜃 󳨀→ 𝜋) .

(17)

3. The Proof of Theorem 1

In this section, we will divide the proof ofTheorem 1 into two
lemmas.

Lemma 2. The boundary value problem (15) and (12) has a
solution 𝑓(𝜃) such that

𝜋 − 𝑓 (𝜃) = 𝑂 (𝜃
3/2

) (𝑎𝑠 𝜃 󳨀→ 0) ,

𝑓 (𝜃) = 𝑂 ((𝜋 − 𝜃)
3/2

) (𝑎𝑠 𝜃 󳨀→ 𝜋) .

(18)

Proof. In order to get a solution of (15) with the boundary
condition (12), we may look for the minimizers of the
functional (13).
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We first introduce the admissible space

A = {𝑓 | 𝑓 (𝜃) is continuous on [0, 𝜋]

and absolutely continuous on every compact

subinterval of [0, 𝜋] such that it satisfies

the boundary condition (12) and 𝐸
𝑘
(𝑓) < ∞} .

(19)

Obviously the setA is not empty.
We intend to find a solution of (15) and (12) by solving the

minimization problem:

𝜂 ≡ min {𝐸
𝑘
(𝑓) | 𝑓 ∈ A} . (20)

Let {𝑓
𝑛
(𝜃)} be aminimizing sequence of (20).Without loss of

generality, we may assume that

0 ≤ 𝑓
𝑛
(𝜃) ≤ 𝜋, 0 < 𝜃 < 𝜋. (21)

Otherwise, we may modify the sequence to fulfill (21) mean-
while without enlarging the energy. From the inequality

󵄨
󵄨
󵄨
󵄨
1 + cos𝑓

𝑛
(𝜃)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝜃

0

󵄨
󵄨
󵄨
󵄨
󵄨
(− sin𝑓

𝑛
(𝑠)) 𝑓

󸀠

𝑛
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ ∫

𝜃

0

|sin 𝑠| ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
sin𝑓
𝑛
(𝑠) ⋅ 𝑓

󸀠

𝑛
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

|sin 𝑠|

𝑑𝑠

≤ (∫

𝜃

0

|sin 𝑠|
2

𝑑𝑠)

1/2

(∫

𝜃

0

(𝑓
󸀠

𝑛
(𝑠))

2

(

sin𝑓
𝑛
(𝑠)

sin 𝑠

)

2

𝑑𝑠)

1/2

≤

𝐿

√3𝑘

𝜃
3/2

(𝐸
𝑘
(𝑓
𝑛
))
1/2

= 𝐶
1
𝜃
3/2

, 𝐶
1
> 0,

(22)

we may see that 𝑓
𝑛
(𝜃) → 𝜋 uniformly as 𝜃 → 0.

Similarly, we have
󵄨
󵄨
󵄨
󵄨
1 − cos𝑓

𝑛
(𝜃)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝜋

𝜃

󵄨
󵄨
󵄨
󵄨
󵄨
sin𝑓
𝑛
(𝑠) 𝑓
󸀠

𝑛
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ ∫

𝜋

𝜃

|sin 𝑠| ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
sin𝑓
𝑛
(𝑠) ⋅ 𝑓

󸀠

𝑛
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

|sin 𝑠|

𝑑𝑠

≤ (∫

𝜃

0

|sin 𝑠|
2

𝑑𝑠)

1/2

(∫

𝜃

0

(𝑓
󸀠

𝑛
(𝑠))

2

(

sin𝑓
𝑛
(𝑠)

sin 𝑠

)

2

𝑑𝑠)

1/2

≤

𝐿

√3𝑘

(𝜋 − 𝜃)
3/2

(𝐸
𝑘
(𝑓
𝑛
))
1/2

= 𝐶
2
(𝜋 − 𝜃)

3/2

, 𝐶
2
> 0.

(23)

Then, we may find that 𝑓
𝑛
(𝜃) → 0 uniformly as 𝜃 → 𝜋.

In view of (22) and (23), letting 𝑛 → ∞, we have

𝑓
𝑛
(𝜃) 󳨀→ 𝜋 (as 𝜃 󳨀→ 0) ,

𝑓
𝑛
(𝜃) 󳨀→ 0 (as 𝜃 󳨀→ 𝜋) ,

𝜋 − 𝑓 (𝜃) = 𝑂 (𝜃
3/2

) (as 𝜃 󳨀→ 0) ,

𝑓 (𝜃) = 𝑂 ((𝜋 − 𝜃)
3/2

) (as 𝜃 󳨀→ 𝜋) .

(24)

We may get that the sequence {𝑓
𝑛
(𝜃)} is bounded in

𝑊
1,2

(𝑎, 𝑏) for any

0 < 𝑎 < 𝑏 < 𝜋. (25)

Using weak compactness, we may assume that {𝑓
𝑛
(𝜃)} (in

fact, a subsequence in it) is weakly convergent in 𝑊
1,2

(𝑎, 𝑏).
Applying a diagonal subsequence argument, we may assume
there is an

𝑓 (𝜃) ∈ 𝑊
1,2

loc (𝑜, 𝜋) , (26)

such that

𝑓
𝑛
(𝜃) 󳨀→ 𝑓 (𝜃) as 𝑛 󳨀→ ∞, (27)

weakly in 𝑊
1,2

(𝑎, 𝑏). In view of the compact embedding
theorem, we may get

𝑊
1,2

(𝑎, 𝑏) 󳨅→ 𝐶 [𝑎, 𝑏] . (28)

That is, 𝑊1,2(𝑎, 𝑏) can be compactly embedded into 𝐶[𝑎, 𝑏].
So we see that the convergence (27) is strong in 𝐶[𝑎, 𝑏].
Consequently, we know that 𝑓

𝑛
(𝜃) is absolutely continuous

in any compact subinterval of (𝑎, 𝑏) and continuous on (0, 𝜋).
Let

𝐹 =

1

4𝑘

sin 𝜃 [𝑓
󸀠2

+ 𝑘
2

(

sin𝑓

sin 𝜃

)

2

+

𝑘
2

𝐿
2
𝑓
󸀠2

(

sin𝑓

sin 𝜃

)

2

+ 2𝛼𝐿
2

(1 − cos𝑓) ] .

(29)

Using the weak lower semicontinuity property of the func-
tional, we obtain the inequality

∫

𝑏

𝑎

𝐹 (𝑓 (𝜃)) ≤ lim inf
𝑛→∞

∫

𝑏

𝑎

𝐹 (𝑓
𝑛
(𝜃)) 𝑑𝜃 ≤ lim inf

𝑛→∞

𝐸
𝑘
(𝑓
𝑛
) = 𝜂,

(30)

for any

0 < 𝑎 < 𝑏 < 𝜋. (31)

Letting

𝑎 󳨀→ 0
+

, 𝑏 󳨀→ 𝜋
−

, (32)

we have

𝐸 (𝑓) = ∫

𝜋

0

𝐹 (𝑓) 𝑑𝜃 ≤ 𝜂 ≤ 𝐸 (𝑓) . (33)
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Thus we see that 𝑓(𝜃) fulfills the complete boundary
conditions (12). Therefore

𝑓 (𝜃) ∈ A, (34)

and (30) allows us to obtain

𝐸 (𝑓) = 𝜂. (35)

That is, 𝑓 is found to be a solution of (20). As a consequence,
𝑓 is a finite-energy solution of (12) and (15).

Next we will establish some properties of the energy-
minimizing solutions.

Lemma 3. Let 𝑓 be the energy-minimizing solution obtained
in Lemma 2. Then

0 < 𝑓 (𝜃) < 𝜋, ∀𝜃 ∈ (0, 𝜋) . (36)

Proof. Evidently, 𝑓(𝜃) ≡ 0 is an equilibrium point of (15). We
assume that there is 𝜃

0
such that

𝑓 (𝜃
0
) = 0. (37)

Hence, 𝑓(𝜃) attains its global minimum, so

𝑓
󸀠

(𝜃
0
) = 0. (38)

Using the uniqueness theorem for the initial value problem
of ordinary differential equations, we can get

𝑓 (𝜃) ≡ 0, (39)

which contradicts

𝑓 (0) = 𝜋, (40)

so

𝑓 (𝜃) > 0, ∀𝜃 ∈ (0, 𝜋) . (41)

Similarly, we may find that

𝑓 (𝜃) < 𝜋, ∀𝜃 ∈ (0, 𝜋) . (42)

Combining Lemmas 2 and 3, we complete the proof of
Theorem 1.
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